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We consider two models of spherically-symmetric MHD α2
−dynamos; one with idealized boundary conditions (BCs); and

one with physically realistic BCs. As it has been shown in our previous work, the eigenvalues λ of a model with idealized
BCs and constant α−profile α0 are linear functions of α0 and form a mesh in the (α0, λ)−plane. The nodes of the spectral
mesh correspond to double-degenerate eigenvalues of algebraic and geometric multiplicity 2 (diabolical points). It was found
that perturbations of the constant α−profile lead to a resonant unfolding of the diabolical points with selection rules of the
resonant unfolding defined by the Fourier coefficients of the perturbations. In the present contribution we present new exact
results on the spectrum of the model with physically realistic BCs and constant α. For non-degenerate (simple) eigenvalues
perturbation gradients are found at any particular α0. We briefly discuss the spectral behavior of the α2

−dynamo operator
over a family of homotopic deformations of the BCs between idealized ones and physically realistic ones. Furthermore, we
demonstrate that although the spectral singularities are lifted, a memory about their locations remains deeply imprinted in the
homotopic family of spectral deformations due to a hidden underlying invariance.

1 Introduction

The boundary eigenvalue problem for the mean field α2−dynamo of magnetohydrodynamics (MHD) in its kinematic regime
and with spherically symmetric α−profile α(r) is usually equipped with either idealized or physically realistic boundary
conditions [1–3]. Although the latter are more relevant for the use in applications, the former allow for an almost completely
analytical treatment of the problem and in this way provide immediate deep insights into underlying structures and effects.

In order to understand the relationship between models with idealized BCs and physically realistic BCs and to use the
advantages of the idealized BCs in studies of physically realistic models, we consider a homotopic interpolation family of
boundary eigenvalue problems depending on an auxiliary parameter β ∈ [0, 1]

Aαu = λu, u(r ↘ 0) = Bu(1) = 0, Aα :=

( −Al α(r)
Al,α −Al

)
, B :=

(
β[∂r + l] + 1− β 0

0 1

)
, (1)

where

Al := −∂2
r +

l(l + 1)

r2
, Al,α := −∂rα(r)∂r + α(r)

l(l + 1)

r2
= α(r)Al − α′(r)∂r . (2)

For β = 0 the BCs in (1) are idealized ones. They may be related to the high conductivity limit of the dynamo maintaining
fluid/plasma [1, 3]. The other end point of the homotopic deformation family (β = 1) corresponds to physically realistic
BCs [1, 2].

2 Spectral and gradient function patterns

In [3] it was shown that for α(r) = α0 = const and idealized BCs, i.e. β = 0, the eigenvalues and eigenvectors of the
boundary eigenvalue problem are given as

λ±

n = λ±

n (α0) = −ρn ± α0

√
ρn ∈ R, n ∈ Z

+, u
±

n =

(
1

±√ρn

)
un ∈ R

2 ⊗ L2(0, 1) , (3)

where ρn > 0 are squares of Bessel function zeros

Jl+ 1

2

(
√

ρn) = 0, 0 <
√

ρ1 <
√

ρ2 < · · · . (4)

The branches λ±
n of the spectrum are real-valued linear functions of the parameter α0 with slopes±√ρn and form a mesh-like

structure in the (α0, λ)−plane (Fig. 1 (a)). The nodes of the mesh correspond to two-fold degenerate semi-simple eigenvalues
(diabolical points).
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Fig. 1 l = 0: Spectral mesh for β = 0 and separated parabolic branches for
β = 1 (a); homotopic deformation of the spectral mesh for β ∈ [0, 1] (b);
β = 1: landscape of the perturbation gradient gmn(r) over the (α0, r)−plane
calculated for parabolic eigenvalue branches with index-pairing m = n = 5 (c)
and m = 5, n = 7 (d).

In the hyper-idealized case of zero spherical har-
monics, l = 0, these diabolical points (at the
pairwise intersections of eigenvalue branches (3)
with indices n and m) are additionally located on
parabolic curves [3]

λν
0 =

1

4

(
αν

0

2 − π2m2

)
, (5)

where αν
0 = π(2n + m), see Fig. 1 (a).

In case of physically realistic BCs, β = 1,
and constant α(r) = α0 the spectrum of the
problem (1) consists of simple real eigenvalues
which form non-intersecting curves (branches) in
the (α0,�λ)−plane. For l = 0 these curves are
parabolas

λ =
1

4

(
α2

0 − π2m2
)

(6)

labeled by the integer index m (see Fig. 1 (a,b)).
Although the spectrum (6) is regular it, nevertheless,
preserves an imprinted memory about the locations
of the diabolical points of the setup with idealized
BCs. The effect is clearly visible in the homotopic
deformation of the spectral mesh (Fig. 1 (b)).

For α = const and l = 0 the homotopic deformation (Fig. 1 (b)) between the spectral mesh at β = 0 and the parabolas at
β = 1 is governed by the characteristic equation

4βλ sin(
√

α2
0 − 4λ) + (1− β)2

√
α2

0 − 4λ

[
cos(

√
α2

0 − 4λ)− cos(α0)

]
= 0. (7)

It is remarkable that the diabolical points (5) of the mesh are fixed points of this homotopy — a fact which indicates on their
‘deep imprint’ in the differential expression of the matrix differential operator (1) independently of the concrete BCs.

The magnetic field of a dynamo is maintained by its non-decaying modes (�λ > 0). When additionally one of the
dominant modes is oscillating (�λ �= 0) then via nonlinear back-reactions (α−quenching) the dynamo becomes prone to
polarity reversals [2]. In order to gain a deeper insight into the structural features of these reversals numerics-based dynamical
studies can be supplemented by spectral methods based on perturbation gradients [3,4]. The relevant eigenvalue branches with
�λ > 0,�λ �= 0 can be induced by deforming (perturbing) the original α−profile α0 = const into an inhomogeneous one,
α(r) �= const . The corresponding deformation process is best controlled (and optimized) with the help of Fréchet gradient
techniques. Fréchet gradients gm(r, α0) for simple eigenvalues on particular parabolas of index m [see Eq. (6)] were found
via perturbation theory in [3, 4] and allow for deformations of whole eigenvalue branches. The gradient landscapes over the
(α0, r)−plane show typical periodical patterns similar to those for the parabolas with m = 3 and m = 4 depicted in Fig.
1(c,d). The periodic pattern implicitly reflects the structure of the spectral mesh for the dynamo with the idealized BCs. The
highest sensitivity with regard to α−perturbations can be gained for the regions in the (α0, r)−plane with strongest Fréchet
gradients. For the considered model with physically realistic BCs (β = 1) these regions are located close to the diabolical
points (nodes of the spectral mesh) of the model with idealized BCs (β = 0). This allows for the conclusion that models with
idealized BCs can be expected to provide further insight even into the realistic polarity reversal regimes of [2].
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