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The quantum mechanical brachistochrone system with a PT -symmetric Hamiltonian is Naimark-

dilated and reinterpreted as a subsystem of a Hermitian system in a higher-dimensional Hilbert space. This

opens a way to a direct experimental implementation of the recently hypothesized PT -symmetric

ultrafast brachistochrone regime of Bender et al. [Phys. Rev. Lett. 98, 040403 (2007)] in an entangled two-

spin system.
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Introduction.—The quantum brachistochrone problem
consists in finding a Hamiltonian H which evolves a given
initial state jc Ii into a given final state jc Fi in a minimal
time �. Considering this problem for quantum mechanics
with PT -symmetric Hamiltonians (PTQM), Bender,
Brody, Jones, and Meister (BBJM) found the surprising
result [1] that the minimal evolution (passage) time �PT
was less than the minimal time �h required for the evolu-
tion induced by a Hermitian Hamiltonian [2,3]. It could be
made even arbitrarily small �PT ! 0 in a strongly non-
Hermitian regime [1,4]. If this effect of a ‘‘faster than
Hermitian’’ evolution [1] were experimentally realizable,
it would open a way to ultrafast quantum computing pro-
cesses [5]. A problem still unsolved in Ref. [1] concerned
the switching mechanism between thePT -symmetric bra-
chistochrone system and a conventional (von Neumann)
quantum system necessary for an experimental implemen-
tation of the suggested ultrafast quantum process.

As shown by Mostafazadeh [6], an equivalence map-
ping [7] between PTQM in the sector of unbroken
PT -symmetry and conventional quantum mechanics
(CQM) leaves the passage time of a brachistochrone in-
variant �h ¼ �PT . This implies that a vanishing passage
time �PT ! 0 in the PT -symmetric system is necessarily
connected with a vanishing distance between initial and
finite states in the equivalent Hermitian system—an effect
geometrically analyzed in [8]. In the case of the Hermitian
equivalent of the BBJM brachistochrone, initial and final
states will nearly coincide (coincidence problem) so that
the brachistochrone effect in such an interpretation would
lose any physical relevance.

In this Letter, we propose a realization of the BBJM
brachistochrone [1] which resolves the switching problem
between PTQM and CQM regimes [1] and avoids the
coincidence problem [6,8] and which can be considered
as a starting point for a direct experimental implementa-
tion. The key idea consists in a reinterpretation of the
BBJM brachistochrone as a PT -symmetric subsystem of
a larger CQM system living in a higher-dimensional
Hilbert space. For this purpose we use a Naimark dilation
(extension) technique [9] as it is widely used in quantum

information theory [5]. We will demonstrate that the re-
sulting large system will have the structure of an entangled
two-spin (two-qubit) system so that an experimental real-
ization of the BBJM-brachistochrone effect should be fea-
sible, e.g., in a suitably designed system of entangled
polarized photons [10].
Technically, the construction of the large Hermitian

system will be accomplished by a three-step procedure:
(i) by building a suitable positive operator valued measure
(POVM) [5,9,11] over the nonorthogonal eigenstates of the
PT -symmetric Hamiltonian H and its adjoint Hy, (ii) by
Naimark dilating (extending) [9] this POVM into an or-
thogonal projector set in a higher-dimensional Hilbert
space, and (iii) by constructing from it a corresponding
Hermitian Hamiltonian H ¼ Hy and a unitary evolution
operator UðtÞ ¼ e�itH.
BBJM brachistochrone.—The BBJM brachistochrone

[1] that we are going to Hermitianly dilate (extend) de-
scribes the evolution from an initial state jc Ii to a final
state jc Fi governed by a PT -symmetric Hamiltonian H
whose structure is chosen in such a way that the time �
required for the evolution becomes minimal. As shown in
Ref. [2], such a minimal-passage-time solution follows a
minimal geodesic in projective Hilbert space, and it is
therefore located in the two-dimensional subspace H 2 ¼
C2 spanned by jc Ii and jc Fi. In this H 2, the
PT -symmetric Hamiltonian H can be chosen as [1,4]

H¼E0I2þs
isinð�Þ 1

1 �isinð�Þ
� �

; E0;s2R; (1)

where P ¼ �x denotes the parity operator, T is the anti-
linear operator of time reflection and complex conjugation
[12], E0 denotes an irrelevant offset energy, and s is a
general scaling factor of the matrix. (As usual, �x, �y,

and �z are Pauli matrices.) The angle � 2 ð��=2; �=2Þ
characterizes the non-Hermiticity of the Hamiltonian:
Hð� ¼ 0Þ is Hermitian, whereas in the limit � ! ��=2
the Hamiltonian H becomes strongly non-Hermitian and
similar to a Jordan block, i.e., its eigenvectors

PRL 101, 230404 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 DECEMBER 2008

0031-9007=08=101(23)=230404(4) 230404-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.230404


jEþð�Þi ¼ ei�=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð�Þp 1

e�i�

� �
;

jE�ð�Þi ¼ ie�i�=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð�Þp 1

�ei�

� � (2)

and eigenvalues E� ¼ E0 � s cosð�Þ ¼: E0 �!0=2 co-
alesce for fixed jsj<1 [4]. The Hamiltonian is restricted
to purely real eigenvalues, i.e., the parameter sector of ex-
act PT symmetry [12]. The operator UðtÞ ¼ e�itH of the
nonunitary evolution induced by H has the explicit form

UðtÞ ¼ e�iE0t

cosð�Þ
cosðy� �Þ �i sinðyÞ
�i sinðyÞ cosðyþ �Þ

� �
; (3)

with y :¼ !0t=2 (we set @ ¼ 1). In the BBJM-
brachistochrone setup [1], this UðtÞ is used to evolve an
initial state jc Ii ¼ ð1; 0ÞT into a final state jc Fi ¼
�Fð0; 1ÞT , �F :¼ �ie�iE0�. The time � required for this
evolution follows from the condition y ¼ �þ �=2 as � ¼
�þ�=2
s cosð�Þ and tends for

� ¼ "� �=2; " ! þ0 (4)

and fixed s cosð�Þ ¼ !0=2 to zero: � ! 0. In this way the
evolution from jc Ii to the orthogonal jc Fi induced by the
PT -symmetric Hamiltonian H with eigenstates of fixed
energy difference Eþ � E� ¼ !0 appears faster than an
evolution between these states induced by any Hermitian
Hamiltonian with the same energy difference !0 between
its eigenstates. This is due to the fact that the evolution
time � between orthogonal states in Hermitian systems has
to be larger than the Anandan-Aharonov lower bound � �
�h ¼ �=!0 [2,13].

Before we embed the BBJM brachistochrone into a
larger Hermitian model, we briefly collect the required
setup information. The eigenvectors (2) of H are normal-
ized with regard to the PT inner product ðu; vÞ ¼ PT u �
v as ðE�; E�Þ ¼ �1; ðE�; E�Þ ¼ 0 [12], and for � � 0
they are nonorthogonal with regard to the standard inner
product in the Hilbert space H 2 ¼ C2: hE�jE�i � 0. We
supplement them via Hyð�Þ ¼ Hð��Þ with the eigenvec-
tors jEþð��Þi and jE�ð��Þi of the adjoint operator Hy
and arrange them as columns in the matrices

�:¼½jEþð�Þi;jE�ð�Þi�; �:¼½jEþð��Þi;jE�ð��Þi�:
(5)

With ~E :¼ diagðEþ; E�Þ, the eigenvalue problems for H
and Hy then take the compact matrix form

H� ¼ �~E; Hy� ¼ �~E: (6)

Apart from the biorthonormality relation �y� ¼ I2, it
holds that ��yHy ¼ H��y and ��yH ¼ Hy��y so
that one identifies ð��yÞ�1 ¼ ��y ¼ � as a metric op-
erator in the pseudo-Hermiticity condition�H ¼ Hy� [7].
Additionally to its obvious Hermiticity � ¼ �y, the metric
can be suitably scaled to be an element of the hyperbolic
(‘‘boost’’) sector of the complex orthogonal group
SOð2;CÞ [8]

� ¼ 1

cosð�Þ
1 �i sinð�Þ

i sinð�Þ 1

� �

¼ coshð�Þ �i sinhð�Þ
i sinhð�Þ coshð�Þ

� �
¼ e��y ; (7)

with parameter identification sinð�Þ¼: tanhð�Þ and
cosð�Þ¼1=½coshð�Þ�. As a final ingredient, we fix the no-
tation for the one-to-one similarity mapping between the
PT -symmetric Hamiltonian H and its isospectral Her-
mitian counterpart h¼hy [7], H¼��1h�, Hy ¼ �h��1,
�2 ¼ �, as well as for the unitary eigenvector matrix �

h� ¼ �~E; �y ¼ ��1: (8)

The eigenvectors of H and Hy can be regarded as � Ð
��, i.e., � Ð ��, mirror symmetrically distorted ver-
sions of the eigenvectors of the Hamiltonian h

� ¼ ��1�; � ¼ ��; ��1ð�Þ ¼ �ð��Þ: (9)

The orthogonal initial and final vectors jc Ii and jc Fi,
respectively, in the BBJM-brachistochrone model on
their turn can be considered as eigenstates of a Hermitian
spin operator Sz ¼ �z (a von Neumann observable
with orthogonal projector decomposition), whereas the
PT -symmetric (non-Hermitian) Hamiltonian H has non-
orthogonal eigenvectors jE�i and is not a von Neumann
observable. Under the one-to-one equivalence mapping [7]
from H to the Hermitian Hamiltonian h, the spin operator

Sz maps into a non-Hermitian operator sz ¼ �Sz�
�1 � syz .

Hence, the BBJM-brachistochrone system in both repre-
sentations ðH; SzÞ and ðh; szÞ contains operators which are
not von Neumann observables, and therefore the system
cannot be considered as fundamental.
Naimark dilation.—In order to give the BBJM system

with evolution c ðtÞ ¼ UðtÞc I a meaning in CQM, we
embed it into a larger purely Hermitian system

ĉ ðtÞ ¼ UðtÞĉ I; ĉ ðtÞ ¼ c ðtÞ
	ðtÞ

� �
; (10)

with unitary evolution operatorUðtÞ ¼ ½UyðtÞ��1 and addi-
tional ancilla wave function component 	ðtÞ. For this
purpose we construct an auxiliary POVM [5,9,11]P

4
k¼1 Ak ¼ I2 over the nonorthogonal eigenvectors (2) and

(5) of H and its adjoint Hy with rank-one operators A1;2 ¼
f2jE�ð�ÞihE�ð�Þj and A3;4 ¼ f2jE�ð��ÞihE�ð��Þj. For
symmetry reasons, all Ak are scaled with the same normal-
ization factor

f :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð�Þ

2

s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshð�Þp : (11)

Following standard techniques [9,11], the nonorthogonal
POVM elements Ak, AjAk � 
jkAk in the two-dimensional

Hilbert space H 2 ffi C2 can be Naimark-dilated (ex-
tended) into orthoprojectors P1; . . . ; P4, PjPk ¼ 
jkPk,P

4
k¼1 Pk ¼ I4 in a four-dimensional Hilbert space H 4.

Under this Naimark dilation the POVM-normalized non-
orthogonal eigenvectors fjE�ð�Þi and fjE�ð�aÞi of H
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and its adjoint Hy are extended into a set of orthonormal
vectors jv1i; . . . ; jv4i 2 H 4, hvjjvki ¼ 
jk, so that Pk ¼
jvkihvkj and the 4� 4matrixV :¼ ½jv1i; jv2i; jv3i; jv4i� is
unitary [9]. The explicit form of V can be easily found
from the block matrix ansatz

V ¼ f
��1 �
X Y

� �
�;

which naturally follows from relations (5) and (9) and the
notation � :¼ diagð�;�Þ ¼ I2 	�. The auxiliary condi-
tion f2½�2 þ ��2� ¼ f2½�þ ��1� ¼ I2 together with the
unitarity constraint VVy ¼ VyV ¼ I4 fixes the nonsingu-
lar matrices X and Y up to an irrelevant unitary rotation as
X ¼ �, Y ¼ ���1, so that

V ¼ f½�z 	 ��1 þ �x 	 ��ðI2 	�Þ
¼ f½�z 	�þ �x 	��: (12)

We use this matrix V to construct a self-consistent CQM
inH 4. For this purpose we require the original eigenvalue
problems for H and Hy to be recovered when the model is
restricted to the first two rows of V. From relations (6) and
an ansatz f½H�; Hy�� ¼ f½�~E;�~E� ¼ f½�;��E, the
eigenvalue matrix E for the dilated problem can be read
off as E :¼ diagð ~E; ~EÞ ¼ I2 	 ~E. This means that the cor-
responding dilated Hamiltonian H will have the two ei-
genvalues E� ofH and its isospectral adjointHy as double
degenerate eigenvalues. The Hamiltonian H itself can be
built from Eq. (8) and HV ¼ VE as H ¼ VEVy so that

H ¼ f2½I2 	 ðH��1 þ �HÞ þ i�y 	 ðH �HyÞ�
¼ I2 	�þ i�y 	�;

� :¼ f2ðH��1 þ �HÞ ¼ E0I2 þ!0

2
cosð�Þ�x;

� :¼ f2ðH�HyÞ ¼ i
!0

2
sinð�Þ�z:

ThisH is Hermitian by construction. In the Hermitian limit
of the original PT -symmetric Hamiltonian H, i.e., for
� ¼ � ¼ 0, it holds that � ¼ I2 and H reduces to
H ¼ I2 	 h—a trivially doubled h. In contrast to the
PTQM Hamiltonian H, its dilationH remains well defined
also in the strongly non-Hermitian vanishing-passage-time
regime (4) where the matrix components of H diverge for
fixed !0 as s ! 1. This regularization effect is due to the
normalization factor f2 induced in H via the auxiliary
POVM construction.

The H-induced unitary evolution in H 4 is governed by
the operator UðtÞ¼e�itH¼Ve�iEtVy, which with UðtÞ ¼
e�itH ¼ ��1e�ith� and y ¼ !0t=2 can be represented as

UðtÞ ¼ f2fI2 	 ½UðtÞ��1 þ �UðtÞ�
þ i�y 	 ½UðtÞ � �UðtÞ��1�g

¼ ðI2 	 Fþ i�y 	GÞ ¼ F G

�G F

 !
;

F :¼ e�iE0t½I2 cosðyÞ � i�x sinðyÞ cosð�Þ�;
G :¼ e�iE0t½sinðyÞ sinð�Þ�z�:

(13)

Physically,UðtÞ describes the time evolution of the coupled
brachistochrone-ancilla system (10) in a Hilbert space

H 4 ¼ H 2 
 ~H 2, with c ðtÞ 2 H 2 and 	ðtÞ 2 ~H 2. In
order to exactly reproduce the H 2 evolution (3) of the
BBJM-brachistochrone subsystem

c ðtÞ ¼ UðtÞc I ¼ e�iE0t

cosð�Þ
cosðy� �Þ
�i sinðyÞ

� �
; (14)

the initial vector 	I 2 ~H 2 of the ancilla subsystem should
be chosen appropriately. To obtain 	I, we represent

ĉ ðtÞ 2 H 4 as

ĉ ðtÞ ¼ c ðtÞ
	ðtÞ

� �
¼ eþ 	 c ðtÞ þ e� 	 	ðtÞ; (15)

with eþ :¼ ð1; 0ÞT and e� :¼ ð0; 1ÞT , define P� :¼ e� 	
ey�, and introduce the projectors P� ¼ P� 	 I2 on the
brachistochrone (Pþ) and the ancilla ðP�Þ subspace. The
identification rule (10) then takes the form Pþĉ ðtÞ ¼
PþUðtÞĉ I ¼ eþ 	 c ðtÞ ¼ eþ 	UðtÞc I. After taking the
time derivative, one finds from

PþHĉ ðtÞ�eþ	½�c ðtÞþ�	ðtÞ�¼eþ	Hc ðtÞ (16)

a synchronization link [14] between ancilla and brachisto-
chrone evolution 	ðtÞ ¼ ��1ðH ��Þc ðtÞ ¼ �c ðtÞ ¼
�UðtÞ��1	I as well as the explicit ancilla evolution

	ðtÞ ¼ e�iE0t

cosð�Þ
cosðyÞ

�i sinðy� �Þ
� �

:

Initial and final ancilla components then take the form

	I ¼ �c I ¼ 1

cosð�Þ
1

i sinð�Þ
� �

;

	F ¼ �c F ¼ ��

cosð�Þ
sinð�Þ

i

� �
;

respectively, with � ¼ e�iE0� an irrelevant phase factor,
c I ¼ ð1; 0ÞT , and c F ¼ �ð0; 1ÞT . The relation 	I ¼ �c I

ensures a full synchronization

ĉ ðtÞ ¼ UðtÞĉ I ¼ UðtÞ 0
0 �UðtÞ��1

� �
c I

	I

� �

of the constructed unitary evolution UðtÞ of the Hermitian
H 4 system with the original nonunitary evolution UðtÞ of
the BBJM-brachistochrone subsystem in H 2 for all pa-
rameter values � 2 ð��=2; �=2Þ and times t, including
the ultrafast evolution regime suggested in [1].
Discussion.—For a BBJM brachistochrone in the

vanishing-passage-time regime (4), the ancilla vectors 	I

and 	F become collinear, and their common denominator
cosð�Þ � " makes them highly dominant compared to
c I;F. This 	 dominance remains preserved for the normal-

ized state vector �̂ :¼ gĉ , h�̂j�̂i ¼ 1, with g :¼
cosð�Þ= ffiffiffi

2
p

, and leads to a very small brachistochrone
component jgc ðtÞj2 � "2=2 compared to the ancilla com-
ponent jg	ðtÞj2 � 1� "2=2. As a result, the geodesic dis-
tance between the initial and final states in H 4 becomes

small 
4 ¼ 2 arccosðjh�̂Ij�̂FijÞ � 2". This means that the
original geodesic distance 
2 ¼ 2 arccosðjhc Ijc FijÞ ¼ �
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between the initial and final states in the brachistochrone
subsystem is strongly contracted by embedding the latter
into the larger Hermitian H 4 system. Geometrically, this
follows from the fact that the geodesic distance is given by
the angle spanned by the corresponding vectors on the
Bloch sphere [2] and its generalization to higher dimen-
sions. In the H 2 subsystem, the vectors c I and c F are
antipodal and span an angle 
2 ¼ �. Adding a much
longer vector 	 orthogonal to c I and c F makes the

resulting �̂I � ðc I; 	ÞT and �̂F � ðc F; 	ÞT almost col-
linear 
4 ! 0 in H 4. In this way, the dilated model
reconciles the Anandan-Aharonov lower bound [2,13] on
minimal passage times in Hermitian systems with the
vanishing-passage-time effect of the BBJM brachisto-
chrone [1] for orthogonal states in the subsystem. The
embedding of the BBJM system into a higher-dimensional
Hilbert space can be regarded as a strengthening of the
wormhole analogy drawn in Ref. [1] for the shortening of
the passage time �. A wormhole connection of two distant
points on a given lower-dimensional manifold M can be
best visualized by embedding M into a higher-
dimensional surroundingN 
 M so that the correspond-
ing short distance in N becomes obvious [15].

The representation (15) indicates on a natural interpre-

tation of the obtained Hermitian system �̂ðtÞ ¼ e�itH�̂I as
a system of two entangled spin 1=2 particles, i.e., as a two-
qubit system [5], with �1 ¼ �z 	 I2 and �2 ¼ I2 	 �z as
spin operators of the two spin subsystems. In order to
observe the BBJM-brachistochrone effect of the subsys-

tem, one has to prepare an initial entangled state �̂I ¼
eþ 	 c I þ e� 	 	I to switch on the interaction
Hamiltonian H during the passage time � (assumed as
smaller than the lower passage time bound �h ¼ �=!0)

and to evolve �̂I into the final state �̂F ¼ e�i�H�̂I. This
final state has to be analyzed in a two-step measurement. In
a first (instantaneous) �1 measurement, one selects (filters
out) the up component eþ of the first spin. This results in a

state Pþ�̂F=hPþ�̂FjPþ�̂Fi1=2 ¼ eþ 	 c F=hc Fjc Fi1=2
and separates the brachistochrone component from the
ancilla component (connected with the down component
e� of the first spin). In a subsequent �2 measurement, one
analyzes the spin-up and spin-down states of the brachisto-

chrone component c F=hc Fjc Fi1=2 to recover the spin-flip
effect from c I ¼ ð1; 0ÞT to c F ¼ �Fð0; 1ÞT .

A direct experimental test should be feasible with a
suitably designed system of entangled photons passing an
appropriately chosen arrangement of beam splitters, phase
shifters, and mirrors as an implementation of the unitary

operator Uð�Þ ¼ e�i�H [10].

Conclusions.—We have demonstrated that the quantum
brachistochrone for a system with a PT -symmetric

Hamiltonian can be realized as a subsystem of a larger
Hermitian system living in a higher-dimensional Hilbert
space. The Hermitian system (constructed by Naimark
dilating an auxiliary positive operator valued measure)
has the structure of an entangled two-qubit system. This
opens a way to direct experimental tests on the recently
hypothesized ‘‘faster than Hermitian’’ evolution in
PT -symmetric quantum systems.
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