Practical trainings, student assistants and theses

Beiträge zur Weiterentwicklung der ultraschnelle Röntgencomputertomografie (Id 212)

School practical training / Master theses / Diploma theses

Die im Institut für Fluiddynamik am HZDR entwickelte Ultraschnelle Röntgencomputertomografie wird bei der Beforschung von Strömungsvorgängen auf einer Vielzahl von Themengebieten als berührungsloses, bildgebendes Messverfahren genutzt. Dabei wird mit Hilfe eines freien Elektronenstrahls, der durch Magnetfelder im Vakuum geführt wird, eine um das Messobjekt rotierende Röntgenstrahlungsquelle erzeugt. Aus den vom Detektor synchron aufgenommenen Projektionsdatensätzen werden 2D-Schnittbildsequenzen der Schwächungsverteilung im Messobjekt mit hoher räumlicher und sehr hoher zeitlicher Auflösung generiert. In den letzten Jahren wurden die bestehenden ROFEX-Scanner stetig verbessert. Gleichwohl besteht Entwicklungspotential im Bereich des Monitorings der Röntgenquellposition, d.h. des Fokuspunkts des Elektronenstrahls, da dieser sehr empfindlich auf Störeinflüsse, wie zum Beispiel parasitäre Magnetfelder, reagiert. Schlussendlich wäre eine aktive, dynamische Nachjustage des Elektronenstrahls das Entwicklungsziel.
Im Rahmen dieser Arbeit sollen zunächst Konzepte für ein in-situ Strahlbahnmonitoring entwickelt und bewertet werden. Für das erfolgversprechendste Konzept soll ein Realisierungsvorschlag bis hin zur Auslegung notwendiger Komponenten erarbeitet werden. Ein praktischer Test ist wünschenswert, wenn in der Zeit möglich.

Teilaufgaben:
• Theoretische Entwicklung der Monitoring-Konzepte / Literaturstudium
• Grundsätzliche Berechnungen; evtl. Simulationen
• Aufbau eines Demonstrators bzw. Test am ROFEX-Scanner

Infos zu ROFEX-Scanner: https://www.hzdr.de/db/Cms?pOid=30242&pNid=0

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Barthel, Frank

Requirements

• Studium der Elektrotechnik/Physik/Maschinenbau
• Strukturierte, selbstständige Arbeitsweise
• Technische Kreativität und Gestaltungswille
• Fundierte Kenntnisse in Automatisierung und Konstruktion

Online application

Please apply online: english / german

Druckversion


Beiträge zu innovativen Konzepten für die ultraschnelle Röntgencomputertomografie (Id 211)

Student practical training / Master theses / Diploma theses

Die im Institut für Fluiddynamik am HZDR entwickelte Ultraschnelle Röntgencomputertomografie wird bei der Beforschung von Strömungsvorgängen auf einer Vielzahl von Themengebieten als berührungsloses, bildgebendes Messverfahren genutzt. Dabei werden aus Projektionsdatensätzen 2D-Schnittbildsequenzen mit hoher räumlicher und sehr hoher zeitlicher Auflösung generiert. In den letzten Jahren wurden die bestehenden ROFEX-Scanner stetig verbessert. Gleichwohl besteht ein hohes Entwicklungspotenzial im Bereich der Röntgenstrahlungserzeugung.
Im Rahmen dieser Arbeit sollen Schlüsselexperimente auf dem Gebiet der schnell gepulsten Röntgenstrahlungserzeugung geplant und durchgeführt werden.

Teilaufgaben:
• Literaturstudium zu gesteuerter bzw. provozierter Feldemission
• Grundsätzliche Berechnungen; evtl. Simulationen
• Aufbau eines Demonstrators und Experimente zur getakteten Erzeugung von Röntgenstrahlung

Infos zu ROFEX-Scanner: https://www.hzdr.de/db/Cms?pOid=30242&pNid=0

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Barthel, Frank

Requirements

• Studium der Elektrotechnik/Physik/Maschinenbau
• Strukturierte, selbstständige Arbeitsweise
• Technische Kreativität und Gestaltungswille
• Konstruktionsfähigkeiten

Online application

Please apply online: english / german

Druckversion


Smart actuation system for flow following µAUV particles for industrial process environments (Id 175)

Master theses / Diploma theses / Compulsory internship

Foto: flow following sensor particle ©Copyright: Dr. Sebastian ReineckeSmart flow following sensor particles are used for acquisition of spatially distributed process parameters in industrial processes, such as biogas digesters, waste water treatment basins or bioreactors. The aim of the work is the development of an actuator concept for sensor µAUV-particles for the automatic adjustment of buoyancy (buoyancy) and for buoyancy maneuvers under the condition of small size, minimum energy consumption and high reliability. For this, alternative physical and chemical mechanisms should be considered based on the existing electromechanical solution. There are suitable variants to implement and test. Furthermore, the development of sensor intelligence for the actuators in the sensor particles is an essential part of the task. The developed concepts have to be validated experimentally.

We cordially invite you to an on-site conversation to introduce the topic and to agree on further details. Do not hesitate to contact us, because the way is worth it for you.

What can you expect:

In our department, we offer you an attractive work environment to expand your personal and professional skills. The insight into the diverse R&D projects of the department in the areas of sensor and measuring technology as well as energy and process engineering (among others) and the excellent technical equipment of the laboratories offer optimal conditions for this. The possibility of close contact with competent experienced colleagues plays a central role. As part of student work, we have pursued the approach of structured supervision and associated constructive feedback. This includes regular meetings with your supervisor and intermediate presentations in the form of informal "workshop reports" in the extended audience of interested individuals of the department in order to optimally support you in the successful completion of your project. Furthermore, we are open to support outstanding candidates in their continuing academic qualification, such as in doctoral scholarships or in current or upcoming R&D projects.

Subject-related task spectrum:

• Establishment of the scientific and technical principles of mechanical, physical and chemical principles of action for embedded, actuating components
• Concept development for actuators for taring of sensor particles
• Development of sensor intelligence for situation-dependent, automatic buoyancy, for buoyancy maneuvers and for recovery
• Selection, purchase/ composition and comparison of solution variants
• Minimization of size and energy consumption
• Increased reliability when used in particle-loaded biological substrates
• Development of firmware taking into account existing function routines based on an embedded system with 32-bit data structure (e.g. STM32)
• Conception and realization of suitable test scenarios
• Characterization and comparison of implemented variants with regard to accuracy of taring and reliability in long-term use

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Reinecke, Sebastian

Requirements

• Studies in electrical engineering, mechatronics, mechanical engineering and similar engineering courses
• Experience in design and (micro) actuator systems
• Experience in programming microcontrollers for embedded systems (e.g. STM32)
• Experience in control electronics for microdrives and board design for embedded systems
• Fundamentals of (micro) actuator systems, movement of rigid bodies, measurement uncertainties, digital signal processing
• Data analysis optionally in Matlab, Octave or C / C ++
• Independent, self-responsible working method

Links:

Online application

Please apply online: english / german

Druckversion


Intelligent inertial position tracking for flow following sensor particles in industrial process environments (Id 174)

Master theses / Diploma theses / Compulsory internship

Foto: AutoSens_StirredReactor ©Copyright: fwdf (Mailgruppe)Smart flow following sensor particles are used for acquisition of spatially distributed process parameters in industrial processes, such as biogas digesters, waste water treatment basins or bioreactors. The aim of the work is the development of a software-based reconstruction of the motion trajectory of the sensor particles based on the measured signals of the inertial sensors (acceleration, rate of rotation and magnetic field) as well as a sensor for pressure / immersion depth. For this purpose, available inertial sensors with electronics (to be also developed) are to be characterized and appropriate algorithms for position tracking, preferably from the field of inertial navigation (submersible robot, μAUV, multicopter), to be implemented. The developed concepts have to be validated experimentally.
We cordially invite you to an on-site conversation to introduce the topic and to agree on further details. Do not hesitate to contact us, because the way is worth it for you.

What can you expect:

In our department, we offer you an attractive work environment to expand your personal and professional skills. The insight into the diverse R&D projects of the department in the areas of sensor and measuring technology as well as energy and process engineering (among others) and the excellent technical equipment of the laboratories offer optimal conditions for this. The possibility of close contact with competent experienced colleagues plays a central role. As part of student work, we have pursued the approach of structured supervision and associated constructive feedback. This includes regular meetings with your supervisor and intermediate presentations in the form of informal "workshop reports" in the extended audience of interested individuals of the department in order to optimally support you in the successful completion of your project. Furthermore, we are open to support outstanding candidates in their continuing academic qualification, such as in doctoral scholarships or in current or upcoming R&D projects.

Subject-related task spectrum:

• Establishment of the scientific and technical fundamentals for the characterization of inertial sensors and position tracking algorithms
• Setting up the sensor specification for use with flow following devices in the process industry
• Selection, procurement and comparison of relevant inertial measurement units
• Implementation and testing of appropriate position tracking algorithms based on data from an inertial measurement unit
• Concept and design of electronics with microcontroller for the operation and characterization of inertial measurement units
• Development and implementation of firmware for the microcontroller
• Conception and realization of suitable test scenarios for the characterization of inertial measuring units
• Characterization and comparison of relevant inertial measuring units with regard to the measurement uncertainties of the position tracking of sensor particles

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Reinecke, Sebastian

Requirements

• Studies in electrical engineering, mechatronics, mechanical engineering and similar engineering courses
• Experience in board design for embedded systems
• Experience in programming microcontrollers for embedded systems (e.g. STM32)
• Fundamentals of Digital Signal Processing, Bayesian Filters, Kalman Filters, Rigid Body Motion, Measurement Uncertainties
• Experimental skills
• Data analysis optionally in Matlab, Octave or C / C ++
• Independent, self-responsible working method

Links:

Online application

Please apply online: english / german

Druckversion


Liquid flow characterization on distillation column trays (Id 169)

Student practical training / Master theses / Diploma theses / Student Assistant

Distillation is highly important in chemical process industries, as 95% of the worldwide separations use this technology in large industrial columns. Increasing energy costs and higher awareness for environmental concerns motivate towards the optimization of the performance of tray columns. Flow and mixing patterns in the tray columns have strong influence on their separation performance. Plug flow is considered ideal, while any deviations from plug flow are referred as non-idealities that are detrimental to the tray efficiency.
Mathematical models are used to assess the flow patterns and predict the tray efficiency. For this purpose, precise identification of the flow patterns and the hydraulic parameters at high spatio-temporal resolution is a prerequisite. An in-house developed sensor specifically designed for the cross-flow trays will be used in three-dimensional framework. Proper sensor calibration and data processing is essential for the accuracy of the measurements. Further, the flow visualization and determination of the hydraulic parameters need to be achieved through MATLAB scripts.

Department: Experimental Thermal Fluid Dynamics

Contact: Vishwakarma, Vineet

Requirements

1. Academic studies in chemical engineering, process engineering or similar field, with reasonable understanding of mathematics and distillation columns.
2. Enthusiasm for experimental work, with good interpersonal skills.
3. Programming skills: MATLAB.

Conditions

The candidate can start at the earliest. The duration of the project can be up to 6 months. The candidate will be invited for interview and discussion, or may be asked to give a short presentation before the selection.

Links:

Online application

Please apply online: english / german

Druckversion


Bestimmung von Geschwindigkeitsfeldern aus tomographischen Bilddaten mittels Kreuzkorrelation (Id 164)

Bachelor theses / Master theses / Diploma theses

Foto: ROFEX CAD ©Copyright: Dr. Frank BarthelAm Institut für Fluiddynamik am Helmholtz-Zentrum Dresden-Rossendorf sind zahlreiche Messverfahren für die Untersuchung von Mehrphasenströmungen entwickelt worden. Eines davon ist die ultraschnelle Elektronenstrahl-Röntgen-Computertomographie, welche mit Aufnahmeraten von bis zu 8000 Bildern pro Sekunde eine dedizierte Aufklärung von Strömungsstrukturen erlaubt. Aufgrund der quasi simultanen Aufnahme von Bilddaten aus zwei Messebenen ergibt sich zudem die Möglichkeit, axiale Geschwindigkeiten zu bestimmen, wofür üblicherweise Kreuzkorrelationsverfahren verwendet werden. Im Rahmen dieser Arbeit sollen die Möglichkeiten dieser Methodik in Hinblick auf die Bestimmung von Geschwindigkeitsfeldern in verschiedenen Strömungsszenarienn analysiert werden.

Folgende Teilaufgaben sind zu lösen:
• Studie zu verschiedenen Varianten der Kreuzkorrelation
• Simulation verschiedener Szenarien und Bewertung der Genauigkeit
• Übertragung der Ergebnisse auf reale Messungen

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Bieberle, Martina

Requirements

• Studium der Informatik, Mathematik oder einer Ingenieurwissenschaft
• Interesse an Messverfahren und Datenanalyse
• Selbständiges Arbeiten

Conditions

Bearbeitungszeit 4 bis 6 Monate

Links:

Online application

Please apply online: english / german

Druckversion


Untersuchungen zur Steigerung der Energieeffizienz von Belüftungselementen für die Anwendung in der biologischen Abwasserreinigung (Id 154)

Student practical training / Bachelor theses / Master theses / Diploma theses / Student Assistant

Foto: SEBAK setup and aerators ©Copyright: Robert Herrmann-HeberDie biologische Abwasserbehandlung leistet einen wesentlichen Beitrag zum Erhalt der Gewässerqualität. Im kommunalen Bereich entfällt ein großer Anteil des Gesamtenergiebedarfs auf die Kläranlagen. In diesen Anlagen wird oft mehr als 50 % der elektrischen Energie für den Eintrag von Luft in Belebungsbecken benötigt, in denen Mikroorganismen die im Abwasser enthaltenen Nährstoffe unter Verbrauch von Sauerstoff zersetzen.
Nach aktuellem Stand der Technik wird die Luft durch Belüftungselemente wie Membran- oder Keramikbelüfter eingetragen. Ein Teil der für den Lufteintrag benötigten Energie wird entweder für die Dehnung der schlitzförmigen Öffnungen der Membranen oder zur Überwindung des Strömungswiderstandes in der Keramikwand aufgewendet.
Neue Konzepte sollen diesen Energiebedarf reduzieren und für einen optimierten Sauerstoffeintrag in das Belebungsbecken sorgen.

Department: Experimental Thermal Fluid Dynamics

Contact: Herrmann-Heber, Robert

Requirements

• Studium im Bereich Verfahrenstechnik, Chemie-Ingenieurwesen und ähnlichen Ingenieurstudiengängen
• Freude am experimentellen Arbeiten

Conditions

• 4-6 Monate
• Ab September/Oktober

Online application

Please apply online: english / german

Druckversion


Untersuchung der Fluiddynamik von Zweiphasenströmungen in Kolonnen mit Anstaupackungen (Id 140)

Bachelor theses / Master theses / Diploma theses / Compulsory internship

In thermischen Trennapparaten, z.B. Rektifikations- oder Absorptionskolonnen, hat die Fluiddynamik der beteiligten Phasen einen entscheidenden Einfluss auf die Effizienz der Stofftrennung. Eine Möglichkeit, den Kontakt zwischen Gas- und Flüssigkeitsphase zu intensivieren und damit den Stoffübergang zu verbessern, bieten Anstaupackungen. Sie bestehen aus Packungslagen zweier geometrischer Oberflächen, welche abwechselnd axial angeordnet werden. Durch die Kombination unterschiedlicher Packungen entstehen verschiedene Strömungsmuster (Blasenströmung, Sprudelschicht, Filmströmung), welche mittels der ultraschnellen Röntgentomografie am HZDR zeitlich und örtlich hochaufgelöst erfasst werden können.

Aus den tomografischen Bilddaten sollen im Rahmen einer studentischen Arbeit wichtige fluiddynamische Parameter wie die Phasengrenzfläche extrahiert werden. Dazu sind geeignete Algorithmen zu entwickeln und in MATLAB® zu implementieren.

Department: Experimental Thermal Fluid Dynamics

Contact: Sohr, Johanna, Dr. Bieberle, Martina

Requirements

• mathematisch-naturwissenschaftliches oder ingenieurwissenschaftliches Studium
• Programmierkenntnisse in MATLAB® und Vorkenntnisse in der Bilddatenverarbeitung sind hilfreich

Conditions

Beginn: ab sofort
Bearbeitungszeit: 4-6 Monate

Links:

Online application

Please apply online: english / german

Druckversion


Untersuchung des Einflusses von Regularisierungsmethoden auf Bildrekonstruktionsalgorithmen (Id 57)

Student practical training / Bachelor theses / Master theses / Diploma theses

Bei der tomographische Bildrekonstruktion muss ein diskretes inverses Problem gelöst werden, wofür algebraische Methoden wie zum Beispiel ART und CG-Verfahren verwendet werden können. Dabei spielt die Regularisierung, die den Einfluss von Diskretisierungsfehler und Messdatenrauschen auf die Lösung beschränkt, eine entscheidende Rolle. Deren Einfluss auf die Bildrekonstruktion von Röntgen- und Gamma-CT-Messdaten soll untersucht werden. Dazu sind folgende Teilaufgaben zu lösen:
• Implementierung verschiedener Regularisierungsmethoden
• Anwendung der Programme auf Messdaten
• Parameterstudien um die Regularisierungsmethoden für die Messdatensätze zu optimieren.

Department: Experimental Thermal Fluid Dynamics

Contact: Wagner, Michael, Dr. Bieberle, Martina

Requirements

• Programmierkenntnisse in MATLAB
• Grundkenntnisse zur numerischen Behandlung linearer Gleichungssysteme

Links:

Online application

Please apply online: english / german

Druckversion