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Abstract
A non-Hermitian complex symmetric 2 × 2-matrix toy model is used to
study projective Hilbert space structures in the vicinity of exceptional points
(EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-
expanded in terms of the root vectors at the EP. It is shown that the apparent
contradiction between the two incompatible normalization conditions with
finite and singular behaviour in the EP-limit can be resolved by projectively
extending the original Hilbert space. The complementary normalization
conditions correspond then to two different affine charts of this enlarged
projective Hilbert space. Geometric phase and phase-jump behaviour are
analysed, and the usefulness of the phase rigidity as measure for the distance
to EP configurations is demonstrated. Finally, EP-related aspects of PT -
symmetrically extended quantum mechanics are discussed and a conjecture
concerning the quantum brachistochrone problem is formulated.

PACS numbers: 03.65.Fd, 03.65.Vf, 03.65.Ca, 02.40.Xx

1. Introduction

A generic property of non-Hermitian operators is the possible occurrence of nontrivial
Jordan blocks in their spectral decomposition [1]. For an operator H(X) depending on
a set of parameters X = (X1, . . . , Xm) ∈ M from a space M this means that, in case
of a single Jordan block, two or more spectral branches λ1(X), . . . , λk(X) may coalesce
(degenerate) at certain parameter hypersurfaces V ⊂ M under simultaneous coalescence of
the corresponding eigenvectors �1(X), . . . , �k(X): λ1(Xc) = · · · = λk(Xc),�1(Xc) = · · · =
�k(Xc) ≡ �0(Xc) for Xc ∈ V . Spectral points of this type are branch points of the spectral
Riemann surface and are called exceptional points (EPs) [1]. At the EPs the set of the
originally k linearly independent eigenvectors �1(X), . . . , �k(X) is replaced by the single
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eigenvector �0(Xc) and k − 1 associated vectors �1(Xc), . . . , �k−1(Xc) which form a Jordan
chain. Together they span the so-called k-dimensional algebraic eigenspace (or root space)
Sλ(Xc) = span[�0(Xc), . . . , �k−1(Xc)] [1, 2] so that the total space dimension remains
preserved. The construction extends straightforwardly to the presence of several Jordan
blocks for the same eigenvalue λ(Xc). In general, the degeneration hypersurface V ⊂ M
consists of components Va of different co-dimension co dim Va = a. Higher order Jordan
blocks require a higher degree of parameter tuning (they have a higher co-dimension) and a
correspondingly lower dimension of the component Va . Due to the different dimensions of its
components Va the degeneration hypersurface V = ⋃

a Va itself has the structure of a stratified
manifold [3].

EPs occur naturally in quantum scattering setups [4, 5] when two or more resonance
states coalesce and higher order poles of the S-matrix form. Within the Gamow state approach
such S-matrix double poles have been considered in [6–9], whereas in the Feshbach projection
operator formalism (one of the basic approaches to analyse open quantum systems) they
naturally occurred in studies of nuclei [10], atoms [11, 12] and quantum dots [13, 14]. EP-
related crossing and avoided crossing scenarios have been studied for bound states in the
continuum [11, 15–17] as well as for phase transitions [18–21]. In asymptotic analyses of
quasi-stationary systems EPs show up as hidden crossings [22]. EP-related theoretically
predicted level and width bifurcation properties have been experimentally verified in a series
of microwave resonator cavity experiments. In [23], the resonance trapping phenomenon
(width bifurcation) [10] has directly been proven. The four-fold winding around an EP has
been found experimentally [24] in full agreement with the theoretical prediction [19, 25] and
related studies [14, 26]. In [27], two-level coalescences have been associated with chiral
system behaviour. The geometric phase at EPs has been discussed in [14, 26–32].

EPs also play an important role in the recently considered PT -symmetrically extended
quantum models [33–35]. There they correspond to the phase-transition points between
physical sectors of exact PT symmetry and unphysical sectors of spontaneously broken PT
symmetry [36–40].

Other, non-quantum mechanical examples where EPs play an important role are the
optics of bianisotropic crystals [41], acoustic models [42], many hydrodynamic setups where
EPs have been studied within pseudo-spectral approaches [43] as well as a large number
of mechanical models [44] where they are connected with regimes of critical stability [45].
Recent results on magnetohydrodynamic dynamo models indicate on a close connection
between nonlinear polarity reversal mechanisms of magnetic fields and EPs [46].

For completeness we note that the perturbation theory for systems in the vicinity of
EPs dates back to 1960 [47] (see also [2]) and that it is closely related to singularity
theory, catastrophe theory and versal deformations of Jordan structures [48]. Supersymmetric
mappings between EP configurations have been recently considered in [49, 50].

A correct perturbative treatment of models in the vicinity of EPs has to be built on
an expansion in terms of root vectors (eigenvectors and associated vectors �i(Xc)) at the
corresponding unperturbed eigenvalue λ(Xc) (see e.g. [2, 44]). For X �∈ V (away from the
EP at Xc and from other EPs), the operator H(X) has a diagonal spectral decomposition with
corresponding eigenvectors �i(X). Choosing the normalization of these eigenvectors away
from the EP and without regard to the expansion in terms of root vectors leads to a divergence of
the normalization constants in the EP-limit X → Xc. The diagonalization break-down at Xc,
the occurrence of the Jordan block structure and the singular behaviour of the eigenvector
decomposition are generic and were many times described in various contexts (see e.g.
[51, 52]). The natural question connected with the fitting of the root-vector-based
normalization and the diagonalizable-configuration normalization (and related controversial
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discussions on their physical interpretation [51, 52]) is whether and how the singular behaviour
affects the projective Hilbert space structure of quantum systems.

In the present paper, we answer this question by resolving the singularity with the help
of embedding the original Hilbert space H = C

n into its projective extension CP
n instead of

projecting it down to CP
n−1 as in standard Hermitian quantum mechanics. Diagonal spectral

decompositions and decompositions with nontrivial root spaces live then simply in different
(and complementary) affine charts of CP

n similar like monopole configurations of Hermitian
systems have to be covered with two charts (north-pole chart and south-pole chart) of the unit
sphere S2 [53].

The basic construction is demonstrated on a simple complex symmetric (non-Hermitian)
2 × 2-matrix toy model. The consideration of complex symmetric matrices sets no restriction
because by a similarity transformation any complex matrix can be brought to a complex
symmetric form (see, e.g. [54, 55]). The Hilbert space notations for the 2 × 2-matrix model
are fixed in section 2. In section 3, following [32, 44] we derive the leading-order perturbative
expansion in the vicinity of an EP at Xc in terms of root vectors and fit it then explicitly with
expressions of the diagonal spectral decomposition at X �= Xc. Combining geometric phase
techniques for non-Hermitian systems [28] with projective Hilbert space techniques from [56],
we generalize the projective geometric phase techniques of Hermitian systems to paths around
EPs (section 4). The corresponding monodromy group is identified as a parabolic Abelian
subgroup of the orthogonal group O(2, C) and evidence is given that vector norm scalings are
only due to complex dynamical phases whereas geometrical phases are purely real-valued and
norm preserving. In section 5, we consider an instantaneous (stationary type) picture of the
system. Within such a picture, we resolve the singular normalization behaviour by projectively
embedding the Hilbert space H = C

2 ↪→ CP
2. We discuss the necessity for an affine multi-

chart covering of CP
2 in order to accommodate diagonal-decomposition vectors and root

vectors at EPs simultaneously. The usefulness of the phase rigidity as distance measure to EPs
is discussed in section 6. In section 7, some EP-related aspects of PT -symmetric quantum
models are discussed and a conjecture concerning the quantum brachistochrone problem
[34, 57] is formulated. Conclusions (section 8) are followed by the appendix A where
auxiliary results on Jordan structures of complex symmetric matrices are listed.

2. Setup

The subject of our consideration is the behaviour of a quantum system near a level crossing
point of two resonance states—supposing that for an N-level system the influence of the other
N − 2 levels is sufficiently weak. Under this assumption the setup can be modelled by an
effective complex symmetric (non-Hermitian) 2 × 2-matrix Hamiltonian

H =
(

ε1 ω

ω ε2

)
, H = HT . (1)

The effective energies ε1,2 ∈ C and the effective channel coupling ω ∈ C will in general
depend on underlying parameters X = (X1, . . . , Xk) ∈ M from a space M.

For nonvanishing coupling ω �= 0, the Hamiltonian can be rewritten as

H = E0 ⊗ I2 + ω

(
Z 1
1 −Z

)
, (2)

with I2 denoting the 2 × 2 unit matrix and

E0 := 1

2
(ε1 + ε2), Z := ε1 − ε2

2ω
. (3)
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In this representation the eigenvalues E± and eigenvectors �± of H take the very simple form

E± = E0 ± ω
√

Z2 + 1 (4)

and

�± =
(

1

−Z ±
√

Z2 + 1

)
c±, c± ∈ C

∗ := C − {0}, (5)

which makes the branching behaviour most transparent4. From the overlap

〈�+|�−〉 ≡ �∗T
+ �−

= c∗
+c−[1 + |Z|2 − |Z2 + 1| + 2 Im(Z∗√Z2 + 1)] (6)

one reads that 〈�+|�−〉 = 0 holds only for Im Z = 0 and that for general Z ∈ C the two
states �+ and �− are not orthogonal 〈�+|�−〉 �= 0. Following standard techniques [44] for
non-Hermitian operators, we consider a dual (left) basis �± bi-orthogonal to �±

(H + − E∗
±)�± = 0, 〈�k|�l〉 ∝ δkl, k, l = ±. (7)

For complex symmetric H it holds �± ∝ �∗
± so that the most general ansatz for the right and

left basis vectors �± and �± can be chosen as

�± = c±χ±, �± = d∗
±χ∗

±, c±, d± ∈ C
∗ (8)

χ± :=
(

1

−Z ±
√

Z2 + 1

)
. (9)

The bi-orthogonality

〈�±|�∓〉 = d±c∓χT
±χ∓ = 0 (10)

is ensured by the structure of χ± and holds for any value of the parameter Z ∈ C. A
normalization 〈�±|�±〉 = 1 would set two constraints on the four free scaling parameters c±,

d± ∈ C
∗:

〈�±|�±〉 = d±c±χT
±χ± = 1, (11)

so that the system would still have two free parameters which should be fixed by additional
assumptions. Subsequently, we will mainly work with the bi-orthogonality properties of the
vectors �±, �± and fix their normalization only when explicitly required.

Due to the arbitrary scaling parameters c±, d± ∈ C
∗ of the right and left eigenvectors

�±, �± ∈ H = C
2 (8), it is natural to consider equivalence classes of such vectors defined

by corresponding lines π(�±), π(�±). These lines form the projective Hilbert space P(H) =
H∗/C

∗ = CP
1 
 π(�±), π(�±) [58–60], where H∗ := H − {0} denotes the original Hilbert

space with the point at origin {0} = (0, 0) deleted to allow for a consistent definition of P(H).
The space P(H) is covered by a single chart of homogeneous coordinates (z0, z1)

T ∈ H and
two complementary charts of affine coordinates U0 
 (1, z1/z0), z0 �= 0 and U1 
 (z0/z1, 1),

z1 �= 0. Comparison with the structure of the auxiliary vectors χ± (9) shows that the χ± can be
straightforwardly re-interpreted as points of the projective space CP

1 described by the affine
coordinate over U0: χ± ≈ π(�±). The vectors {�±, �±} themselves can be understood as
sections of the natural line bundle L = {(p, v) ∈ P(H) × H|v = cp, c ∈ C

∗} [53], i.e. as
�± = π(�±) ⊗ c±, �± = π(�±) ⊗ d∗

±, where π denotes the projection π : H∗ → P(H).
The bundle structure is locally trivial π−1(U0) ≈ U0 × C

∗ 
 �± [61]5.
4 The fact that �± depends only on the single parameter Z reflects the property that after rescaling the energy by 1/ω

and shifting it by −E0/ω (these transformations do not affect the eigenvectors) the Hamiltonian (2) depends only on
Z.
5 For completeness we note that the (right) eigenvectors �± and the dual (left) ones �± could be understood as
elements of a vector bundle P(H) × F and its dual P(H) × F ∗ with pairing in the fibres 〈.|.〉 : F ∗

p × Fp −→ C (see,
e.g. [58]). The details of this construction will be presented elsewhere.
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3. Jordan structure

At an EP, the two eigenvalues E± coalesce E+ = E− = E0. According to (4), this happens
for Z2 = −1 and Z = Zc := ±i and via (8) it is connected with a coalescence of the
corresponding lines π(�+) = π(�−) =: π(�0) encoded in

χ+ = χ− = χ0 :=
(

1
−Zc

)
=

(
1
∓i

)
. (12)

This means that the eigenvalue E0 has algebraic multiplicity na(E0) = 2 and geometric
multiplicity ng(E0) = 1, and by definition the level crossing point is an EP of the
spectrum. The bi-orthogonality (10) of �± and �∓ is compatible with the coalescence
of the lines due to the vanishing bi-norm χT

0 χ0 = 0, i.e. the isotropy6 of χ0—a generic fact
holding for the (geometric) eigenvector at any EP [2, 44]. We note that the coalescence
π(�+) = π(�−) = π(�0) still leaves the freedom for the vectors �+ = c+χ0 and �− = c−χ0

of being two different sections �+ �= �− of the same fibre π(�0) × C
∗ over π(�0).

The right and left eigenvectors �0, �0 at the EP are supplemented by corresponding
associated vectors (algebraic eigenvectors) �1 and �1 defined by the Jordan chain relations
[44]

[H(Zc) − E0I2]�0 = 0, [H(Zc) − E0I2]�1 = �0

[H(Zc) − E0I2]+�0 = 0, [H(Zc) − E0I2]+�1 = �0.
(13)

From the inhomogeneity of these Jordan chain relations it follows immediately that the root
vectors �0 and �1 as well as �0 and �1 scale simultaneously and in a linked way with
the same single scale factor c0 and d∗

0 , respectively. This is also visible from their explicit
representation (A.9) derived in the appendix

�0 = σqc0

(
1

−Zc

)
, �1 = σq−1c0

(−Zc

1

)

�0 = σq∗d∗
0

(−Zc

1

)
, �1 = σq∗−1d∗

0

(
1

−Zc

) (14)

σ := eiµ π
4√
2

, q :=
√

2ω, Zc = ±i =: µi, c0, d0 ∈ C
∗. (15)

The simultaneous scaling means that the lines π(�0), π(�0) at the EP should be interpreted
as the one-dimensional components (projections) of two-dimensional planes which span the
root space7 S(E0) [2] and which scale as a whole with a single scale factor. Such a higher
dimensional (complex) plane structure goes clearly beyond the one-dimensional line structure
of the projective space P(H) (mathematically one should extend the natural line bundle of the
original projective space to a more general projective flag bundle [62, 63])8 and underlines the
fact that the state at an EP itself is not an element of the projective Hilbert space P(H) in its
usual understanding.

The basis sets {�0,�1} and {�0, �1} satisfy the well-known bi-orthogonality conditions
[44]

〈�0|�0〉 = 〈�1|�1〉 = 0 〈�0|�1〉 = 〈�1|�0〉 = d0c0 �= 0. (16)

6 The vector χ0 behaves similar like a vector on the light cone in Minkowski space.
7 In the present simplest model S(E0) fills the whole Hilbert space H = C

2.
8 Indications that all the root vectors of a Jordan chain should scale simultaneously with a single scale factor were
given, e.g., in [8] for Gamow vector setups with higher S-matrix poles.
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Again, a normalization 〈�0|�1〉 = 〈�1|�0〉 = 1 would only lead to a constraint d0c0 = 1 on
the scale factors, but would not fix them completely. Due to this scaling freedom the single line
π(�0) of a given Jordan structure, in general, still allows for different sections �0,a �= �0,b

of the corresponding fibre π(�0) × C
∗ 
 �0,a, �0,b, π(�0,a) = π(�0,b) = π(�0).

Let us now consider in detail what happens when the system approaches one of the
critical values Zc = ± i. For this purpose, we use the well-defined (but completely general
and arbitrary) ansatz

Z = Zc + ε, |ε| � 1, ε ∈ C (17)

and expand the eigenvalues (4) and the line defining vectors χ± (9) in terms of ε. This gives
the leading contributions to their Puiseux series representation [2, 44] in ε1/2 as

E± = E0 ± ε1/2
E + o(ε1/2), (18)


E := ω
√

2Zc, χ± =
(

1
−Zc

)
± ε1/2

(
0√
2Zc

)
+ o(ε1/2). (19)

Following [32, 44], we expand the eigenvectors �±(Z) of the diagonal spectral decomposition
in the same local ε1/2 approximation in terms of the Jordan chain (root) vectors �0,1:

�± = �0 + ε1/2(b0�0 + b1�1) + o(ε1/2), (20)

b0 = ± Zc

2ω

E, b1 = ±
E. (21)

The coefficients b0,1 are obtained by a two-step procedure. Substituting (17), (18), (20) into
the eigenvalue equation and making explicit use of the chain relations (13) yields b1 and leaves
b0 still undefined. The coefficient b0 is found by comparing the line structures9 of �± with
χ± in (19).

It remains to match the fibre sections—what can be done in two ways. One may assume
a single-scaling coefficient c0 of the root space given and consider the coefficients c± of the
sections �± as derived objects. This leads to the identification c+ = c− = σqc0. Apart from
this option, one may assume the scaling coefficients c± as primary objects and given so that
they may take different values c+ �= c−. Correspondingly, the scaling factor c0 of the root
space will then be fitted to c± so that it will take two different values

c0,± = c±/(σq). (22)

Both constructions are possible and compatible with the smooth fitting of the line structure
encoded in the EP-limiting behaviour π(�±) → π(�0).

In a way similar to the above two-step procedure with subsequent fibre fitting the left
eigenvectors can be obtained as

�∗
± = �∗

0 + ε1/2(b0�
∗
0 + b1�

∗
1) + o(ε1/2), (23)

d± = σ ∗qZcd0,±. (24)

Here, b0 and b1 are the same as in (21) and full compatibility with the bi-orthogonality
conditions (7) as well as with (8) is easily verified by direct calculation. In case of a single
scaling factor d0 of the dual root space, the coefficients d± will coincide d+ = d− = σ ∗qZcd0.

9 The term ε1/2b0�0 additionally present in (20) in comparison with the corresponding result in [32] is due to the
different choice of the root (Jordan chain) vectors �0, �1. The chain relation (13) shows that the associated vector
�1 is defined up to additional �0 contributions and can be replaced by any linear combination �1 + a�0, a ∈ C.
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Combining (20) and (23) one finds the limiting behaviour of the inner products as

〈�±|�±〉 = 2b1d0,±c0,±ε1/2 + o(ε1/2)

= 2b1

ωZc

d±c±ε1/2 + o(ε1/2). (25)

Here, one has to distinguish two normalization schemes. If one assumes the root vector
sets {�0,�1}, {�0, �1} normalized, e.g., with d0,±c0,± = 1 or d0c0 = 1 in (16) then the
scalar product 〈�±|�±〉 of the eigenvectors in the diagonal spectral decomposition (see (25))
vanishes in the EP-limit. Starting, in contrast, from normalized eigenvector pairs {�±, �±} of
diagonalizable Hamiltonians as in (11), i.e. with 〈�±|�±〉 = 1, then the scale factor products
d±c± diverge as d±c± ∝ ε−1/2 for ε → 0. Both normalization schemes are possible and
compatible with the smooth limiting behaviour π(�±) → π(�0) of the lines encoded in
χ±(ε → 0) → χ0 [cf (12)]. We see that this special behaviour is only related to the fibre
sections and not to the fibres (lines) themselves. The two incompatible normalization schemes
simply indicate on the need for two complementary charts to cover the whole physical picture
in the vicinity of a 2 × 2 Jordan block J2. One of these charts (we will call it the root
vector chart) remains regular in the EP-limit, whereas the other (diagonal representation) chart
becomes singular.

The situation is similar to the two affine charts required to cover the Riemann sphere
CP

1. Starting from homogeneous coordinates (x0, x1) ∈ CP
1 one has the two affine charts

U0 
 (1, x1/x0), x0 �= 0 and U1 
 (x0/x1, 1), x1 �= 0. The mutually complementary affine
coordinates z := x1/x0 ∈ C

1 and w := x0/x1 ∈ C
1 are then related to the well-known

fractional transformation w = 1/z, so that the singular |z| → ∞ limit in the z chart
corresponds simply to the regular w → 0 limit in the w chart. In other words, the two
charts cover the north-pole and the south-pole regions of the Riemann sphere—a construction
well known, e.g., from complex analysis and the description of magnetic monopoles [53].

Returning to the two-chart picture of the normalization, we see that the original Hilbert
space H = C

2 should be extended by the set of infinite vectors �± what can be naturally
accomplished by embedding it into a larger projective space H ↪→ CP

2. Correspondingly,
the fibres π(�±) × C

∗ should be extended as π(�±) × C
∗ ↪→ π(�±) × CP

1. A detailed
discussion of these structures will be presented in [64]. An explicit embedding construction
for simplified setups with coinciding scale factors d± = c± is given in section 5 below.

4. Geometric phase

Following earlier studies [27–31], geometric phases [65] of eigenvectors of non-Hermitian
complex symmetric operators have been recently considered in [32] for paths in parameter
space encircling an EP. The results showed full agreement with the phase considerations
of [27]. In this section, we combine techniques for non-Hermitian systems [28, 32] with
explicit projective space parameterizations for Hermitian systems [56] to provide an explicit
projective-space-based derivation of the phase representation for non-Hermitian systems. Such
an explicit reshaping of the results of [56] to non-Hermitian setups seems missing up to now.

Following [28–30, 32] we consider an auxiliary system with a general non-
Hermitian Hamiltonian H(t) depending on a set of non-stationary parameters X(t) =
[X1(t), . . . , Xm(t)] ∈ M,H(t) = H [X(t)] and an EP hypersurfaceV ⊂ Mwhich is encircled
by an appropriate loop � in parameter space M 
 � = {X(t), t ∈ [0, T ] : X(0) = X(T )}.
The evolution of the quantum system is governed by a usual Schrödinger equation for the right
eigenvectors

i∂t�n(t) = H(t)�n(t), (26)
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and, due to the time invariance of the bi-orthogonal product

〈�m(t)|�n(t)〉 = δmn, (27)

by a complementary evolution law for the left eigenvectors [28]

i∂t�m(t) = H +(t)�m(t). (28)

For an adiabatic motion cycle � ⊂ M with Hamiltonian H [X(T )] = H [X(0)], the resulting
eigenvector �n(t = T ) of H [X(T )] must lay on the same line as the initial �n(t = 0), i.e. it
can only obtain an additional scaling factor which we parameterize as complex-valued phase

�n(T ) = eiφn(T )�n(0), φn(T ) ∈ C. (29)

Due to the preserved orthonormality (27) the corresponding left eigenvectors evolve as

�m(T ) = eiφ∗
m(T )�m(0). (30)

The complex phase φn(T ) can be split into a dynamical component [28, 56]

εn(T ) = −
∫ T

0

〈�n(t)|H(t)|�n(t)〉
〈�n(t)|�n(t)〉 dt (31)

and the geometric phase

γn(T ) = φn(T ) − εn(T ). (32)

Adapting the techniques of [56], we calculate γn(T ) in terms of explicit projective space
coordinates. Setting

�n(t) = cn(t)χn(t) =: [z0(t), z1(t)]
T = z0(t)[1, w(t)]T

�m(t) = d∗
m(t)χ∗

m(t) =: [y0(t), y1(t)]
T = y0(t)[1, v(t)]T

(33)

(omitting in the projective space coordinates the mode indices m, n) one identifies

φn(T ) = −i ln[z0(T )/z0(0)] (34)

and obtains from (26), (31) and (32) the differential 1-form of the geometric phase as

dγ = −i
dz0

z0
+ i

y∗
0 dz0 + y∗

1 dz1

y∗
0z0 + y∗

1z1
= i

v∗dw

1 + v∗w∗ . (35)

Due to the symmetry (8) between left and right eigenlines this simplifies to

dγ = i
χT dχ

χT χ
= i

2
d ln(1 + w2). (36)

Similar to results on Hermitian systems [56] the differential 1-form (35) is independent of
the coordinates z0 and y0 along the fibres and, hence, defines a horizontal connection over
the projective Hilbert space of the system. The mere difference in the definitions of the
projective structures is in CP

1 = S3/S1 for Hermitian systems, whereas CP
1 = H∗/C

∗ for
non-Hermitian ones [61].

Let us now apply the general technique to the concrete 2 × 2-matrix model (1).
Parameterizing the cycle around the EP by (17) with

ε = reiα, α ∈ [0, 2π ], 0 < r � 1 (37)

one reproduces the 1-forms of the geometric phases of [29]

dγ± = i

4
d ln ε = −1

4
dα +

i

4
d ln r. (38)
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In a similar way one obtains the same 1-forms for the corresponding left eigenvectors �±.
Upon integration over a full cycle α(T ) = α(0) + 2π, r(T ) = r(0) one finds

γ±(T ) − γ±(0) = −π

2
. (39)

The relation between geometric phases γ± and the cycle phase α can be gained also
directly from the structure of the sections �±. These sections may be arranged as columns of
a diagonalizable 2 × 2-matrix

�(α) := [�+(α),�−(α)]. (40)

The evolution along a cycle is then encoded in the transformation matrix W(α) =
�(α) [�(0)]−1 which for small ε with 0 �= |ε| � 1 can be calculated from the representation
(19) as

W(α) =
[

e−i α
4 0

2iZc sin
(

α
4

)
ei α

4

]
. (41)

The elements W(α) form an Abelian parabolic subgroup P of the complex orthogonal group
O(2, C) ⊃ P (see, e.g., [62, 63, 66])

W(α + β) = W(α)W(β) = W(β)W(α) (42)

corresponding to the mapping eiα ∈ S1 ≈ U(1) �→ P ⊂ O(2, C). For full cycles α = 2πN,

N ∈ Z they yield the monodromy transformations [67]

W0 := W(0) = I2, W1 := W(2π) =
( −i 0

2iZc i

)
,

W2 := W(4π) = W 2(2π) = −I2,

W3 := W(6π) = −W(2π), W(8π) = I2 = W0.

(43)

The geometric phase (38) and the monodromy transformations (43) show the typical four-
fold covering of the mapping α �→ γ which was earlier described in [19, 25–27, 32] and
experimentally demonstrated in [24]. A cycle around the EP in parameter space M has to
be passed four times in order to produce one full 2π -cycle in the geometric phase. The
(non-oriented) eigenline π(� �= �0) ∈ CP

1 is already recovered after two cycles π(W2�) =
π(−�) = π(�)—similar to the eigenvalue E which for the 2 × 2-matrix lives on a two-
sheeted Riemann surface with the same two branch points Zc = ± i as the line bundle. For
the isotropic limiting vector �0 at the EP it holds (due to (12))

W(α)�0 = e−iα/4 �0 (43a)

so that the parabolic subgroup P 
 W(α) can be identified as invariance group of the projective
line at the EP

π(W(α)�0) = π(e−iα/4 �0) = π(�0). (43b)

We note that despite the non-Hermiticity of the Hamiltonian H the geometric phase is
purely real—as for Hermitian systems. Relations (38), (39) show that possible imaginary
phase contributions (which would result in a re-scaling of the eigenvectors �±) are cancelled
by the closed-cycle condition r(T ) = r(0). Hence, the non-preservation of the vector norm
in non-Hermitian systems is induced solely by a complex dynamical phase ε and requires the
presence of the bi-orthogonal basis where a decaying behaviour of the right eigenvectors10

�n ∝ e−iεnt− �n
2 t , 〈�n|�n〉 = ||�n||2 ∝ e−�nt (44)

10 For simplicity, we show the relations for stationary non-Hermitian Hamiltonians H with constant complex
eigenvalues En = εn + i �n

2 = const; εn, �n ∈ R.
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is necessarily connected with increasing vector norms of the dual left eigenvectors

�m ∝ e−iεmt+ �m
2 t , ||�m||2 ∝ e�mt (45)

so that indeed 〈�m|�n〉 = δmn. This behaviour is well known from resonances and Gamow
vector theory (see, e.g. [7]).

Comparison of (8) and (44), (45) shows that the formal ansatz �m = �∗
m for the

eigenvectors of the complex symmetric Hamiltonian (cf [11, 13, 14]) can be used only for
instantaneous eigenvectors at a single fixed t = t0 (which formally can be set to t0 = 0)
as well as for the subclass of real symmetric matrices (when the system becomes Hermitian
and norm-preservation of the eigenvectors holds). In contrast, for explicitly time-dependent
non-Hermitian setups it only holds �m(t) ∝ �∗

m(t), i.e. the dual basis vectors necessarily live
on complex conjugate lines (fibres) π [�m(t)] = (π [�m(t)])∗ but with �m(t) �= �∗

m(t) for
t �= t0.

Aspects of the parameter dependence of the phases and scalings in an instantaneous picture
with �m = �∗

m together with the explicit EP-limit ε → 0 are the subject of the following
section.

5. Instantaneous picture

In modern quantum physics not only the properties of natural systems such as nuclei or atoms
are of interest, but rather the design and functionality of artificial quantum-system-based
devices plays an essential role. In many cases, for the understanding of the dynamical features
of these man-made quantum systems the time dependence is of minor interest. The properties
of these systems are mainly governed by the position and number of EPs, i.e. the level
crossing points in the complex plane, and their dependence on external control parameters. In
this context it appears natural to study the parameter dependence of level energies and widths
as well as the corresponding eigenvectors in terms of the instantaneous picture with �m = �∗

m

and c± = d±. This picture is compatible with the Hermitian limit when Im ε1,2 = Im ω = 0
in (1) and the condition �m = �∗

m is fulfilled by definition.11

We have to distinguish the two possible normalization schemes—the root-vector-based
normalization (16) with d0c0 = 1 or d0,±c0,± = 1 and the diagonal-representation-based
normalization (11) with d±c±χT χ = 1.

In the root-vector-based normalization scheme the conditions c± = d± and d0,±c0,± = 1
together with the two relations (22) and (24) imply (in leading-order approximation in ε)
c0,± = d0,± and, hence, c0,± = κ with κ = ±1 (independently of the signs ± in the index
of c0,±) as well as c± = d± = κσq. We see that in leading-order approximation in ε the
scaling factors c± = d± are rigidly fixed and independent of ε. A geometric phase (necessarily
induced via an ε dependence) appears incompatible with this normalization.

Let us now turn to the diagonal-representation-based normalization (11). In the EP-limit
ε → 0, the normalization condition (11) for the eigenvectors (5) yields

1 = 〈�±|�±〉 = �T
±�± = [1 + (Z ∓

√
Z2 + 1)2]c2

±
≈ ∓2Zc

√
2Zcεc

2
± (46)

and we find the expected divergent scaling factors as

c2
± ≈ ∓2−3/2Z−3/2

c ε−1/2 �⇒ c± ∼ ε−1/4. (47)

11 When compatibility with the Hermitian limit is not required, then the bi-orthonormalization constraints d0,±
c0,± = 1 or d±c±χT±χ± = 1 fix only two of the four constants c0,±, d0,± or c±, d± and the remaining two can be
chosen arbitrarily. For instance, one may set the eigenvector scaling factors as c0,± = C �= 1 or c± = 1 so that
d0,± = C−1 or d± = (χT±χ±)−1 what would define instantaneous pictures not compatible with the Hermitian limit.
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On the one hand, (47) reproduces the local four-sheeted Riemann surface structure
connected with the geometric phase (38), (41), i.e. a four-fold winding around the EP is needed
to return to an eigenvector pointing into the same complex direction as a starting vector.
(In contrast to the root-vector-normalization scheme full compatibility with the geometric
phase setup holds.)

On the other hand, it leads to divergent vector norms

||�±||2 = 〈�±|�±〉 ≈ 2|c±|2 ≈ |2ε|−1/2 (48)

for ε → 0. As it was indicated in section 3, the corresponding singularity can be naturally
resolved by embedding the original Hilbert space H ≈ C

2 into its projective extension
H ↪→ CP

2 
 φ = (u0, u1, u2) so that the set of infinite vectors becomes well defined.
Interpreting the two components z0 and z1 of the vector (fibre section)

� = c(1, w) = (z0, z1) ∈ C
2 (49)

as affine coordinates on the chart U2 
 (
u0
u2

, u1
u2

, 1
)
, u2 �= 0, U2 ⊂ CP

2

� = (c, cw) ↪→ (c, cw, 1), (50)

we can identify � with the point φ ∈ CP
2 with homogeneous coordinates

φ = (u0, u1, u2) = (1, w, c−1). (51)

The singularity |c| → ∞ at the EP corresponds then simply to the point φ0 = (1, w, 0) ∈ CP
2

with u2 = 0 and we see that the affine chart U2 ∈ CP
2 is no longer appropriate for covering φ0.

This is in contrast to the root-vector-normalization scheme where c is fixed and the chart U2

remains suitable for the covering. Within the present diagonal-representation normalization,
instead, φ0 should be parameterized in terms of affine coordinates corresponding to one of the
charts12 U0 or U1 with u0 �= 0 or u1 �= 0. Most natural for our representation (49), (51) is
the affine chart U0 
 (

1, u1
u0

, u2
u0

)
which can be used for a suitable projective representation of

the fibre sections �:

� ≈ (1, w, c−1) = (χT , c−1) ≈ (π(�), c−1). (52)

Interpreting the normalization condition (46) as constraint on the affine coordinates of �

in the chart U2,

0 = �T � − 1 = u2
0

u2
2

+
u2

1

u2
2

− 1, (53)

one immediately sees that it is equivalent to the conic (singular quadric)13

u2
0 + u2

1 − u2
2 = 0 (54)

in homogeneous coordinates which cover the whole CP
2. This conic remains regular at EPs

which merely correspond to configurations with u2 = 0. In terms of (χT , c−1) notations it
reads

χT χ − c−2 = 0. (55)

It is clear that the conic construction is straightforwardly extendable to Hilbert space
embeddings H = C

n ↪→ CP
n of any dimension n. We arrive at the conclusion that

the appropriate state space for open quantum systems in an instantaneous setting will be
related to the projective extension CP

n of the original Hilbert space H = C
n with states

12 A projective space CP
n 
 (z0, z1, . . . , zn) is covered by n + 1 affine charts Uk 
 (

z0
zk

, . . . ,
zk−1
zk

, 1,
zk+1
zk

, . . . , zn
zk

)

with zk �= 0 (see, e.g., [59, 61]) in straightforward-dimensional extension of the two-chart covering of the Riemann
sphere CP

1 mentioned in section 3.
13 For conics and quadrics in projective spaces see, e.g. [59, 62, 68].
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identified with conics
∑n−1

k=0 u2
k − u2

n = 0. This is in contrast to Hermitian systems where
it is sufficient to project the Hilbert space H∗ = C

n − {0} down to the base space CP
n−1,

i.e. π : H∗ → P(H∗) ≈ CP
n−1. In non-Hermitian setups each fibre π(�) × C

∗ should
be supplemented by ∞. This suggests to extend them to π(�) × CP

1. From the above
construction, we see that the singular behaviour with regard to the two affine charts is only
related to the scale factors c ∈ CP

1, whereas π(�) behaves smoothly and regular. On its turn,
this suggests to reconsider the model-dependent physical interpretation of the eigenvector
self-orthogonality (isotropy) and the corresponding diverging or non-diverging sensitivity in
perturbation expansions like in [51, 52] as a result of divergent or non-divergent normalization
constants.

The Hilbert space extension H = C
2 ↪→ CP

2 together with the observed simultaneous
scaling of the whole root space Sλ obtained in section 3, the upper and lower triangular
(parabolic subgroup type) structure of the Sλ-related matrices in (A.7), (A.8) as well as the
parabolic subgroup structure (41) at EPs provide strong indications that the natural structure
at EPs is connected with projective flags [63]. A study of Jordan chain related flag bundles
and the mappings between their complementary affine charts will be presented in [64].

Returning to the ε → 0 limit in (47) we see that

c2
+

c2−
→ −1 �⇒ c+

c−
→ ± i

�⇒ �+ → ± i�−, (56)

i.e. the two eigenvectors (fibre sections) �+,�− are phase-shifted one relative to the other by
± i when tending to their common coalescence line at ε = 0: π(�+) = π(�−) = π(�0).
We note that this relative ± i phase shift of the vectors �+,�− is generic for models in their
instantaneous picture and with d± = c± and normalization 〈�±|�±〉 = 1.

A further result which immediately follows from (47) is the typical distance-dependent
phase-jump behaviour in the vicinity of the EP. In a sufficiently close vicinity of an EP
(|ε| � 1) any sufficiently smooth trajectory in an underlying parameter space can be roughly
approximated by a straight line segment with an effective parametrization of the type

ε = eiα0(ρ + is), s ∈ [−s0, s0] ⊂ R, (57)

where α0 = const fixes the direction orthogonal to the effective trajectory in the complex ε

plane and ρ is the minimal distance ρ = |ε(s = 0)| of this trajectory to the EP. The parameter
along the path is s ∈ [−s0, s0] ⊂ R. This parametrization gives:

[ε(s)]−1/4 = e−i α0
4 −iθ(s)|ε(s)|−1/4

|ε(s)| = (ρ2 + s2)1/2 (58)

θ(s) = 1
4 arctan(s/ρ) ∈ (−π/8, π/8)

and we observe that the minimal distance ρ between the parameter trajectory and the EP
defines the smoothness of the phase changes. The closer the path approaches the EP the more
it will take the form of a Heaviside step function with jump height π/4:

θ(s; ρ → 0) → π

4

[
�(s) − 1

2

]
. (59)

The phase-jump behaviour can be used as an implicit indicator of a possible close location of
an EP—a fact especially useful in numerical studies of systems with complicated parameter
dependence, but where phases of eigenvectors can be easily extracted. Jumps ±π/4 of
wavefunction phases have been observed numerically in [69] for the model Hamiltonian (1)
and in [14] for the special case of a small quantum billiard. According to these results, the
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phases of the components change smoothly (as a function of a certain control parameter)
in approaching the EP and jump by π/4 at the smallest distance from this point. Other
phase-jump values are possible, but require especially tuned paths.

6. Phase rigidity

In numerical studies of man-made open quantum systems depending in a complicated way
on several parameters X = (X1, . . . , Xm) ∈ M, it is usually important to know how close
a given configuration is located to an EP. EPs dominate the system behaviour also in their
vicinities, spectral bands may merge at EPs [51] or the transmission properties of quantum
dots (QDs) may become optimal at EPs [70]. A measure for the distance between a given point
in parameter space and a closely located EP would provide a convenient tool for adjusting and
tuning parameters so that a system may be ‘moved’ in parameter space towards or away from
this EP.

In [70], it has been shown numerically that within the instantaneous picture (� = �∗) an
appropriate measure for the detection of EP vicinities is the fraction

r = �T �

〈�|�〉 . (60)

We note that originally similar fractions have been introduced in [71] to describe the transitions
between Hamiltonian ensembles with orthogonal and unitary symmetry in Hermitian quantum
chaotic systems. There the square modulus |r|2 was dubbed ‘phase rigidity’. In our
considerations of non-Hermitian systems we use this term in loose analogy for r itself.

Decomposing � into real and complex components � = �r + i�i , we find from the
normalization that

�T � = 1 = �T
r �r − �T

i �i, �T
r �i = 0 (61)

and14 hence that the norm is bounded below

||�||2 = 〈�|�〉 = �T
r �r + �T

i �i = 2�T
i �i + 1 � 1. (62)

The phase rigidity can be expressed as

r = 1

||�||2 ∈ [0, 1], (63)

where according to (48) for the EP-limit ε → 0 holds

r ≈ |2ε|1/2 → 0. (64)

The opposite limit r → 1 is reached when the channel coupling ω in the Hamiltonian (1)
vanishes, i.e. when the interaction between the two decaying resonance states tends to zero
and any eigenvector can be taken purely real-valued in the instantaneous picture.

Finally, we note that for certain quantum dot systems the phase rigidity r is closely related
to the transmission properties of these systems. The capability of corresponding numerical
studies (including the visualizations of transmission and phase rigidity ‘landscapes’ over
parameter space) has been recently demonstrated in [70].

14 In equation (61), it can be set �T
r �r =: cosh2 β and �T

i �i =: sinh2 β. This hyperbolic structure shows analogies
with the mass shell condition E2 −p2 = m2 of special relativity. The EP-limit �T

r �r ,�
T
i �i → ∞ corresponds, e.g.,

to the light-cone limit where the vectors become isotropic—a fact which seems to play an important role in connection
with the conjectured Hilbert space worm holes [34] related to the brachistochrone problem of PT -symmetric quantum
mechanics (PTSQM).
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7. PT -symmetric models

Toy model Hamiltonians of 2 × 2-matrix type have been often used as a test ground in PT -
symmetrically extended quantum mechanics (PTSQM) [33–35]. They can be obtained from
non-Hermitian complex symmetric 2 × 2-matrix Hamiltonians by imposing a PT -symmetry
constraint. In a suitable parametrization they have the form

H =
(

r eiθ s

s r e−iθ

)
, r, s, θ ∈ R (65)

and commute with the operator PT

[PT ,H ] = 0, P =
(

0 1
1 0

)
. (66)

Here, P is the parity reflection operator and T —the time inversion (acting as complex
conjugation). The eigenvalues of H are

E± = r cos(θ) ±
√

s2 − r2 sin2(θ), (67)

and the corresponding eigenvectors can be represented as [35]

|E+〉 = eiα/2

√
2 cos(α)

(
1

e−iα

)
=: c+χ+

|E−〉 = i e−iα/2

√
2 cos(α)

(
1

−eiα

)
=: c−χ−,

(68)

where

sin(α) = r

s
sin(θ). (69)

With regard to the indefinite (Krein space type [38]) PT inner product (u, v) = PT u · v the
vectors are normalized as

(E±, E±) = ±1, (E±, E∓) = 0. (70)

The indefinite PT inner product is then mapped by the dynamical operator C with [C,H ] = 0
and

C = 1

cos(α)

(
i sin(α) 1

1 −i sin(α)

)
(71)

(see, e.g., [35]) into the positive definite (Hilbert space type) CPT inner product ((u, v)) =
CPT u · v which yields

((E±, E±)) = 1, ((E±, E∓)) = 0. (72)

Let us now reshape the model in terms of the EP-relevant notations of section 2. A simple
comparison of (1), (3) with (65), (69) shows that

Z = i sin(α) (73)

and hence that

C = 1

cos(α)

(
Z 1
1 −Z

)
(74)
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and that the model is actually one-parametric with essential parameter Z. Together with (2)
the parametrization (74) leads to a representation of the Hamiltonian (65) as

H = E0I2 + s cos(α)C, E0 = r cos(θ) (75)

and [C,H ] = 0 is fulfilled trivially.
The compatibility of the PT and the CPT inner products (70), (72) with the bi-

orthogonality relations (7) is ensured by the fact that for an eigenvector � = c(1, b)T exact
PT symmetry requires PT � ∝ � and, hence, c∗b∗(1, 1/b∗)T ∝ c(1, b)T so that |b|2 = 1.
For such vectors it holds PT � ∝ �∗ and due to the dynamically tuned C also CPT � ∝ �∗.
As a result one finds CPT �k · �l ∝ PT �k · �l ∝ �+

k�l , and full compatibility of the
bi-orthogonality with the PT and CPT inner products is established.

From (73), we see that possible EPs are solely defined by the value of α. From Zc = ±i,
we find the corresponding critical αc as

αc = ±π/2 + 2Nπ, N ∈ Z. (76)

Furthermore, it follows from (69) that a purely Hermitian model with θ = nπ, n ∈ Z

corresponds to α = Nπ,N ∈ Z. Exact PT symmetry is preserved for α ∈ R − {π/2 + πZ},
and the corresponding models are parameterized by elements Z belonging to the purely
imaginary straight line segment connecting the two EPs, i.e. by Z ∈ (−i, i), Re Z = 0.

According to (68), at the EPs the eigenvectors lie on the same line π(|E+〉) = π(|E−〉) ≈
χ0 = (1, Zc)

T and their norms diverge for α → αc like

|||E±〉||2 = 〈E±|E±〉 ≈ 1

|cos(α)| → ∞. (77)

The operator C in (71) shows the same singular behaviour, i.e. the C-induced mapping between
the Krein space and the Hilbert space breaks down at the EPs. In analogy to the singularity
resolution presented in section 5, we may map the vectors |E±〉 ∈ C

2 into elements from the
affine chart U2 ⊂ CP

2 corresponding to points e± ∈ CP
2 with homogeneous coordinates

|E±〉 �→ e± = (
χT

± , c−1
±

)
. (78)

The original normalization via PT inner product PT |E±〉 · |E±〉 = 1 acts then as generalized
conic

PT χ± · χ± − (
T c−1

±
)
c−1
± = 0 (79)

which remains regular in the EP-limit α → αc, but shows the typical EP-related self-
orthogonality (isotropy) of the lines PT χ± · χ± → 0. Again we arrive at the conclusion
that the original Hilbert space H = C

2 should be projectively embedded into CP
2 in order to

accommodate EP-related singularities.
Finally, we note that the recently uncovered solutions of the PT -symmetric

brachistochrone problem with vanishing optimal passage time [34] occur for α = π/2 what
according to (76) can be identified as an EP-regime15. This fact appears compatible with
the results of [57] where a vanishing passage time was reported for arbitrary non-Hermitian
Hamiltonians. In this regard it is natural to conjecture that a vanishing optimal passage time
might be a generic EP-related feature of non-Hermitian systems not necessarily restricted to
PTSQM models.

15 The corresponding state vector alinement without link to EPs was observed also in [72].
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8. Conclusion

In the present paper, we considered projective Hilbert space structures in the vicinity of EPs.
Starting from a leading-order Puiseux-expansion of the bi-orthogonal eigenvectors of a non-
Hermitian (complex symmetric) diagonalizable 2 × 2-matrix Hamiltonian in terms of root
vectors (algebraic eigenvectors) at an EP the normalization divergency of the eigenvectors
in the EP-limit has been parameterized. It has been shown that the natural projective line
structure related to the eigenvectors of the diagonal Hamiltonian has to be replaced at an EP
by a higher dimensional projective structure in which all the root vectors of a Jordan block
scale simultaneously with the same single factor. For a simplified setup with left eigenvectors
equated to their complex conjugate right counterparts, the normalization divergency has been
resolved by embedding the original Hilbert space H = C

2 into its projective extension
H ↪→ CP

2. Eigenvectors normalized according to the diagonalizable Hamiltonian and
eigenvectors with a normalization inherited from the root vector normalization live then merely
in different (complementary) affine charts of CP

2. The states themselves can be interpreted
as conics in CP

2. The line structure of the states behaves smoothly and independently of
these charts and their possibly singular transition functions. This indicates on the possibility
of a technically efficient description of the global behaviour of the non-Hermitian system
by factoring the eigenvectors in globally smoothly varying non-singular projective line
components π(�k) and possibly diverging scale factors16 ck .

With the help of the Puiseux-expanded eigenvectors it has been shown that the geometric
phase obtained on circles around EPs of complex symmetric Hamiltonians is purely real-
valued and that the corresponding monodromy transformations are induced by an Abelian
parabolic subgroup of O(2, C). Furthermore, the Puiseux expansion has been used to explain
phase jumps which in prior work had been numerically observed in the vicinity of EPs. An
analytical foundation for the usefulness of the phase rigidity as a distance measure to EPs has
been provided. Finally, a PT -symmetric model has been studied. It has been shown that the
EP-related singularities show up not only in the normalization conditions of the eigenvectors
but also in the dynamical symmetry operator C. The normalization singularity has been
resolved via a projective extension of the original Hilbert space. From the singularity structure
it has been conjectured that the zero passage time effect in the brachistochrone problem of
non-Hermitian Hamiltonians might be a generic EP-related artefact.
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Appendix. Jordan normal forms for complex symmetric 2 × 2 matrices

At the EPs with Zc = ±i =: µi the matrix

H(Zc) − E0I2 = ω

(
Zc 1
1 −Zc

)
=: M (A.1)

16 The question concerning the physical interpretation of diverging or non-diverging normalizations and the
corresponding diverging or non-diverging sensitivity in perturbation expansions is highly model dependent (see
e.g. [51, 52]) and still requires a detailed investigation.
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is related to its Jordan normal form J2(0) = (
0 1
0 0

)
by a similarity transformation [64],

M = PRJ2(0)R−1P −1. (A.2)

From the symmetry properties

M = MT , J2(0) = S2J
T
2 (0)S2 (A.3)

with S2 = (
0 1
1 0

)
and P 2 = S2 one finds

P = eiµ π
4√
2

(
1 −iµ

−iµ 1

)
, P = P T = (P −1)+ (A.4)

and

R =
(

q 0
0 q−1

)
, q :=

√
2ω. (A.5)

The elementary Jordan block J2(0) has right- and left-root vectors �0,�1 and �0, �1

satisfying

J2(0)�0 = 0, J2(0)�1 = �0

J T
2 (0)�0 = 0, J T

2 (0)�1 = �0.
(A.6)

The explicit solutions of these Jordan chains can be arranged as Toeplitz and Hankel matrices

� = [�0,�1] =
(

c0 c1

0 c0

)
, � = [�0, �1] =

(
0 d∗

0

d∗
0 d∗

1

)
(A.7)

and

�̃ := �S2 =
(

d∗
0 0

d∗
1 d∗

0

)
. (A.8)

From the simplest realization of the bi-orthonormality condition �+� = S2, �̃
+� = I2 one

finds the parameters c1 = d1 = 0, d0c0 = 1. Via similarity transformations �0,1 �→ �0,1 =
PR�0,1 and �0,1 �→ �0,1 = P(R−1)+�0,1 one arrives at the root vectors of M

�0 = σqc0

(
1

−Zc

)
, �1 = σq−1c0

(−Zc

1

)

�0 = σq∗d∗
0

(−Zc

1

)
, �1 = σq∗−1d∗

0

(
1

−Zc

)
(A.9)

σ := eiµ π
4√
2

.
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