Practical trainings, student assistants and theses

A correlation of critical void fraction on/near the wall under the boiling crisis (CHF)

Student practical training / Master theses / Diploma theses / Student Assistant / compulsory internship

Nucleation boiling is commonly known as a most efficient way of transferring heat into a liquid, as it combines a large uptake of latent heat by the steam bubbles, convective transfer via bubble motion and a most effective mixing of the thermal boundary layers. However, when the heat flux becomes higher and reaches a critical value (CHF), parts of the heater surface become irreversibly covered by vapor and nucleation boiling turns into film boiling. In cases of power controlled heating this can potentially lead to a meltdown of the heater structure. Understanding and predicting the complex phenomena involved in the CHF is necessary for the efficient operation, safety and development of industrial applications like boiler, nuclear reactor, electronic/microchips system. However even with decades’ heavy investigations, the mechanism of forming CHF especially how the CHF is initiated from nucleation is still without a consensus explanation.
Recently a model of near critical heat flux (CHF-) is raised in our group, that is, the moment, when CHF is initiated, is inferred. This model gives to our opinion both a definite explanation on how CHF is initiated and secondly a quantitative value for the onset of CHF, which has been validated with a number of test cases from literature. Computational fluid dynamics (CFD) is an attractive way to support engineering design by 3D flow simulation in the future. It would be beneficial, if occurrence of CHF could be simulated with CFD codes. In last years an extended RPI model was developed and tested by ANSYS and HZDR CFD group together which requires the critical void fraction as a criterion. In the preliminary test, this value is set to 80% but which is confirmed should be case dependent.
The main tasks for this work are:
1. Simulate the multiphase flow in subcooled boiling process with standard RPI model where the CHF value calculated by CHF- model is considered as a input boundary condition.
2. Capturing the critical void fraction from the simulations.
3. Processing and analysis the captured results to generate an empirical correlations using MATLAB.
4. Applying the correlations to predict the boiling crisis with extended RPI model.

Department: Computational Fluid Dynamics

Contact: Dr. Ding, Wei

Requirements

1. Study of mechanical engineering, process engineering or similar
2. Knowledge of CFD
3. Basic knowledge of heat transfer
4. Knowledge of program/script language (e.g. MATLAB)

Conditions

Duration: >= 3 months
Begin: from now on

Online application

Please apply online: english / german

Druckversion


Erweiterung und Validierung von Simulationsmodellen für Mehrphasenströmungen in OpenFOAM

Bachelor theses / Master theses / Diploma theses / Student Assistant / compulsory internship

Die Anwendung von Methoden der CFD („Computational fluid dynamics“) für Scale-up und Intensivierung verfahrenstechnischer Prozesse bietet die Möglichkeit, Energie- und Ressourcen-effiziente Lösungen zu identifizieren, deren Untersuchung mit konventionellen halb-empirischen Methoden kostspielig und langwierig wäre. Eine solche Simulation im großtechnischen Maßstab ist im Rahmen der Euler-Euler Beschreibung möglich, in der die Prozesse auf der Skala einzelner Blasen modelliert werden.Von besonderem Interesse ist die Implementierung und Validierung solcher Modelle in Open-Source Software, die von industriellen Anwendern zunehmend genutzt wird.
Ein am HZDR entwickeltes Baseline-Modell für die Fluiddynamik von Blasenströmungen wurde bereits in OpenFOAM implementiert und validiert. Dies soll nun um die Betrachtung des Stofftransports erweitert werden. Entsprechende Modelle ebenso wie zur Validierung geeignete Testfälle sind aus früheren Untersuchungen verfügbar. Damit sind beste Voraussetzungen für ein zügiges Gelingen gegeben.

Die durchzuführenden Teilaufgaben umfassen:
• Implementierung der Modelle in OpenFOAM 5.0
• Vorstudien zur Auffindung geeigneter Simulations-Setups
• Durchführung von Simulationsrechnungen
• Auswertung und Dokumentation der Ergebnisse
• Diskussion der erzielten Übereinstimmung

Department: Computational Fluid Dynamics

Contact: Dr. Rzehak, Roland

Requirements

• Kenntnisse in Strömungsmechanik
• Kenntnisse in der Programmierung in C++ oder C
• Erfahrung mit OpenFOAM ist von Vorteil, kann aber bei entsprechendem Einsatz auch erworben werden
• Englischkenntnisse in Schrift und Wort
• Freude am wissenschaftlichen Arbeiten

Conditions

• Bearbeitungszeit: 4-6 Monate
• Beginn: Jan-Mar 2018
• Vergütung der Arbeit

Online application

Please apply online: english / german

Druckversion