Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41397 Publications

Recent progress on contactless inductive flow tomography

Wondrak, T.; Stefani, F.; Gundrum, T.; Gerbeth, G.

The contactless inductive flow tomography (CIFT) is a technique to reconstruct the velocity in electrically conducting melts using magnetic fields. One of its application could be the velocity reconstruction in the mould of the continuous casting process. In this paper, we present the numerical investigation and first measurements of the induced magnetic field taken in our lab on a small model of a continuous casting mould.

Keywords: Inverse Problems; Industrial tomography; Liquid metal flow measurement; continuous casting

  • Contribution to proceedings
    80th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 09.-13.2.2009, Gdansk, Poland
  • Lecture (Conference)
    80th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 09.-13.2.2009, Gdansk, Poland

Permalink: https://www.hzdr.de/publications/Publ-12834
Publ.-Id: 12834


Some methodological improvements of the contactless inductive flow tomography

Wondrak, T.; Stefani, F.; Gundrum, T.; Gerbeth, G.

The goal of contactless inductive flow tomography (CIFT) is the velocity reconstruction in electrically
conducting melts which are used in many metallurgical and crystal growth applications. In this paper,
we discuss some recent methodological improvements of this method, in particular the automatic
search for an optimum regularisation parameter and the amended treatment of the boundary integrals.

Keywords: inverse problems; industrial tomography; liquid metal flow measurement

  • International Journal of Applied Electromagnetics and Mechanics 30(2009)3-4, 255-264

Permalink: https://www.hzdr.de/publications/Publ-12833
Publ.-Id: 12833


CFD simulations of GIDROPRESS mixing facility experiments

Höhne, T.; Rohde, U.; Melideo, D.; Moretti, F.; D’Auria, F.; Shishov, A.; Lisenkov, E.

Extensive analytical work:

  • 65 pre-test calculations
  • 45 post-test calculations
Comparison of all code results against exp data
Main findings:
  • 3rd Group (steady pump operation + tracer injection)
  • Perturbation morphology correctly described
  • Quantitative discrepancies (degree of mixing)
  • Can be handled by proper accuracy and uncertainty evaluation

2nd Group (tracer slug + onset of NC)

  • Crucial role played by density effects

Keywords: CFD; VVER-1000

  • Lecture (Conference)
    Working Group C and G of AER, 11.-12.06.2009, Tengelic, Ungarn

Permalink: https://www.hzdr.de/publications/Publ-12832
Publ.-Id: 12832


Temperature control design for a high-resolution gamma ray tomography detector

Bieberle, A.; Schleicher, E.; Hampel, U.

In this paper a thermal control design for a high-resolution gamma ray computed tomography (CT) detector is presented. It accounts for the generation of heat produced by active electronic components as well as heat transfer from external heat sources. The development and implementation of this feature was motivated by stringent requirements for measurement accuracy at thermal hydraulic test facilities where ambient thermal conditions are constantly changing. As a first step the thermal behaviour of the existing tomography detector was analysed, critical components were identified and different approaches for heat removal were tested. Eventually, an improved thermal detector design was elaborated and a controlled active cooling system implemented. Performance tests proved its effectiveness and accuracy improvement.

Keywords: gamma ray tomography; temperature control

  • Review of Scientific Instruments 81(2010), 014702

Permalink: https://www.hzdr.de/publications/Publ-12831
Publ.-Id: 12831


Mikrostruktur und mechanische Eigenschaften der RDB-Stähle JRQ und JFL in Abhängigkeit von der Bestrahlung mit Neutronen

Altstadt, E.; Ulbricht, A.; Viehrig, H.-W.; Zurbuchen, C.

kein Abstract, da vertraulich

  • Article, self-published (no contribution to HZDR-Annual report)
    Forschungszentrum Rossendorf 2009
    FZD\FWS\2009\02
    0032 Seiten
    ISSN: 1437-322X

Permalink: https://www.hzdr.de/publications/Publ-12830
Publ.-Id: 12830


IAEA coordinated research project on master curve approach to monitor fracture toughness of RPV steels: final results of an analytical round robin exercise to support constraint effects

Scibetta, M.; Altstadt, E.; Sang, L. B.; Callejas, R. H.; Miura, N.; Onizawa, K.; Paffumi, E.; Serrano, M.; Tatar, L.; Yin, S.

There is strong interest from the nuclear industry to use the precracked Charpy single-edge notched bend, SE(B), specimen (PCVN) to enable determination of the reference temperature, T0, with reactor pressure vessel surveillance specimens. Unfortunately, for many different ferritic steels, tests with the PCVN specimen (10x10x55 mm) have resulted in T0 temperatures up to 25°C lower than T0 values obtained using data from compact, C(T), specimens. This difference in T0 reference temperature has often been designated a specimen bias effect, and the primary focus for explaining this effect is loss of constraint in the PCVN specimen. The International Atomic Energy Agency has developed a three-part coordinated research project (CRP) to evaluate various issues associated with the fracture toughness Master Curve for application to light-water reactor pressure vessels. One part of the CRP is focused on the issue of test specimen geometry effects, with emphasis on the PCVN bias. This topic area was organized in two parts, an experimental part and an analytical part with a view towards each part complementing the other. Within the analytical part, elastic plastic finite element methods are extensively used in order to access local stress and strain information that is the basic ingredient for most of the micro-models of cleavage fracture developed to date.

In the framework of the international qualification and acceptance of such a tool for actual loss of constraint prediction, the validation of such tool is of prime importance. Therefore, a round robin exercise has been proposed and performed by ten laboratories from nine different countries. The round robin focuses on the modeling of realistic three-dimensional geometries containing shallow and deep crack.

This round robin has been useful to qualify different finite element codes and to identify possible errors in the input file. The round robin demonstrates that errors in the input file can be easily introduced. Some remaining differences cannot be attributed to one particular finite element code or to actual errors. Those differences are attributed to the so called "user effect" which can only be reduced through in depth discussion and deep understanding of each finite element code.

Independently of the used code and of relatively small user effect differences, it is found that shallow crack specimens are more sensitive to loss of constraint than deep crack specimens for a given specimen size. The difference in terms of reference temperature between the two geometries is evaluated to be about 40 °C. For a deep crack, loss of constraint is identified to appear at M values around 200. This value is larger than the one specified in current standard (M = 30). Increasing the M value to 200 will jeopardize the use of PCVN for the nuclear industry on the other hand bias introduced by M value of 30 is acceptable.

Keywords: Fracture toughness; Bermin model; local approach; numerical fracture mechanics; constraint

  • Contribution to proceedings
    2009 ASME Pressure Vessels and Piping Conference (PVP2009), 13.-17.07.2009, Prague, Czech Republic
    Proceedings of the 2009 ASME Pressure Vessels and Piping Conference

Permalink: https://www.hzdr.de/publications/Publ-12829
Publ.-Id: 12829


Ultrafast electron beam tomography

Hampel, U.

Since its invention in the 1970th computed tomography (CT) has become an indispensable diagnostic tool in medicine. CT scanning using X-rays was the first clinical tomographic imaging technique which was later complemented by tomographic imaging modalities based on other physical principles, such as magnetic resonance imaging (MRI), positron emission tomography (PET) and single photon emission tomography (SPECT). Today, medical radiology is still the primary application field of computed tomography, but meanwhile this imaging technology has diverted also into other fields of science and engineering, for instance non-destructive testing, flow measurement and small animal imaging.

Keywords: electron beam tomography; computed tomography

  • Contribution to external collection
    Krzysztof Iniewski: Semiconductor Radiation Detection Systems, Boca Raton: CRC Press, Taylor & Francis Group, 2010, 978-1-4398-0385-1, 263-280

Permalink: https://www.hzdr.de/publications/Publ-12828
Publ.-Id: 12828


Process tomography with electron beams

Hampel, U.; Fischer, F.

Electron beams are versatile tools for material processing and imaging applications. Tomography with a scanned electron beam has already been proposed and realized more than 20 years ago with the cardiac electron beam CT. Though electron beam technology is somewhat intricate and complex the potentials of this technology regarding multiphase flow and process imaging are large. With the commissioning of a dedicated flow tomography scanner based on electron beam tomography our group now starts to use this technology for high-speed flow visualization in practical applications. One example is the study of gas-liquid mixture flows, which is an important flow type in nuclear and chemical engineering. Here we give an introduction into the measurement technology and discuss future prospects in scanner design and applications.

Keywords: computed tomography; electron beam tomography; process tomography

  • Contribution to proceedings
    What, Where, When: Multi-dimensional Advances for Industrial Process Monitoring International Symposium, 23.-24.06.2009, Leeds, UK
    Proceedings, Paper #5
  • Lecture (Conference)
    What, Where, When: Multi-dimensional Advances for Industrial Process Monitoring International Symposium, 23.-24.06.2009, Leeds, UK

Permalink: https://www.hzdr.de/publications/Publ-12827
Publ.-Id: 12827


Ultra high speed electron beam tomography for flow measurement and small animal imaging

Hampel, U.; Fischer, F.

We introduce ultra high speed electron beam tomography as a new imaging tool for multiphase flow measurement and small animal imaging. The technique is based on imaging with X-rays produced by a rapidly scanned electron beam instead of a mechanically rotating source-detector compound. The scanner device ROFEX was developed manufactured and commissioned recently at FZD and allows scanning of objects with up to 7.000 frames per second speed and 1 mm spatial resolution. Application examples from multiphase flow measurement and small animal imaging are presented. Multiphase flow imaging mainly benefits from fast scanning which is impossible with any other imaging technology at this temporal and spatial resolution. Small animal imaging with ultra fast electron beam CT, however, is still in its beginning. Here higher spatial resolution and 3D imaging is needed.

Keywords: computed tomography; electron beam CT; X-ray CT; ultra fast imaging

  • Contribution to proceedings
    2009 IEEE International Workshop on Imaging Systems and Techniques (IST 2009), 11.-12.05.2009, Shenzhen, China
    Proceedings of IEEE International Workshop on Imaging Systems and Techniques 2009 (IST 2009): IEEE Publishing, 978-1-4244-3483-1, 1-5
  • Invited lecture (Conferences)
    2009 IEEE International Workshop on Imaging Systems and Techniques (IST 2009), 11.-12.05.2009, Shenzhen, China

Permalink: https://www.hzdr.de/publications/Publ-12826
Publ.-Id: 12826


Self-assembly of neutral hexanuclear circular copper(II) meso-helicates: topological control by sulfate ions

Tanh Jeazet, H.; Gloe, K.; Doert, T.; Kataeva, O.; Jaeger, A.; Geipel, G.; Bernhard, G.; Büchner, B.; Gloe, K.

Bis-pyridylimine ligands with different linking elements are capable of forming unique hexanuclear circular Cu(II) mesohelicates; the self-assembly is controlled by coordination of sulfate ions to the metal centres.

  • Chemical Communications 46(2010), 1359-7345(2010)46:14;1-L
    ISSN: 1359-7345

Permalink: https://www.hzdr.de/publications/Publ-12825
Publ.-Id: 12825


Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions

Geissler, A.; Merroun, M.; Geipel, G.; Reuther, H.; Selenska-Pobell, S.

Response of the subsurface soil bacterial community of a uranium mining waste pile to treatments with uranyl nitrate over different periods of time was studied under anaerobic conditions. The fate of the added U(VI) without supplementation with electron donors was investigated as well. By using 16S rRNA gene retrieval, we demonstrated that incubation with uranyl nitrate for 4 weeks resulted in a strong reduction in and even disappearance of some of the most predominant bacterial groups of the original sample. Instead, a strong proliferation of denitrifying and uranium-resistant populations of Rahnella spp. from Gammaproteobacteria and of Firmicutes occurred. After longer incubations for 14 weeks with uranyl nitrate, bacterial diversity increased and populations intrinsic to the untreated samples such as Bacteroidetes and Deltaproteobacteria propagated and replaced the above-mentioned uranium-resistant groups. This indicated that U(VI) was immobilized. Mössbauer spectroscopic analysis revealed an increased Fe(III) reduction by increasing the incubation time from four to 14 weeks. This result signified that Fe(III) was used as an electron acceptor by the bacterial community established at the later stages of the treatment. X-ray absorption spectroscopic analysis demonstrated that no detectable amounts of U(VI) were reduced to U(IV) in the time frames of the performed experiments. The reason for this observation is possibly due to the low level of electron donors in the studied oligotrophic environment. Time-resolved laser-induced fluorescence spectroscopic analysis demonstrated that most of the added U(VI) was bound by organic or inorganic phosphate phases both of biotic origin.

Permalink: https://www.hzdr.de/publications/Publ-12824
Publ.-Id: 12824


Numerical and experimental results on Lorentz force driven flows during electrodeposition of copper in homogeneous magnetic fields

Mutschke, G.; Schäfer, P.; Weier, T.; Bund, A.; Fröhlich, J.

Lorentz forces due to external magnetic fields are well known to force electrolyte flow and thereby to influence mass transport in electrochemical reactions. To achieve a quantitative understanding of this so called “MHD effect” and maybe to tailor it, it is crucial to study the magnetically driven convection in as much detail as possible. The present work aims to further clarify the role of magnetically forced convection during copper electrolysis in cuboid cells with vertical wall electrodes. Homogeneous magnetic fields of different directions are investigated. This paper presents results of threedimensional numerical simulations which are compared with new and detailed three-dimensional PIV measurements of the electrolyte flow. The influence of the convection on integral quantities as the limiting current is discussed.

Keywords: Lorentz force; magnetoelectrochemistry; PIV

  • Lecture (Conference)
    6th International Conference on Electromagnetic Processing of Materials, 19.-23.10.2009, Dresden, BRD
  • Contribution to proceedings
    6th Int. Conf. on Electromagnetic Processing of Materials, 19.-23.10.2009, Dresden, BRD, 461-464

Permalink: https://www.hzdr.de/publications/Publ-12823
Publ.-Id: 12823


13C-detection for sputtering investigations

Khan, S. A.; Tripathi, A.; Gerlach, J. W.; Grambole, D.; Toulemonde, M.; Assmann, W.

The measurement of sputtering yields for Carbon and angular distributions of sputtered C-particles is often hindered by hydrocarbon contaminations at the sample surface. In order to overcome this problem, 13C-enriched samples can be used, provided a 13C-sensitive detection method is available. For sputtering yield determination we have measured the thickness decrease of a thin 13C-layer on Si by ERDA, where 12C and 13C can be separated by their kinematic energy difference. A pre-condition is an energy resolution below 1%, which makes a position sensitive detector for kinematic correction of different recoil an-gles necessary. A high energy resolution and sensitivity is required, if sputtered 13C-particles have to be detected on a catcher foil to determine the angular distribution, as sputtered 13C and contamination 12C particles are of the same order. Our ERDA-detector fulfills this requirement having a solid angle of 6.2 msr and 2-dim position sensitivity. The result of the catcher analysis is compared to TOF-SIMS with very high mass resolution and NRA using 13C(p,gamma) or 13C(d,p)-reactions. With these techniques, a new attempt has been made to measure the energy distribution of sputtered particles by covering the sputter target with very thin layers of 13C.

  • Contribution to proceedings
    19th Ion Beam Analysis Conference, 07.-11.09.2009, Cambridge, UK
    Abstract book, 201
  • Poster
    19th Ion Beam Analysis Conference, 07.-11.09.2009, Cambridge, UK

Permalink: https://www.hzdr.de/publications/Publ-12822
Publ.-Id: 12822


Experimental two-phase flow measurements using two-plane limited-angle electron beam x-ray CT and wire-mesh sensor

Bieberle, M.; Hampel, U.; Schleicher, E.; Fischer, F.; Koch, D.; Mayer, H.-G.; Menz, H.-J.

Reliable measurements form the basis for the understanding and modelling of two-phase flows. However, it is quite challenging to develop measurement techniques which achieve high spatial resolution and high temporal resolution at the same time. Electron beam x-ray CT is one technique, which provides cross-sectional images of an object of interest with about 1 mm spatial resolution at frame rates of up to 10,000 frames per second without influencing the flow. The method introduced here utilizes linear beam deflection which limits the angular range of the CT projections. With this method, we scanned a gas-liquid flow in an experimental flow loop operated at different liquid and gas flow rates. Electron-beam x-ray CT data was reconstructed and results compared with measurements of a wire-mesh sensor. The latter is a well-known intrusive measurement technique, which achieves comparable frame rates but at lower spatial resolution. As a novelty we implemented two-plane limited-angle electron beam x-ray tomography and are thus able to gain information about the phase velocities using cross-correlation data analysis Gas phase velocity information is a decisive parameter for accurate quantitative gas bubble size and gas fraction determination and is often missed in transmission tomography measurements.

Keywords: electron beam x-ray CT; limited-angle CT; wire-mesh sensor; two-phase flow

  • Contribution to proceedings
    3rd International Workshop on Process Tomography (IWPT-3), 15.-17.04.2009, Tokyo, Japan
    IWPT 3, Nr 77
  • Lecture (Conference)
    3rd International Workshop on Process Tomography (IWPT-3), 15.-17.04.2009, Tokyo, Japan

Permalink: https://www.hzdr.de/publications/Publ-12821
Publ.-Id: 12821


Lorentz force driven rotating flows in electrochemical systems

Weier, T.; Gerbeth, G.

Lorentz forces are in almost all cases an inevitable consequence, when electrochemical reactions are performed under the influence of a magnetic field. The reason for this fact is that it is quite difficult to actually guarantee parallelism of magnetic and electric fields everywhere in the electrochemical cell.
The current contribution focuses on cases which are essentially axial symmetric. While the main parts of the electric and magnetic fields are parallel to the axis, an azimuthal Lorentz force is generated by radial components of either the electric or the magnetic field. The Lorentz force acting in circumferential direction drives primarily azimuthal flows. However, pressure differences due to these primary flows as well as the nonuniform Lorentz force density distribution itself give rise to secondary flows which, together with the primary flow, can lead to complex and sometimes unexpected flow patterns. The matter is complicated even more by the action of buoyancy originating from the density changes of the electrolyte solution due to the electrode reactions. Since the flow, i.e. the momentum transfer, determines mass transfer to a good extend electrochemical reactions under mass transfer control are usually influenced by magnetic fields. This fact has been known for a long time and is often referred to as “MHD–effect” in the electrochemical literature. However, often the seeming simplicity suggested by this term is misleading since, as denoted above, the Lorentz force driven flow is frequently rich in features [1].
We use particle image velocimetry (PIV) as well as synthetic schlieren, i.e. background oriented schlieren (BOS), to study velocity and concentration gradient fields in electrochemical cells. On the basis of these measurements, the flow in the cells and its consequences for the concentration distributions and the reactions are discussed. Examples include the retainment of buoyant electrolyte near circular electrodes as described in [2], the reversal of the secondary flow direction depending on the electrode radius [3] and the interplay of gravity and Lorentz forces in cylindrical cells with horizontal electrodes.
References
[1] Mutschke G, Cierpka C, Weier T, Eckert K, Mühlenhoff S and Bund A. ECS Transactions 13, 16, 9 (2008).
[2] Weier T, Eckert K, M¨uhlenhoff S, Cierpka C, Bund A and Uhlemann M. Electrochem Comm 9, 2479 (2007).
[3] Cierpka C, Weier T, Gerbeth G, Uhlemann M and Eckert K. J Solid State Electrochem 11, 687 (2007).

Keywords: Lorentz force; magnetoelectrochemistry; PIV; BOS

  • Lecture (Conference)
    International Conference on Magneto Science, 26.-29.10.2009, Nijmegen, Niederlande

Permalink: https://www.hzdr.de/publications/Publ-12820
Publ.-Id: 12820


Numerical and experimental results on copper electrolysis in homogeneous and inhomogeneous magnetic fields

Mutschke, G.; Weier, T.; Schäfer, P.; Hess, A.; Bund, A.; Fröhlich, J.

Lorentz forces due to external magnetic fields are well known to force electrolyte flow and thereby to influence mass transport in electrochemical reactions. To achieve a quantitative understanding of this so called “MHD-effect” and maybe to tailor it, it is crucial to study the magneti-cally forced convection in as much detail as possible.
The present work aims to further clarify the role of magnetically forced convection during copper electrolysis in cuboid cells with vertical wall electrodes. Both, homogeneous and inhomogeneous magnetic fields of different directions are investigated. Substantial differences in the convection forced arise from the fact that only the rotational part of the Lorentz force drives additional convection [1]. In case of homogeneous magnetic fields, this results in characteristic horizontal counter-rotating flow in the top and the bottom region of the cells (see Fig. 1) [2]. Inhomogeneous magnetic fields characterized by a constant gradient in a certain direction give rise to simpler convection patterns as the Lorentz force possesses a natural rotational part. This way, tailored electrolyte stirring throughout the cell can easily begenerated.
The presentation will summarize recent results of numerical simulations combined with detailed experimental PIV measurements of the electrolyte flow. The influence of the forced convection on the limiting current, the vertical density stratification and the vertical distribution of the current density at the cathode will be discussed.
Acknowledgment: We are very grateful to C. Cierpka for contributing to the initial DP-PIV setup. This work was supported by Deutsche Forschungsgemeinschaft in frame of the collaborative research center SFB 609 "Electromagnetic flow control in metallurgy, crystal growth and electrochemistry"
References
[1] G. Mutschke, A. Bund, Electrochem. Comm. 10 (2008) 597-601.
[2] G. Mutschke, C. Cierpka, T. Weier, K. Eckert, S. Mühlenhoff, A. Bund, Trans. Electrochem. Soc. 13 (16) (2008) 9-13.

Keywords: Lorentz force; magnetoelectrochemistry; PIV; electrolysis

  • Lecture (Conference)
    International Conference on Magneto Science, 26.-29.10.2009, Nijmegen, Niederlande

Permalink: https://www.hzdr.de/publications/Publ-12819
Publ.-Id: 12819


Numerical and experimental results on copper electrolysis in homogeneous and inhomogeneous magnetic fields

Mutschke, G.; Schäfer, P.; Weier, T.; Hess, A.; Bund, A.; Fröhlich, J.

Lorentz forces due to external magnetic fields are well known to force electrolyte flow and thereby to influence mass transport in electrochemical reactions. To achieve a quantitative understanding of this so called “MHD-effect” and maybe to tailor it, it is crucial to study the magnetically forced convection in as much detail as possible.
The present work aims to further clarify the role of magnetically forced convection during copper electrolysis in cuboid cells with vertical wall electrodes. Both, homogeneous and inhomogeneous magnetic fields of different directions are investigated. Substantial differences in the convection forced arise from the fact that only the rotational part of the Lorentz force drives additional convection [1]. In case of homogeneous magnetic fields, this results in characteristic horizontal counter-rotating flow in the top and the bottom region of the cells [2]. Inhomogeneous magnetic fields characterized by a constant gradient in a certain direction give rise to simpler convection patterns as the Lorentz force possesses a natural rotational part. This way, electrolyte stirring throughout the cell can be generated (see Figs. 1 and 2).
The presentation will summarize recent results of numerical simulations combined with detailed experimental PIV measurements of the electrolyte flow. The influence of the forced convection on the limiting current, the vertical density stratification and the vertical distribution of the current density at the cathode will be discussed.
Acknowledgment: This work was supported by Deutsche Forschungsgemeinschaft in frame of the collaborative research center SFB 609 "Electromagnetic flow control in metallurgy, crystal growth and electrochemistry"
[1] G. Mutschke, A. Bund, Electrochem. Comm. 10 (2008) 597-601.
[2] G. Mutschke, C. Cierpka, T. Weier, K. Eckert, S. Mühlenhoff, A. Bund, Trans. Electrochem. Soc. 13 (16) (2008) 9-13.

Keywords: Lorentz force; magnetoelectrochemistry; copper electrolysis

  • Poster
    216th Meeting of the Electrochemical Society, 04.-09.10.2009, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-12818
Publ.-Id: 12818


Nano-Biotechnologie für den Umweltschutz: Neue photokatalytisch aktive Verbundmaterialien zur Eliminierung von pharmazeutischen Reststoffen (NanoPharm)

Raff, J.; Pollmann, K.; Meyer, A.

Vorstellung des NanoPharm-Verbund-Vorhabens

  • Lecture (others)
    Antragsgespräch "NanoPharm", Projektträger Jülich, Forschungszentrum Jülich, 23.06.2009, Jülich, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12817
Publ.-Id: 12817


Radioökologische Forschungsarbeiten als Ausgangspunkt für die Entwicklung innovativer Materialien für die Umwelttechnik

Raff, J.

Im Zuge radioökologischer Untersuchungen wurden besondere „surface –layer“ (S-Layer)-Proteine von Uranabfallhaldenisolaten entdeckt, die zum Teil gegenüber S-Layer-Proteine anderer Bakterien eine deutlich erhöhte Metallbindungskapazität und eine besonders hohe Stabilität aufweisen. Diese Eigenschaften sind im Falle der Haldenisolate auf deren Funktion als selektiver Filter für toxische Metalle zurückzuführen. S-Layer-Proteine allgemein besitzen die Fähigkeit an Grenz- und Oberflächen sowie in Suspension zu hoch geordneten einlagigen Schichten zu rekristallisieren und lassen sich deshalb hervorragend zur Beschichtung verschiedener Träger wie z. B. Glas, Keramik und Silizium verwenden. Aus diesem Grund erlauben gerade die S-Layer der Haldenisolate die Herstellung besonders stabiler Beschichtungen. Derartige Schichten können als selektive Bindungsmatrix zur Filterung von Wasser, zur Funktionalisierung von Trägermaterialien für die Herstellung sensorischer Schichten oder als Template zur Erzeugung und Immobilisierung von (foto)katalytisch aktiven Nanopartikeln verwendet werden. Die Entwicklung entsprechender Materialien ist Gegenstand aktueller Forschungsarbeiten am Institut für Radiochemie des Forschungszentrums Dresden-Rossendorf und wird im Rahmen des Vortrags vorgestellt.

  • Lecture (others)
    Umweltkolloquium, Studiengang Chemieingenieurwesen, Hochschule für Technik und Wirtschaft Dresden (FH), 22.10.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12816
Publ.-Id: 12816


Radiohaloes in feldspar group minerals

Krickl, R.; Götze, J.; Grambole, D.; Nasdala, L.; Kaindl, R.

External irradiation of minerals with alpha-particles emitted from radionuclide bearing inclusions may lead to significant alteration of the physical and chemical properties of the host material. These altered regions are commonly referred to as radiohaloes. In the vast majority of reported cases, haloes can be detected using an optical microscope, because they show significantly changed optical absorption and birefringence behaviour in comparison to the unaltered host (e.g. Paul Ramdohr (1960): Geol. Rundschau, 49, 253-263). However, there are minerals which commonly show no change in optical absorption upon alpha-irradiation. One well known example is quartz, where radiohaloes can only be revealed by cathodoluminescence (CL) imaging, as they show an intensified, orange emission (e.g. Jens Götze, Michael Plötze, Dirk Habermann (2001): Mineral Petrol, 71, 225-250). In the course of CL-studies on radiohaloes in quartz (Robert Krickl, Lutz Nasdala, Jens Götze, Dieter Grambole, Richard Wirth (2008): Eur J Mineral, 20, 517- 522), hitherto unreported alpha-induced alteration effects in alkali-feldspars and plagioclases were discovered and characterised.
In contrast to quartz, the newly discovered “negative CL-haloes” in feldspars exhibit a lower emission intensity as compared to the unaltered host. Cathodoluminescence spectra show, that this decrease is mainly caused by a strong intensity loss of bands attributed to the O– / 2 27Al centre. In some cases a new, probably radiogenic band at ~570–600 nm can be observed.
Radiohaloes in feldspars seem to be quite common and were detected in a number of rocks from different localities. Haloes are not only found around radioactive inclusions but also along cracks, indicating the former circulation of radionuclide bearing solutions. The radioactive origin of the reported features is confirmed by several observations: Haloes are only found at the contact zones to radionuclide bearing phases like for example monazite. Measured outer radii of haloes (and sometimes rings within haloes) are in very good agreement with penetration depths of natural alpha-particles calculated by Monte-Carlo-simulations. Finally, micro-Raman spectroscopic investigations indicate the presence of structural damage which increases with decreasing distance from the radionuclide bearing inclusion, thus correlating with the presumed point defect density distribution in radiohaloes. Amorphised regions within haloes are rare, though they exist in some cases. Glassy feldspar seems to be unstable against secondary alteration and is most often found to be recrystallised and chemically altered. Evidence on different resistance against secondary alteration within different feldspar minerals will be discussed.
The results on natural radiohaloes are confirmed by artificial irradiation experiments: Implantation of a sanidine single crystal with 8.8 MeV He2+ ions (corresponding to alpha-particles produced in the decay of 212Po) results in analogous decrease in CL-intensity, showing systematic dependence on irradiation dose. Raman spectroscopic investigations show significant broadening of vibrational bands, indicating significant disturbance of the short range order in the crystal structure. However, crystalline long range order seems to be preserved up to doses of 1016 He2+/cm2. The measured extent of broadening correlates very well with calculated point defect distribution curves resulting from Monte-Carlo-simulations. In the case of natural and artificial alpha-irradiation no change in optical absorption could be detected. However, irradiation with electrons and gamma-rays resulted in a markedly yellow-brown colouration of the same sample material that was subjected to He-implantation. For these treatments obviously induce different effects, they are not adequate methods to simulate alpha-particle haloes in these minerals.

  • Lecture (Conference)
    Jahrestagung der Deutschen Mineralogischen Gesellschaft, 13.-16.09.2009, Halle, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12815
Publ.-Id: 12815


The role of ferromagnetic impellers in the VKS dynamo experiment

Giesecke, A.; Stefani, F.; Gerbeth, G.

In the Cadarache von-Karman-Sodium (VKS) experiment a flow of liquid sodium is driven by two counterrotating impellers located at the top and the bottom of a cylindrical vessel. Dynamo action is obtained at a critical magnetic Reynolds number Rm_c=32. Striking property of the self-generated field is the high degree of axisymmetry. Furthermore, dynamo action is obtained only with impellers made of soft iron with a relative permeability of the order of mu_r ~ 100...1000. So far, no satisfying explanation is available that explains the failure of field generation when using steel impellers. Therefore, the role of the ferromagnetic material to obtain a dynamo, appears to be a critical issue and deserves further experimental and numerical investigations.

Numerical simulations of the kinematic induction equation have been carried out in a cylindrical domain that resembles the VKS setup. In case of a prescribed axisymmetric velocity distribution the resulting magnetic field is always determined by an azimuthal m=1 -- mode. Axisymmetric fields can be obtained applying a (localized) alpha-effect that might arise from the induction action of radially oriented helical outflow trapped between the impeller blades. However, it turns out, that the amplitude of alpha, which is necessary to generate an axisymmetric field, is far above realistic values. Therefore, a simple alpha-omega-model can be ruled out as the single explanation for the dynamo mechanism in the VKS experiment. Additional support of dynamo action stems from the presence of a high permeability domain within the cylindrical domain. In numerical simulations with a non-uniform permeability distribution that resembles the shape of the impeller disk (including the flow driving blades) the axisymmetric field mode is significantly enhanced, whereas the first non-axisymmetric mode remains nearly unaffected. To circumvent the restrictions of Cowling's theorem, still an alpha-effect is required for a growing axisymmetric field. However, the necessary magnitude of alpha is significantly reduced.

Alternatively, the implications of intermittent non-axisymmetric velocity disturbances are considered as they have been found in water experiments in form of azimuthal drifting equatorial vortices. Resonance effects -- so called swing excitations -- provide a strong increment of the field growthrate if the vortex drift motion proceeds phase synchronous with the drift of a non-axisymmetric magnetic field. However, a careful controlling of the dynamical behavior of vortices and/or the magnetic field would be required to benefit from this effect in a dynamo experiment.

Keywords: dynamo; VKS; experiment; alpha-effect; simulations; induction; permeability

  • Lecture (Conference)
    Natural Dynamos, 30.08.-05.09.2009, Stará Lesná, Slovakia
  • Open Access Logo Abstract in refereed journal
    Contributions to Geophysics and Geodesy (2009)39, 83-84
    ISSN: 1335-2806

Permalink: https://www.hzdr.de/publications/Publ-12814
Publ.-Id: 12814


Visualisierung von Mehrphasenströmungen in der Verfahrenstechnik

Kryk, H.; Hampel, U.

Ein Arbeitsgebiet des Instituts für Sicherheitsforschung des FZD ist die Untersuchung transienter Mehrphasenströmungen in kern- und verfahrenstechnischen Anlagen. Das längerfristige Ziel der Untersuchungen besteht dabei in der Entwicklung theoretischer Modelle für grundlegende Phänomene in dreidimensionalen und transienten Mehrphasensystemen. Sowohl die Modellerarbeitung als auch die Validierung der Programme ist nur in enger Anbindung an das Experiment möglich. Dazu wurden innovative schnelle, hochauflösende und robuste Messverfahren, wie Gittersensoren, Nadelsonden und tomographische Methoden entwickelt, die neben der Strömungsvisualisierung der Ermittlung charakteristischer Parameter der Mehrphasenströmung, wie z. B. Phasenanteile, Geschwindigkeiten und Blasengrößenverteilungen dienen. Die entsprechenden Messgeräte kommen sowohl für Strömungsuntersuchungen im eigenen Hause (z. B. an der Versuchsanlage TOPFLOW) als auch für Messungen im Kundenauftrag zum Einsatz. Strömungssensoren für den Einsatz als Prozessmesstechnik, wie Gittersensoren und Nadelsonden, werden darüber hinaus auf Kundenwunsch gefertigt. Der Vortrag gibt eine Übersicht über die Messprinzipien und die technischen Daten der Mehrphasenmesstechnik und präsentiert Einsatzbeispiele und Ergebnisse aus den Bereichen der chemischen und der Energie-Verfahrenstechnik.

Keywords: Multiphase Flow; Needle Probe; Wire-mesh Sensor; X-ray Tomography; Gamma-Tomography

  • Lecture (Conference)
    ACHEMA 2009, 29. Internationaler Ausstellungskongress für Chemische Technik, Umweltschutz und Biotechnologie, 11.-15.05.2009, Frankfurt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12813
Publ.-Id: 12813


Spin-dependent transport in hard superparamagnetic C:Ni nanocomposites

Zhou, S.; Abrasonis, G.; Mücklich, A.; Potzger, K.; Fassbender, J.; Helm, M.; Schmidt, H.

Structural, magnetic, and magneto-transport properties in C:Ni (30 at.%) nanocomposite films grown by ion beam cosputtering at 500 °C are investigated by means of transmission electron microscopy, superconducting quantum interference device magnetometry and electrical transport measurements. The C:Ni film shows a superparamagnetic behavior with a large coercivity field of 250 Oe at 5 K compared with bulk Ni metals. Anomalous Hall effect is observed in C:Ni nanocomposites, which is attributed to the scattering of spin-polarized carriers by the magnetic Ni nanoparticles in the carbon matrix.

Permalink: https://www.hzdr.de/publications/Publ-12812
Publ.-Id: 12812


Tribological Effects of Plasma Immersion Ion Implantation Heating Treatments on Ti-6Al-4V Alloy

Mello, C. B.; Ueda, M.; Silva, M. M.; Reuther, H.; Pichon, L.; Lepienski, C. M.

In order to achieve improved surface in components with high reliability required by the tool or metallurgical industries by means of plasma immersion ion implantation (PIII), it is necessary to obtain quite thick treated layers with reasonable thickness uniformity. One effective way to achieve such a thick nitrogen-rich layer in Ti–6Al–4V alloy is to run PIII process in high temperatures of about 800°C. In these experiments, we heated the sample-holder and subjected the Ti–6Al–4V samples to nitrogen glow discharge PIII with relatively low peak voltages (5 kV). We also treated the Ti–6Al–4V samples by the traditional PIII method, increasing slowly the high voltage pulse intensities, and at the end of processing, reaching temperatures of up to 350°C. These modes of treatments were compared with respect to nitrogen implantation profiles, tribological and mechanical properties. Nitrogen profiles measured by AES showed that auxiliary heating leads to richer and deeper layers. The best results were obtained for the samples treated for 4 h that, after 25,000 cycles in unlubricated pin-on-disk test, presented very small wear (reduction of 89%). In spite of friction coefficient being higher in the beginning of the test, probably due to the increase of the average roughness (Rms) in the surface of the treated material, it decreases when the rough surface wears away, due to the reduction of frictional force necessary to slide the pin on the sample. The material treated at 800°C presents high wear resistance, which is desired in this alloy, that normally possesses excellent mechanical properties, however, poor tribological properties.

  • Wear 267(2009), 867-873
  • Lecture (Conference)
    17th International Conference on Wear of Materials, 19.-23.04.2009, Las Vegas, USA

Permalink: https://www.hzdr.de/publications/Publ-12811
Publ.-Id: 12811


Bioinspired Materials for Nanotechnology

Raff, J.

Bacterial S-layers are highly ordered paracrystalline protein polymers on the surface of many bacteria. During a long evolutionary process of billions of years, S-layers have been optimized as simple system to form regular lattices with different functions by self-assembly. Solutions of S-layer proteins can be used for the simple coating of a broad spectrum of different materials e.g. glas, silicon and ceramics with a mono-molecular protein layer. The well defined arrangement of different functional groups effects the selective binding of several metals or can be used for the regular immobilization of bio-functional molecules. Furthermore S-layers or S-layer coatings can be used as template for the controlled formation and immobilization of nano-particles. S-layer proteins are therefore very prospective for different bio- and nanotechnological applications, like the selective removal of metals, the production of noble metal catalysts and photo-catalysts and the development of sensory layers.

  • Invited lecture (Conferences)
    7th International Nanotechnology Symposium Nanofair 2009, 26.-29.05.2009, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-12810
Publ.-Id: 12810


Uranabfallhalden als Fundgrube für Technologie-Innovationen

Raff, J.

Wie überall auf der Erde leben auch in den Böden und Sickerwässer der Hinterlassenschaften des ehemaligen Uranerzbergbaus zahlreiche Bakterien. Um in einer solchen Umgebung trotz des Vorkommens verschiedener giftiger Elemente wie zum Beispiel Uran, Kupfer, Nickel und Arsen überleben zu können, bedarf es ganz besonderer Fähigkeiten.
Am Beispiel der bakteriellen Hüllproteinschichten (S-Layer) wird im Vortrag gezeigt, wie sich Bakterien vor negativen Umwelteinflüssen schützen können und wie man sich dies, im Sinne einer Entwicklung neuer innovativer Materialien, zu Nutze machen kann.

  • Lecture (others)
    Tag des offenen Labors, 09.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12809
Publ.-Id: 12809


Advanced Bio-composite Materials for Water Treatment

Raff, J.

  • wird nachgereicht
  • Lecture (Conference)
    60. Berg- und Hüttenmännischer Tag, 17.-19.06.2009, Freiberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12808
Publ.-Id: 12808


PT quantum mechanics and some of its underlying mathematics

Günther, U.

In 1998, 1999 it was shown by Bender and collaborators that there are certain classes of Hamiltonians which at a first glance seem not selfadjoint in Hilbert spaces, but which nevertheless are having real spectra. Examples are Hamiltonians of the type H=p2+x2(ix)μ. For parameters μ ∈ [0,1] these Hamiltonians have positive real eigenvalues with square integrable eigenfunctions defined over the real line. It was found that the reality of the eigenvalues was connected with an underlying PT-symmetry of the Hamiltonians and their eigenfunctions, i.e. the systems are in a sector of unbroken PT-symmetry. There exist other sectors like μ ∈ (-1,0) where this PT-symmetry is spontaneously broken: although the Hamiltonian remains PT-symmetric, part of its eigenfunctions loose PT-symmetry and the corresponding eigenvalues are coming in complex conjugate pairs. A PT phase transition occurs at μ=-0.
It turns out that the PT-symmetry of the Hamiltonian H induces a natural indefinite metric structure in Hilbert space and that H, instead of being selfadjoint in a usual Hilbert space (with positive definite metric), is selfadjoint in a generalized Hilbert space with an indefinite metric --- a so called Krein space. Similar to time-like, space-like and light-like vectors in Minkowski space a Krein space has elements of positive and negative type as well as neutral (isotropic) elements. Moreover in analogy to passing via Wick-rotation from Minkowski space to Euclidian space, in the sector of exact PT-symmetry there exists an operator which allows to pass from a Krein space description of the system to a description in a Hilbert space with a highly nontrivial metric operator. At the PT phase transition point this operator becomes singular and the corresponding mapping breaks down.
In the talk, on an introductory level, some of the basic structures of PT-symmetric quantum mechanics and their relation to corresponding Krein-space setups are sketched. For gaining some rough intuition, the facts are illustrated by simple matrix models. The richness of the systems is demonstrated on the simple example of a PT-symmetric two-mode Bose-Hubbard model and the geometry of a PT-symmetric brachistochrone setup.

Keywords: PT quantum mechanics; PT-symmetry; non-Hermitian operators; Krein space; indefinite metric; phase transition; quantum brachistochrone; Bose-Hubbard model

  • Invited lecture (Conferences)
    seminar at the Graduate School of Fundamental Physics; Institute of Physics; Heidelberg University, 04.06.2009, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12807
Publ.-Id: 12807


Neptunium(V) complexation by natural pyoverdins and related model compounds

Moll, H.; Johnsson, A.; Schäfer, M.; Glorius, M.; Pedersen, K.; Budzikiewicz, H.; Bernhard, G.

The aerobic soil bacterium Pseudomonas fluorescens (CCUG 32456 A) isolated from the aquifers at the Äspö Hard Rock Laboratory, Sweden secretes pyoverdin-type siderophores. These unique bioligands have a high potential to bind uranium(VI) and curium(III) mainly due to their hydroxamate and catecholate functionalities [1, 2]. However, the interaction of neptunium(V) with pyoverdin-type siderophores is still unknown. In general, Np(V) interactions with natural bioligands are poorly understood. To address this lack, we thus present findings regarding the speciation of the neptunyl cation with pyoverdins in aqueous solution using near-infrared (NIR) absorption spectroscopy over a wide pH range. Np(V)-pyoverdin species of the type MxLyHz could be identified from the spectrophotometric titrations. Remarkable was that the influence of neptunium(V)-pyoverdin species could already be detected under equimolar conditions. The stability constants of these strong neptunyl(V)-bioligand complexes and their individual spectroscopic properties are reported. NIR absorption spectroscopy shows that the Np(V)-pyoverdin species cause a strong red shift of the characteristic NpO2+ absorption band at 980 to 1000 nm. The findings of our Np(V) speciation study with pyoverdins and selected model compounds indicate a stronger affinity of Np(V) to the catechol functionality of the pyoverdin molecules in contrast to for instance their hydroxamate groups.

[1] H. Moll, M. Glorius, G. Bernhard, A. Johnsson, K. Pedersen, M. Schäfer, H. Budzikiewicz, Geomicrobiol. J. 25, 157-166 (2008).
[2] H. Moll, A. Johnsson, M. Schäfer, K. Pedersen, H. Budzikiewicz, G. Bernhard, BioMetals 21, 219-228 (2008).

Keywords: Neptunium(V); Pyoverdin; NIR absorption spectroscopy; Speciation

  • Contribution to proceedings
    12th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, 20.-25.09.2009, Kennewick, Washington, USA
  • Lecture (Conference)
    12th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere 2009, 20.-25.09.2009, Kennewick, Washington, USA
  • Radiochimica Acta 98(2010), 571-576
    DOI: 10.1524/ract.2010.1755
    Cited 8 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-12806
Publ.-Id: 12806


Nachrechnung der Leistungsparameter eines Sicherheitsventils mit ANSYS CFX

Moncalvo, D.; Friedel, L.; Jörgensen, B.; Höhne, T.

Der Einfluss der Gitterfeinheit und der des Turbulenzmodells sind hier bezüglich der Wiedergabegenauigkeit von Luftmassenströmen in zwei kleinen Sicherheitsventilen bei Abblasedrücken zwischen 4 und 40 bar untersucht worden. Die Ergebnisse zeigen, dass für beide Ventile die Gitterfeinheit der entscheidende Faktor und die Auswahl des Turbulenzmodells eher zweitrangig ist.

Keywords: CFD; Sicherheitsventil

Permalink: https://www.hzdr.de/publications/Publ-12805
Publ.-Id: 12805


Einfluss von Glutathion auf das Komplexbildungs- und Redoxverhalten von Uran(VI)

Frost, L.

Ziel dieser Diplomarbeit war es, die Wechselwirkung des Glutathions mit dem Uranylion zu untersuchen. Die Stabilitätskonstante des Komplexes zwischen dem Uranylion und Glutathion bei pH 7,4 sollte unter Verwendung der UV/VIS-Spektroskopie und der zeitaufgelösten Laserfluoreszenzspektroskopie bestimmt werden. Außerdem sollten über eine Derivatisierung des Glutathions dessen spektroskopische Eigenschaften verbessert und die Komplexierung des Uranylions durch das erzeugte Derivat untersucht werden. Ferner war zu untersuchen, ob Glutathion unter geeigneten Bedingungen das Uranylion bei pH 7,4 direkt reduzieren kann.
Die Bestimmung der Stabilitätskonstante des Komplexes zwischen dem Uranylion und Glutathion wurde mittels UV/VIS-Spektroskopie zu 38,70 ± 0,15 (Mittelwert mit Standardfehler) bestimmt. Unter Anwendung der zeitaufgelösten Laserfluoreszenzspektroskopie konnte die Bildungskonstante des 1:1-Uranyl-Glutathion-Komplexes zu 38,65 ± 0,02 berechnet und somit bestätigt werden.
Auch die Derivatisierung des Glutathions gelang mit der Bildung des Glutathion-Pyruvat-S-Konjugats, welches im UV/VIS-Bereich gut absorbiert. Die Bildungskonstante des Komplexes zwischen dem erzeugten Konjugat und dem Uranylion wurde zu > 38,85 ± 0,08 mittels UV/VIS-Spektroskopie bestimmt. Eine zweite Derivatisierung des Glutathions mit Monobromobiman zum fluoreszierenden Glutathion-Biman-Konjugat wurde durchgeführt. Die Komplexierung des Uranylions durch das Glutathion-Biman-Konjugat wurde mittels fs-Laserfluoreszenzspektroskopie untersucht und die Stabilitätskonstante dieses Komplexes zu > 38,96 ± 0,02 bestimmt. Da bei der Untersuchung der Glutathionderivate trotz Blockierung der Thiolgruppe des Glutathions eine starke Komplexierung festgestellt wurde, kann eine signifikante Beteiligung der SH-Gruppe an der Koordination ausgeschlossen werden.
Die Untersuchung des Redoxverhaltens des U(VI) in Gegenwart von Glutathion mit Hilfe der Laser-induzierten photoakustischen Spektroskopie zeigte, dass in vitro bei pH 7,4 keine Reduktion zum Uran(IV) erfolgt. Ein Redoxprozess würde eine Reduzierung der Konzentration des freien Uranyls und somit eine Veränderung der Komplexstabilitätskonstante bewirken. Da keine Reduktion festgestellt wurde, ist keine Korrektur der ermittelten Konstanten nötig.

  • Other report
    TU Dresden: Diplomarbeit (Studiengang Chemie), 2009
    63 Seiten

Permalink: https://www.hzdr.de/publications/Publ-12804
Publ.-Id: 12804


Modeling of the evolution of bubbly flows along a large vertical pipe with new coalescence and breakup model

Liao, Y.; Lucas, D.

In today’s technology, air-water bubbly flows occur in a wide range of industrial applications. The evolution of bubble size as well as the transition of flow pattern has a significant relevance to the design, safety analysis and performance of a two-phase process. For the capture of bubble size evolution in a poly-dispersed flow, coalescence and breakup models have been found to be the weakest points.
Based on an extensive literature study on breakup and coalescence models available for fluid particles, a new basis model was proposed in this work, which considers coalescence and breakup due to different mechanisms, including coalescence due to turbulence, laminar shear, wake entrainment and eddy capture, and breakup due to turbulent fluctuation, laminar shear and interfacial slip velocity.
For the first step, the basis model was implemented into a home-made 1D Test Solver, which is developed specially for bubbly flows along a round vertical pipe and has an obvious advantage of high computational efficiency. For the purpose of CFD model development and validation, with aid of the multipurpose TOPFLOW (Transient twO Phase FLOW) facility, a comprehensive high-quality databank was established for the evolution of air-water and steam-water mixtures along a round vertical pipe. The new coalescence and breakup model was validated against the air-water bubbly flow data.
Simulation results showed that at relatively low superficial gas velocities, the initial bubble size was small and had a narrow distribution, and coalescence dominates the bubble size evolution; with the increase in the superficial gas velocity, large bubbles appear near injection position, and result in a much wider bubble size distribution, and breakup became predominant. In between is a transition status. On the other hand, the radial air volume fraction was redistributed from the injection position at wall to the whole cross section, and the stable peak remains near the wall for small bubbles while large bubbles migrating towards the pipe centre. According to the work of Tomiyama and his coworker, this different radial migration behavior of small and large bubbles is the effect of lift non-drag force.
The comparison of simulation results with experimental data showed encouraging agreements, which affirmed the feasibility and capability of the basis model and indicated also requirements for adjustments and improvements. At the next step, the basis model will be adjusted in the ANSYS – CFX code.

Keywords: air-water mixture; bubbly flow; bubble size distribution; radial gas volume fraction; new model; coalescence and breakup

  • Invited lecture (Conferences)
    47th European Two-phase Flow Group Meeting 2009, 1st Joint ETPFG-EFCE Multi-phase Meeting 2009, 03.-06.06.2009, Bled, Slovenia

Permalink: https://www.hzdr.de/publications/Publ-12803
Publ.-Id: 12803


Coordination environment of [UO2Br4]2- in ionic liquids and crystal structure of [Bmim]2[UO2Br4]

Sornein, M. O.; Mendes, M.; Cannes, C.; Le Naour, C.; Nockemann, P.; van Hecke, K.; van Meervelt, L.; Berthet, J. C.; Hennig, C.

The complex formed by the reaction of the uranyl ion, UO22+, with bromide ions in the ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][Tf2N]) and methyl-tributylammonium bis(trifluoromethylsulfonyl)imide ([MeBu3N][Tf2N]) has been investigated by UV–Vis and U LIII-edge EXAFS spectroscopy and compared to the crystal structure of [Bmim]2[UO2Br4]. The solid state reveals a classical tetragonal bipyramid geometry for [UO2Br4]2 with hydrogen bonds between the Bmim+ and the coordinated bromides. The UV–Vis spectroscopy reveals the quantitative formation of [UO2Br4]2- when a stoichiometric amount of bromide ions is added to UO2(CF3SO3)2 in both Tf2N-based ionic liquids. The absorption spectrum also suggests a D4h symmetry for [UO2Br4]2- in ionic liquids, as previously observed for the [UO2Cl4]2- congener. EXAFS analysis supports this conclusion and demonstrates that the [UO2Br4]2- coordination polyhedron is maintained in the ionic liquids without any coordinating solvent or water molecules. The mean U–O and U–Br distances in the solutions, determined by EXAFS, are, respectively, 1.766(2) and 2.821(2) Å in [Bmim][Tf2N], and, respectively, 1.768(2) and 2.827(2) Å, in [MeBu3N][Tf2N]. Similar results are obtained in both ionic liquids indicating no significant influence of the ionic liquid cation either on the complexation reaction or on the structure of the uranyl species.

Keywords: Uranium; Tetrabromide complex; Ionic liquid; EXAFS; Single crystal structure; UV–Vis spectroscopy

Permalink: https://www.hzdr.de/publications/Publ-12802
Publ.-Id: 12802


Advanced multiphase flow measurement techniques at FZD

Da Silva, M. J.

Multiphase flow, the simultaneous stream in a pipe or vessel of two or more physically distinct and immiscible substances, is present in many industry branches. The correct understanding and modeling of such flows is a key issue for safety and efficiency aspects of processes and plants where they occur. In this presentation, state-of-the-art measuring techniques for investigation of multiphase flows are presented which have been developed or are under investigation at FZD. Special focus has been given to imaging techniques which are able to resolve phase distributions at high temporal and spatial resolution, including different types of wire-mesh sensors and our newest development: the ultra fast electron beam tomograph. Furthermore, some application examples of such techniques in research and industry are presented and discussed.

Keywords: measurement techniques; flow visualization; multiphase flow; tomography; wire-mesh sensors

  • Invited lecture (Conferences)
    30th Advisory Board Meeting of Tulsa University Separation Tecnology Projects, 12.-13.05.2009, Houston, USA

Permalink: https://www.hzdr.de/publications/Publ-12801
Publ.-Id: 12801


Comparison between electrical capacitance tomography and wire mesh sensor output for air/silicone oil flow in a vertical pipe

Azzopardi, B. J.; Abdulkareem, L. A.; Zhao, D.; Thiele, S.; Da Silva, M. J.; Beyer, M.; Hunt, A.

Two tomographic techniques have been applied simultaneously to the flow of air and silicone oil in 67 mm internal diameter vertical pipe. A twin plane Electrical Capacitance Tomgraphy (ECT) electrode system driven by Tomoflow electronics was positioned below a new Capacitance Wire Mesh Sensor (WMS) system. The former used 8 electrodes round the pipe in each plane, the latter employed two arrays of 24 evenly spaced wires stretched over the pipe cross section. The ECT measurement was
triggered from the WMS electronics. High speed videos were also taken simultaneously through the transparent pipe wall. Gas superficial velocities of 0.05 to 5.5 m/s and liquid superficial velocities of 0 to 0.7 m/s were studied. These gave bubbly, slug and churn flow in the pipe. The outputs of the two techniques have been compared at a number of levels. At its most basic, the time averaged crosssectionally averaged void fractions were compared. They showed excellent agreement. At the next level, the time series of the cross-sectionally averaged void fraction were considered directly and through their variations in amplitude and frequency space. Examples of Probability Density Functions are presented. Radial variations of the void fraction were also considered. Thereafter the shapes of the large bubbles and the velocities of periodic structures are presented.

Keywords: Gas; liquid; vertical pipe; tomography; comparison

  • Contribution to proceedings
    3rd International Workshop on Process Tomography, 17.-19.04.2009, Tokyo, Japan
    Proceedings of 3rd International Workshop on Process Tomography
  • Lecture (Conference)
    3rd International Workshop on Process Tomography, 17.-19.04.2009, Tokyo, Japan
  • Industrial & Engineering Chemistry Research 49(2010), 8805-8811
    DOI: 10.1021/ie901949z
    Cited 55 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-12800
Publ.-Id: 12800


Capacitance wire mesh sensor and electrical capacitance tomography study of trickle-bed reactor hydrodynamics

Matusiak, B.; Da Silva, M. J.; Grudzien, K.; Hampel, U.

Trickle-bed reactors are widely used for a number of different applications in chemical, biochemical and waste treatment industry. Knowledge of liquid distribution and holdup in such reactors is required to better understand their operation and thus to enhance efficiency of processes. The objective of this work was a comparative analysis of the usability of a wire-mesh sensor and Electrical Capacitance Tomography (ECT) for the measurement of liquid distribution and holdup in a trickle-bed reactor model. Thus, a wire-mesh sensor with 2 x 16 wires, operated with a newly developed capacitance-measuring electronics was mounted in the trickle-bed reactor model with inner diameter of 0.1 m. Further, an ECT sensor containing 12 internal electrodes of 50 mm length was mounted above the wire-mesh sensor. The reactor model was randomly packed with a commercial porous Al2O3 catalyst support. Isopropanol was fed into the reactor from the different inlets located at the top of the test facility. In this way, different liquid distributions were obtained and monitored. For each condition, we compared integral liquid holdups and liquid distribution profiles from wire-mesh and ECT systems. Obtained results are in good agreement between both modalities.

Keywords: wire-mesh sensor; ECT; trickle bed; flow visualization

  • Contribution to proceedings
    3rd International Workshop on Process Tomography, 17.-19.04.2009, Tokyo, Japan
    Proceedings of 3rd International Workshop on Process Tomography
  • Lecture (Conference)
    3rd International Workshop on Process Tomography, 17.-19.04.2009, Tokyo, Japan

Permalink: https://www.hzdr.de/publications/Publ-12799
Publ.-Id: 12799


Advanced wire-mesh sensor technology for fast flow imaging

Da Silva, M. J.; Schleicher, E.; Hampel, U.

Wire-mesh sensors are flow imaging devices which are able to generate images of cross-sectional phase distribution at high spatial and temporal resolution. In this paper, we introduce a novel general concept of advanced wire-mesh sensors for the measurement of other physical quantity than phase fractions. The main idea is to provide the wire crossings with miniature transducers which convert a physical quantity into electrical impedance which is in turn measured by the sensor. The multiplexed probing-sensing scheme of wire-mesh sensor is used to readout the transducers. As a first example we developed a temperature wire-mesh sensor. The crossing points are provided with miniature PT1000 resistors. Thus the sensor is able to twodimensionally map the temperature distribution in a crosssection. First results are presented and discussed.

Keywords: Wire-mesh sensor; flow visualization; temperature profile, resistance thermometer

  • Contribution to proceedings
    2009 IEEE International Workshop on Imaging Systems & Techniques, 11.-12.05.2009, Shenzhen, China
    Proceedings of IEEE International Workshop on Imaging Systems & Techniques 2009: IEEE, 978-1-4244-3483-1, 253-256
  • Lecture (Conference)
    2009 IEEE International Workshop on Imaging Systems & Techniques, 11.-12.05.2009, Shenzhen, China

Permalink: https://www.hzdr.de/publications/Publ-12798
Publ.-Id: 12798


Formation of iron-rich natural nanoparticles by the weathering of rock materials

Zänker, H.; Weiß, S.

The formation of colloidal nanoparticles during the weathering of Fe(II)-containing mass rock material was investigated by exposing ground phyllite to Milli-Q water (a simulation of “rain water”). Secondary mineral colloids of 101 to 102 nm were detected in significant concentrations (cf. [1]). At pH of about 8.5, the solution concentration of these colloids reached up to 10 mg/L (however, acidification to pH 4.0 prevented the formation of the colloids). The mineralogical composition of the secondary mineral colloids is assumed to be a mixture of ferrihydrite, manganese oxyhydroxides, aluminosilicates, amorphous Al(OH)3 and possibly further components. The colloids were stable in solution over longer periods of time (at least several weeks).
Direct formation of iron-containing secondary mineral colloids at the rock-water interface by the weathering of rock is an alternative to the well-known mechanism of colloid formation in the bulk of water bodies by mixing of different waters or by aeration of anoxic waters [2-4]. This direct mechanism is of relevance for colloid production during the weathering of freshly crushed rock in the unsaturated zone as for instance crushed rock in gravel heaps or mine waste rock piles.
The properties (particle size, chemical composition) of the nanoparticles produced in the weathering experiments and their influence on the behaviour of an environmental contaminant (hexavalent uranium) were investigated. It was shown that the colloids are able to keep large fractions of the U(VI) (in our case up to 90%) in a colloid-borne form.

[1] H. Zänker, G. Hüttig, T. Arnold and H. Nitsche, Aquatic Geochem. 12 (2006) 299.
[2] L. E. Schemel, B. A. Kimball and K. E. Bencala. ppl. Geochem. 15 (2000) 1003.
[3] A. B. Sullivan and J. I. Drever, Appl. Geochem. 16 (2001) 1663.
[4] A. Wolthoorn, E.J.H. Temminghoff, W.H. van Riemsdijk, Appl. Geochem. 19 (2004) 1391.

Keywords: Colloids; nanoparticles; weathering; rock; phyllite; uranium

  • Lecture (Conference)
    4th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, 06.-09.09.2009, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-12797
Publ.-Id: 12797


Spectroscopic study and surface complexation modeling of Np(V) sorption on montmorillonite

Reich, T.; Amayri, S.; Dierking, S.; Baeyens, B.; Dähn, R.; Bradbury, M. H.; Scheinost, A. C.

The sorption of Np(V) on Na-montmorillonite (STx-1) has been studied in the absence of inorganic carbon and under air-equilibrated conditions. Batch experiments were performed with 0.1 and 0.01 M NaClO4 as background electrolyte, 8 × 10-12 and 9 × 10-6 M Np(V), and 3 ≤ pH ≤ 10. At pH > 8 the presence of inorganic carbon has a strong influence on the sorption behavior of Np(V) due to the formation of aqueous Np(V) complexes with carbonate. Neptunium LIII-edge extended X-ray absorption fine structure (EXAFS) measurements on Np(V)/montmorillonite samples with Np(V) loadings in the range of 0.3-3.5 μmol/g have been performed to determine the local structure of Np at the solid-liquid interface. Wet paste samples were prepared at pH 9.0 and 9.5 in the absence and presence of inorganic carbon. The EXAFS spectra of samples prepared under ambient air conditions (pCO2 = 10-3.5 atm) revealed the formation of Np(V)-carbonate complexes at the montmorillonite surface.
The results of the batch experiments obtained under CO2-free conditions could be modeled using the two site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model described in [1]. For modeling the sorption behavior of Np(V) on montmorillonite in the air-equilibrated system, the aqueous complexation of Np(V) with carbonate [2] was included and the following additional surface complexation reaction was required: ≡SOH + NpO2 + + CO3 2- ⇔ ≡SONpO2CO3 2- + H+. This study, combining batch experiments, spectroscopic measurements, and surface complexation modeling contributes towards a better understanding of the sorption of neptunium in the near field (bentonite) and far field (argillaceous rocks) of nuclear waste repositories.

[1] M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II),
Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free
energy relationships and estimates of surface binding constants for some selected heavy metals
and actinides, Geochim. Cosmochim. Acta 69, 875-892, 2005.
[2] Chemical Thermodynamics of Neptunium and Plutonium, (Eds. J. Fuger et al.) Elsevier,
Amsterdam 2001.

Keywords: Np; EXAFS; montmorillonite; surface complexation modeling

  • Poster
    Migration ´09 - 12th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, 20.-25.09.2009, Kennewick, Washington, USA

Permalink: https://www.hzdr.de/publications/Publ-12796
Publ.-Id: 12796


Zerstörungsfreie Analyse an Unikaten

Neelmeijer, C.

Kunstwerke sind Unikate und oft morbide Patienten. Das Material, woraus sie bestehen und das Klima, in dem sie aufbewahrt werden, bestimmen ihr Wohlbefinden. Die Oberfläche von Kunstwerken aus Glas, zum Beispiel, kann „rosten“ wie Metall. Wenn das Glasobjekt matt und rissig erscheint, kommt Abhilfe schon sehr spät. Chemische Reaktionen über lange Zeit führen möglicherweise zu Veränderungen der Farben von Gemälden, auch Kolorierungen. Präventive Konservierung ist dringend angezeigt, Vorsorge also. Entscheidend dafür ist die Früherkennung solcher Vorgänge, besser noch die Voraussage möglicher Schadensbilder. Hierzu dient die zerstörungsfreie Materialanalyse. Das kann der Protonenstrahl an Luft im Zusammenspiel mit empfindlicher Messtechnik. Am Beispiel Glas, aber auch an Gemälden, Zeichnungen, Tinten auf Urkunden gibt die Präsentation Antworten auf die typischen Fragen von Konservatoren, Restauratoren und Kunstwissenschaftlern: Wie gefährdet ist das Kunstwerk - welche Technologien hat der Künstler verwandt, um bestimmte ästhetische Eindrücke zu erlangen – gibt es Anzeichen für eine Kopie anstelle des Originals?
Die Gastvorlesung schafft eine Brücke zwischen den künftigen Betreuern einmaliger Stücke in Museen und dem wissenschaftlichen Potenzial am Ionenstrahl des FZD.

Keywords: art objects; non-destructive analysis; ion beam analysis; IBA; PIXE; PIGE; RBS

  • Lecture (others)
    Gastvorlesung, 23.02.2007, Dresden, BRD

Permalink: https://www.hzdr.de/publications/Publ-12795
Publ.-Id: 12795


Zerstörungsfreie Materialanalyse an Kunstwerken

Neelmeijer, C.

Kunstwerke sind Unikate, unwiederbringliche Zeugen vergangener Zeit. Ähnlich wie Patienten können sie erkranken, unterliegen der Alterung und bedürfen der Pflege. Das Material, woraus sie bestehen und das Klima, in dem sie aufbewahrt werden, bestimmen ihr Wohlbefinden. Die Oberfläche von Kunstwerken aus Glas, zum Beispiel, kann „rosten“ wie Metall. Wenn das Glasobjekt matt und rissig erscheint, kommt Abhilfe schon sehr spät. Präventive Konservierung heißt das Zauberwort, Vorsorge also. Entscheidend dafür ist die Früherkennung von Veränderungen besser noch die Einschätzung möglicher Schädigungen. Dazu dient die zerstörungsfreie Materialanalyse. Das kann der Protonenstrahl an Luft im Zusammenspiel mit empfindlicher Messtechnik. Am Beispiel Glas, aber auch an Gemälden, Zeichnungen, Tinten auf Urkunden gibt die Präsentation Antworten auf die typischen Fragen von Restauratoren und Kunstwissenschaftlern: Wie gefährdet ist das Kunstwerk, welche Technologien hat der Künstler verwandt um bestimmte ästhetische Eindrücke zu erlangen, gibt es Anzeichen für eine Kopie anstelle des Originals?

Keywords: art objects; non-destructive analysis; ion-beam analysis; glass; porcelain; metal; painting

  • Lecture (others)
    Gastvorlesung, 24.02.2009, HfBK Dresden, BRD

Permalink: https://www.hzdr.de/publications/Publ-12794
Publ.-Id: 12794


ELNES study of chemical solution deposited SrO(SrTiO3)(n) Ruddlesden-Popper films: Experiment and simulation

Riedl, T.; Gemming, T.; Weissbach, T.; Seifert, G.; Gutmann, E.; Zschornak, M.; Meyer, D. C.; Gemming, S.

This article analyzes electron energy-loss near-edge fine structures of the SrO(SrTiO3)n=1 Ruddlesden-Popper system and of the parent compounds SrTiO3 and SrO by comparison with calculations. For that, the fine structures have been experimentally recorded of Ruddlesden-Popper films deposited by the sol-gel method. Moreover, extensive density-functional theory (FPLO code) a computations have been performed. It is shown that the appearance and shape of the experimental O-K and Ti-L2,3 fine structure features result from the crystallography-dependent electronic structure of the investigated oxides, which display technologically interesting dielectric as well as lattice-structural properties.

Keywords: Ruddlesden-Popper phases; oxides; functional oxides; functional material; DFT; EELS

Permalink: https://www.hzdr.de/publications/Publ-12793
Publ.-Id: 12793


High-Resolution Depth Profiling of thin high-k layers by means of HRBS

Vieluf, M.; Grötzschel, R.; Neelmeijer, C.; Kosmata, M.; Teichert, S.

The increasing interest in new high-k materials in MOS technology enforces the development of new analytical techniques to characterize the depth dependent elemental composition in ultrathin layers of such materials. The well established methods of ion beam materials analysis (IBA) as Rutherford Backscattering Spectrometry (RBS) and Elastic Recoil Spectrometry (ERDA) can also provide depth profiles of elements and isotopes with subnanometer depth resolution. These techniques base upon the binary elastic nuclear scattering with well known cross sections and are therefore absolutely quantitative and standard-free. The high energy resolution necessary for high depth resolution is achieved using magnetic spectrometers.
We have installed a magnetic spectrometer of the Browne-Buechner-type at the 3 MV Tandetron accelerator of the FZD, which can provide a wide variety of MeV ions both for RBS and for ERDA. To minimise deterioration of the layers due to electronic sputtering during the measurements we implemented a multi-pad position sensitive detector (PSD) in the experimental setup to increase the solid angle and reduce the measurement time. This type of detector gives also the information needed for kinematical corrections. In this poster we describe the high-resolution spectrometer with the improved detector system and show the recent results.

Keywords: RBS Rutherford Backscattering Spectrometry; HR-RBS High Resolution Rutherford Backscattering Spectrometry; Dielectrica; High-k Materials; Sub-Nanometer

  • Poster
    72. Jahrestagung der DPG und DPG Frühjahrstagung des Arbeitskreises Festkörperphysik mit anderen Fachverbänden und den Arbeitskreisen der DPG, 26.02.2008, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12792
Publ.-Id: 12792


Dichtefunktional-Studie zu Domänengrenzen in BiFeO3

Gemming, S.; Lubk, A.; Lichte, H.; Spaldin, N. A.

Domain boundaries in ferroic materials deviate from the bulk in both the structural and electronic properties. Their presence in the material influences the total energy of the system, the band structure and the magnetic and electric polarization. We report on a Density Functional Theory (DFT) approach within the Local Density Approximation on domain boundaries in multiferroic BiFeO3 (space group: R3c). Our model systems consist of the experimentally observed 71deg, 109deg and 180deg domain walls. The calculations were performed within the DFT software VASP, incorporating standard pseudopotentials and a plane wave basis set. A complete electronic and ionic relaxation of the model structures has been performed to yield details of the charge and structure modulation at the boundary including the deformation of the Fe-centered oxygen octahedron, the formation of electric dipole layers leading to a jump in the electrostatic potential, band gap narrowing and a domain wall dependent modification of the small ferromagnetic effect present in BiFeO3.

Keywords: bismuth ferrite; multiferroic; ferroic; DFT

  • Lecture (Conference)
    17. Jahrestagung der Deutschen Gesellschaft für Kristallographie, 09.-12.02.2009, Hannover, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12791
Publ.-Id: 12791


First principle calculations of domain boundaries in multiferroic BiFeO3

Lubk, A.; Spaldin, N.; Gemming, S.; Lichte, H.

Domain boundaries in ferroic materials deviate from the bulk in both the structural and electronic properties. Their presence in the material influences the total energy of the system, the band structure and the magnetic and electric polarization. We report on a Density Functional Theory (DFT) approach within the Local Density Approximation on domain boundaries in multiferroic BiFeO3 (space group: R3c). Our model systems consist of the experimentally observed 71 degree, 109 degree and 180 degree domain walls. The calculations were performed within the DFT software VASP, incorporating standard pseudopotentials and a plane wave basis set. A complete electronic and ionic relaxation of the model structures has been performed to yield details of the charge and structure modulation at the boundary including the deformation of the Fe-centered oxygen octahedron, the formation of electric dipole layers leading to a jump in the electrostatic potential, band gap narrowing and a domain wall dependent modification of the small ferromagnetic effect present in BiFeO3.

Keywords: bismuth ferrite; multiferroic; ferroic; DFT

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12790
Publ.-Id: 12790


DFT-study of the adsorption of organic molecules on low-index titanium dioxide surfaces

Luschtinetz, R.; Enyashin, A. N.; Milek, T.; Frenzel, J.; Gemming, S.; Seifert, G.

The adsorption of small (bio-)organic molecules on clean, low-index TiO2 surfaces has been investigated by density-functional based tightbinding calculations with the goal to rationalise the propensity of such molecules to self-assemble into row-like structures or two-dimensionally ordered patches. The systems studied range from phosphonic acids to the nucleotide cytidin monophosphate adsorbed on TiO2 anatase(101) and rutile(110) surfaces. We studied the geometries and adsorption energies of several adsorption models and obtain several possible adsorption structures that can be present on the specific TiO2 surfaces with comparable probability. For the pure phosphonic acids the preferable coordination is exclusively bidentate with similar adsorption energies but several different geometries. Monodentate and tridentate arrangements have significantly smaller adsorption energies and tend to relax towards the bidentate coordination. Despite the different steric situation, cytidin monophosphate exhibits exactly the same trends as phosphonic acids with bidentate coordination via a combination of oxo, alkoxy and hydroxyl groups.

Keywords: self-assembly; SAM; TiO2; rutile; anatase; surface; DFT; calculation

  • Poster
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12789
Publ.-Id: 12789


A structure-induced metal-insulator transition in thin MoS nanowires

Popov, I.; Seifert, G.; Gemming, S.

Transition metal chalcohalides MX2 can form a wealth of diverse nanostructures, which range from large octahedral and fullerene-like hollow clusters and cylindrical nanotubes close to the nominal composition M:X = 1:2 to smaller, two-dimensional platelet-shaped clusters under sulfur excess and to one-dimensionally elongated nanowires under sulfur-deficient conditions. All of those structures exhibit specific electronic properties that differ from the ones of the pure bulk and open up a large application spectrum, that includes the lubricant aspect, but extends to catalysis and electronic transport. One-dimensionally delocalized electronic states provide the basis for the higher activity, reactivity and conductivity in such nanostructures. One-dimensional MX wires are composed of a central metallic wire coated by a sulfur and/or halide shell. They exhibit a very high structural regularity, hence, ballistic conductivity may be obtained in such structures. DFT calculations showed that wires can act as electromechanical switches, because they undergo a symmetry-dependent metal-insulator transition upon twisting [Nano Lett.,10.1021/nl801456f; Nano Lett., 2008, 8, 3928-3931].

Keywords: molybdenum sulfide; conduction; conductivity; nanowire; ballistic

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12788
Publ.-Id: 12788


Structural and DFT studies on YFeMnO5

Weißbach, T.; Lubk, A.; Leisegang, T.; Führlich, T.; Wunderlich, F.; Souptel, D.; Behr, G.; Chaplygin, I.; Seifert, G.; Meyer, D. C.; Gemming, S.

Ferromagnetic and ferroelectric oxides of composition REMn2O5 have become known for exhibiting a coupling between those properties. On substitution of Fe in YMn2−xFexO5, the crystal structure is conserved, but the magnetic structure changes and the ferroelectricity disappears. X-ray diffraction measurements on a series of powders with different Fe content were employed to inspect the crystal structure whereas extended X-ray absorption fine structure measurements were done to identify the iron substitution site. Density functional theory calculations of the electronic structure for YMnFeO5 were carried out using the experimentally determined crystal structure data and the FPLO-5 program. Different magnetic structures are studied to determine the type of interaction between the magnetic ions.

Keywords: ferroic oxides; multiferroics; yttrium manganese iron oxide

  • Poster
    Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2009, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12787
Publ.-Id: 12787


Design of a neutrally buoyant self-powered multi-parameter sensor for data logging in flow applications

Thiele, S.; Schöne, S.; Voigt, F.; Da Silva, M. J.; Hampel, U.

In many industrial processes the measurement and monitoring of process parameters is hampered by limited access to the process itself. This is especially true for large vessels, such as large size tanks, reactors, fermenters, etc. State of the art instrumentation is commonly applied locally and spatially resolved parameter measurement is either not feasible or too expensive. For the measurement of process parameters in a stirred fermentation biogas reactor we developed the concept of neutrally buoyant self-powered sensor particles. The prototype sensor performs logging of temperature, absolute pressure and 3D-acceleration data using appropriate commercial miniature sensors, a low power microcontroller and associated EEPROM modules integrated in a robust capsule which gives a balance between buoyancy and gravitation with respect to the liquid process substrate. In an initial test of the developed prototype its autonomous operation has been successfully proved showing feasibility for future application in a biogas reactor.

Keywords: autonomous sensing; multi-parameter logging; neutrally buoyant sensor particle

  • Lecture (Conference)
    IEEE SENSORS 2009 Conference, 25.-28.10.2009, Christchurch, New Zealand
  • Contribution to proceedings
    IEEE Sensors 2009 Conference, 25.-28.10.2009, Christchurch, New Zealand
    IEEE Sensors 2009 Conference, Sensors 2009, 978-1-4244-5335-1

Permalink: https://www.hzdr.de/publications/Publ-12786
Publ.-Id: 12786


Electronic properties of defects in SrTiO3 - theory and experiments

Weißbach, T.; Riedl, T.; Gemming, T.; Gemming, S.; Zschornak, M.; Gutmann, E.; Stöcker, H.; Leisegang, T.; Meyer, D. C.

SrTiO3 is a commercially available wafer material e.g. for the integration of oxide superconductors or microwave filter applications. The electric properties of SrTiO3 are routinely modified by doping with additional elements such as Nb. A targeted defect engineering may, however, achieve similar or superior results, while remaining in the ternary system (Sr,Ti,O), i.e. without the need for extrinsic doping. Material characterization methods able to distinguish such defects in particular are needed. In the present study we combine all-electron first-principles calculations with electron energy loss and X-ray absorption spectroscopy to study the electronic properties of SrTiO3-related oxygen deficient compounds. In particular, such changes of the SrTiO3 core-level spectra are studied, which occur if O vacancies accumulate in SrTiO3, or if excess SrO(001) planes are inserted to form Ruddlesden-Popper-type compounds.

Keywords: Ruddlesden-Popper phases; EELS; DFT; SrTiO3; strontium titanate

  • Lecture (Conference)
    DPG-Frühjahrstagung, 22.-27.03.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12785
Publ.-Id: 12785


Nanoscale Magnetic Lithography on FeAl alloys by ion irradiation and nanoindentation

Sort, J.; Menendez, E.; Varea, A.; Pi, F.; Surinach, S.; Baro, M. D.; Nogues, J.

Nanoindentation and local ion irradiation (i.e., focused ion beam or broad beam irradiation through shadow masks, such as alumina templates or PMMA masks) are shown to be effective methods to generate periodic arrays of sub-micron ferromagnetic dots at the surface of paramagnetic Fe60Al40 alloys (both in the form of sheets and thin films). The fabricated entities exhibit a variety of magnetic properties depending on their size and shape. Remarkably, in some cases, the magnetic anisotropy of the dots is oriented perpendicular to the film plane. Furthermore, the ferromagnetic properties of the patterned structures can be removed by annealing at sufficiently high temperatures, thus evidencing the reversible character of this novel magnetic lithography procedure.

Keywords: magnetism; ion irradiation; binary alloy; ordering; nanoscale; patterning

  • Invited lecture (Conferences)
    ICAM International Conference on Advanced Materials, 20.-25.09.2009, Rio de Janeiro, Brasilien

Permalink: https://www.hzdr.de/publications/Publ-12784
Publ.-Id: 12784


Modelling electronic and transport properties in ferroic devices

Gemming, S.

In nanostructured materials spatial confinement effects lead to structure-dependent modifications of the bulk transport properties. In part, such modifications can be accounted for by a classical master equation approach for the transport of the different charge carrier species. The rather large quantity of parameters, which enter such an approach, can more or less easily be adjusted to the dimensional characteristics and the electronic settings of the system as well as to temperature effects. On the other hand, a microscopically more detailed and mostly parameter-free picture is obtained from a quantum-mechanical treatment on the basis of the density-functional theory. An extension by a Green's function formalism allows the determination and analysis of electronic transport through contacted nanostructures. Examples will be given to demonstrate the applicability of the different approaches for dissipative and hopping transport through a regular array of nanostructures, for a mechanically triggered metal-insulator transition in nanowires, and for the enhanced conductivity at multiferroic domain walls.

Keywords: bismuth ferrite; molybdenum sulfide; transport; hopping; ballistic; shuttling

  • Invited lecture (Conferences)
    Fraunhofer IWM - Seminarreihe zur Materialforschung, 13.02.2009, Freiburg, Brsg., Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12783
Publ.-Id: 12783


Unusual transport phenomena in nanostructured materials

Gemming, S.

In nanostructured materials spatial confinement effects lead to structure-dependent modifications of the bulk transport properties. In part, such modifications can be accounted for by a classical master equation approach for the transport of the different charge carrier species. The rather large quantity of parameters, which enter such an approach, can more or less easily be adjusted to the dimensional characteristics and the electronic settings of the system as well as to temperature effects. On the other hand, a microscopically more detailed and mostly parameter-free picture is obtained from a quantum-mechanical treatment on the basis of the density-functional theory. An extension by a Green's function formalism allows the determination and analysis of electronic transport through contacted nanostructures. Examples will be given to demonstrate the applicability of the different approaches for dissipative and hopping transport through a regular array of nanostructures, for a mechanically triggered metal-insulator transition in nanowires, and for the enhanced conductivity at multiferroic domain walls.

Keywords: transport; bismuth ferrite; molybdenum sulfide; hopping; shuttling

  • Invited lecture (Conferences)
    nanoSeminar, 05.02.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12782
Publ.-Id: 12782


Designing miniature wires for small-scale electronics

Popov, I.; Seifert, G.; Gemming, S.

The last few decades have seen an amazing miniaturization of silicon microelectronics, to the extent that modern transistors are approaching quantum limits. Further miniaturization requires novel materials with a well-defined atomic structure that allows information to be processed and stored with a small and uniform number of charge carriers. Nanostructured materials have attracted the attention of researchers because they promise both improved processing and energy efficiency.

Keywords: nanowires; molybdenum sulfide; electronic transport

Permalink: https://www.hzdr.de/publications/Publ-12781
Publ.-Id: 12781


Quantitative analysis of corroded coins with four non-destructive X-ray methods

Wolff, T.; Denker, A.; Hahn, O.; Merchel, S.; Radtke, M.; Reinholz, U.

To check the general quality of our analytical results, we started an intercomparison between four more or less common non-destructive X-ray based methods:

• low energy particle induced X-ray emission with protons of 2 MeV (PIXE)
• high energy particle induced X-ray emission with protons of 68 MeV (HE-PIXE)
• X-ray fluorescence with a portable device (µ-XRF)
• synchrotron-induced X-ray fluorescence (SY-XRF)
As test objects we selected six Roman coins with corrosion layers of different occurrence. Each coin was analyzed at three locations: original surface, surface with fully removed and partially removed corrosion layer, respectively.
We used two different external beam set-ups for PIXE: A “classical” one at a 2 MV tandem accelerator (BAM) and a high-energy one at the Helmholtz-Zentrum Berlin. The low-energy proton beam was extracted into air through a thin polyimide window (8 µm thick) and focused by a magnetic quadrupole doublet followed by a carbon aperture (Ø=0.7 mm). X-rays were energy dispersively measured by a Si(Li) detector [1]. There are some advantages in using higher energy protons [2] over low-energy ones: The protons can penetrate more deeply the material and the excitation probability for K-lines of heavy elements is bigger, resulting in better detection limits for those elements. At our set-up the beam is extracted into air via a thin Kapton foil and the X-ray signals are collected by a HPGe (resolution: 180 eV at 5.9 keV). Measurement times were 200 s. The data evaluation was done using the Guelph PIXE software GUPIX.
SY-XRF was performed at the hard X-ray beamline BAMline at BESSY. We analysed the Roman coins by our typical set-up [3]: A Si(111) Double-Crystal-Monochromator (DCM), and a W/Si Double-Multilayer-Monochromator (DMM) were used to produce a monochromatic X-ray beam of 32 keV. Signals were collected by a Si(Li) detector.
Last but not least, a mobile XRF-device equipped with a Mo-X-ray tube (30 W) and a polycapillary (spot size: 70 µm) was used to check to which extent a method that could in principal analyse objects in the field or in the collections can keep up with the three stationary (and more expensive) methods.
The four different methods produced tolerable to horrendous differences of quantitative results. Some discrepancies can be e.g. explained by variations of the analysed volume. For instance, a possible inhomogeneity of the sample will differently influence analytical results, if one changes the spot-size and penetration depth. The influence of the corrosion layer on the obtained concentrations also depends on the analytical depth of each method. Quantification procedures for each method should be adapted to these effects.
References: [1] I. Reiche et al., X-Ray Spectrom. 34 (2005) 42. [2] A. Denker et al., X-Ray Spectrom. 34 (2005) 376. [3] H. Riesemeier et al., X-Ray Spectrom. 34 (2005) 160.

Keywords: PIXE; SY-XRF; µ-XRF; intercomparison

  • Poster
    19th International Conference on Ion Beam Analysis, 07.-11.09.2009, Cambridge, UK

Permalink: https://www.hzdr.de/publications/Publ-12780
Publ.-Id: 12780


The QQDS magnetic spectrometer “Little John” for High Resolution Depth Profiling

Kosmata, M.; Grötzschel, R.; Hanf, D.; Munnik, F.; Akhmadaliev, C.; Vieluf, M.; Möller, W.

The aim of the modified magnetic spectrometer “Little John” [1] is to measure concentration profiles of light elements in thin layers with sub-nanometer depth resolution by Elastic Recoil Detection Analysis (ERDA). For these measurements heavy ions from the Rossendorf 5-MV-Tandem accelerator are directed to the sample. The ejected recoil atoms are detected and energy analysed under forward angles. The depth resolution depends directly on the energy resolution of the spectrometer. High energy resolutions can be obtained using magnetic particle spectrometers, where the energy measurement is transformed into a position measurement at the focal plane.
The depth scale is provided by the stopping power of energetic heavy ions moving in matter, the available data of which assume a dynamic charge state equilibrium due to electron loss and capture along the ion trajectory. In the case of ultrathin layers the path length of the particles are too short to achieve this equilibrium. Since magnetic spectrometers separate particles with identical energy but different charge states it is necessary to consider charge state dependent stopping cross sections for quantitative data analysis. Here only very few data are available in the literature.
In this work we introduce an experimental setup at “Little John” for charge state distribution measurements of light heavy ions and present first results.

References: [1] H.J. Gils, J. Buschmann, S. Zagromski, J. Krisch and H. Rebel, Nucl. Instr. and Meth. A276 (1989), p. 151.
.

Keywords: magnetic spectrometer; thin layers; high depth resolution; ERDA; elastic recoil detection; charge state distribution; charge state dependent stopping cross section; Little John; QQDS

  • Lecture (Conference)
    Workshop Ionenstrahlphysik, 06.-08.04.2009, Jena, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12779
Publ.-Id: 12779


The French accelerator mass spectrometry facility ASTER: Improved performance and developments

Arnold, M.; Merchel, S.; Bourlès, D. L.; Braucher, R.; Benedetti, L.; Finkel, R. C.; Aumaître, G.; Gottdang, A.; Klein, M.

A new 5 MV tandem accelerator has been installed at the Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE). The machine is fully dedicated to accelerator mass spectrometry (AMS) in applied research like environmental and Earth sciences. For 10Be and 36Cl the troublesome isobar suppression is maintained by nuclear charge dependent energy loss in an absorber foil, subsequent energy selection by a 35° electrostatic deflector followed by a 30° vertical magnet, and final separation of the rare isotope in a high-resolution, 4-anode (ΔE1, ΔE2, ΔE3, E-final) gas ionisation chamber [1].

Since the acceptance test in March 2007, we have successfully established routine measurement conditions for the long-lived cosmogenic radionuclides 10Be and 26Al. Using 9Be carrier derived in our laboratory from phenakite crystals originating from a deep mine, we determined a background-level as low as 1.5x10-16 (10Be/9Be) [2]. Considerable time has been spent to investigate reasons for variability of ion currents and background. We have performed cross-calibrations for 26Al and 41Ca and took part into international round-robin exercises of 10Be and 36Cl to establish quality assurance at ASTER. For 41Ca (extracted as CaF3 -) and 129I, background levels are in the range of 2x10-14. The original Cs-sputter ion source SO110 [3], that produced sample-to-sample cross-contamination at the ‰-level and unacceptable long-term memory effects for volatile elements as chlorine or iodine, had been continuously replaced by a number of newly developed versions enhancing the performance step by step. Under optimum conditions, i.e. using exclusively low-level standards (36Cl/Cl=1.4x10-13) for calibration and cathode material containing the lowest isobar (36S) concentrations, the 36Cl background can reach 3x10-16 (36Cl/35Cl). The total transmission varies from 2% for 36Cl with the post-stripping absorber foil to 38% for 26Al.

The main focus of applications of ASTER is on geological and environmental topics with the broad goal of using isotopic techniques to help understand the timing and rates of processes in the earth system. Work so far has included reconstruction of past climate, determination of the rate and timing of seismic activity, volcanic eruptions and rock falls.

References: [1] M.G. Klein et al., Nucl. Instr. and Meth. B 266 (2008) 1828. [2] S. Merchel et al., Nucl. Instr. and Meth. B 266 (2008) 4921. [3] M.G. Klein et al., Nucl. Instr. and Meth. B 249 (2006) 764.

Acknowledgments: This work was partially funded by CRONUS-EU (Marie-Curie Action, 6th FP #511927).

Keywords: accelerator mass spectrometry; AMS; terrestrial cosmogenic nuclides

  • Poster
    19th International Conference on Ion Beam Analysis, 07.-11.09.2009, Cambridge, UK

Permalink: https://www.hzdr.de/publications/Publ-12778
Publ.-Id: 12778


Bakterielle S-Layer als Strukturelemente für die Nanobiotechnologie

Raff, J.

Eine der großen Herausforderungen in den Nanowissenschaften ist die reproduzierbare und einfache Herstellung nanoskaliger Strukturen mit neuen Eigenschaften für technische Anwendungen. Hier kann die Biologie einen wichtigen Beitrag leisten. So besitzen 70% aller bekannten Bakterien und Archaeen parakristalline Zellwandschichten, so genannte S-Layer, als äußerste Zellwandkomponente. Diese nanoskaligen Proteingitter können sehr unterschiedliche Funktionen übernehmen wie zum Beispiel als Schutzschicht, sie können für die Formgebung notwendig sein, als Molekularsieb wirken oder aber als Ionen- und Molekülfalle dienen. Die intrinsische Eigenschaft der Proteinuntereinheiten als monomolekulare Schicht in Suspension, an Grenz- und zahlreichen Oberflächen zu assemblieren, machen diese Proteine äußerst interessant für die einfache Herstellung multifunktionaler Oberflächenbeschichtungen. Auf Grund der sehr guten Metall-bindenden Eigenschaften und der höhere Stabilität gegenüber chemischen Einflüssen sind die S-Layer verschiedener Uranabfallhaldenisolate besonders gut zur Herstellung stabiler metallischer und halbleitender Nanopartikel und Nanostrukturen geeignet. Der Vortrag gibt einen Überblick über die Möglichkeiten und Grenzen der technischen Anwendung bakterieller S-Layer-Proteine und stellt die aktuelle Arbeiten des Instituts für Radiochemie dazu vor.

Keywords: Nanobiotechnologie; S-Layer

  • Invited lecture (Conferences)
    Forschungsseminar, Institut für Physikalische Chemie, TU Dresden, 19.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12777
Publ.-Id: 12777


Enhanced dipole strength below particle threshold

Schwengner, R.

Dipole-strength functions up to the neutron-separation energies Sn of the N=50 isotones 88Sr, 89Y, 90Zr, and the even-mass Mo isotopes from 92Mo to 100Mo have been studied in photon-scattering experiments using the bremsstrahlung facility at the superconducting electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf.
To estimate the distribution of inelastic transitions from high-lying levels at high level density to low-lying levels, simulations of gamma-ray cascades were performed. On the basis of these simulations intensities of inelastic transitions were subtracted from the experimental intensity distributions, including the resolved peaks as well as a continuous part formed by unresolved transitions, and the intensities of elastic transitions to the ground state were corrected for their branching ratios. The photoabsorption cross sections obtained in this novel way are combined with (gamma,n) and (gamma,p) data and give detailed information about the dipole-strength functions in the energy range from about 4 MeV up to the giant dipole resonance (GDR). In all nuclides extra strength in excess to simple Lorentzian-like approximations of the tail of the GDR is found in the energy range from about 5 MeV up to about the respective particle thresholds. Calculations in the framework of the quasiparticle-random-phase approximation (QRPA) underestimate the dipole strength at low energy because they do not take into account the coupling of two-quasiparticle to multi-quasiparticle excitations. A new approach is presented that calculates the dipole strength for nuclei with shape fluctuations by combining the interacting boson model (IBA) with QRPA. Based on the slow shape dynamics and the fast dipole vibrations an Instantaneous Shape Sampling (ISS) is performed that describes the photoabsorption at a fixed shape with QRPA with probabilities given by IBA. The ISS-QRPA improves the description of the experimental photoabsorption cross sections.

Keywords: Nuclear structure; gamma-ray spectroscopy; bremsstrahlung; photon scattering; gamma-ray strength functions; photoabsorption cross section; quasiparticle-random-phase approximation; interacting boson model

  • Lecture (Conference)
    2nd Workshop on Level Density and Gamma Strength, 11.-15.05.2009, Oslo, Norwegen

Permalink: https://www.hzdr.de/publications/Publ-12776
Publ.-Id: 12776


Nanometrologie für die Nanoelektronik

Helm, M.

no abastract available

Keywords: Nanometrologie

  • Lecture (others)
    Cool Silicon, 06.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12775
Publ.-Id: 12775


The 4D Naimark dilated PT brachistochrone as 2D Hermitian brachistochrone

Günther, U.

After a brief exposition of the Naimark dilated PT brachistochrone [PRL 101, 230404 (2008)] evidence is provided that the dilation (doubling of the Hilbert space dimension) preserves the brachistochrone features of the model. The dilated PT brachistochrone in 4D-Hilbert space behaves as an effective Hermitian brachistochrone in the 2D subspace spanned by the 4D initial and final states.

Keywords: PT quantum mechanics; non-Hermitian Hamiltonian; Naimark dilation; quantum brachistochrone; dilation invariants

  • Invited lecture (Conferences)
    Analytic and algebraic methods V, 27.-28.05.2009, Prague, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-12774
Publ.-Id: 12774


Measurement of low-mass e+e- pair production in 1 and 2 AGeV C-C collisions with HADES

Sudol, M.; Agakishiev, G.; Agodi, C.; Balanda, A.; Bellia, G.; Belver, D.; Belyaev, A.; Bielcik, J.; Blanco, A.; Bortolotti, A.; Boyard, J. L.; Braun-Munzinger, P.; Cabanelas, P.; Chernenko, S.; Christ, T.; Coniglione, R.; Destefanis, M.; Diaz, J.; Dohrmann, F.; Duran, I.; Dybczak, A.; Eberl, T.; Fabietti, L.; Fateev, O.; Ferreira-Marques, R.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzon, J. A.; Gernhäuser, R.; Gil, A.; Gilardi, C.; Golubeva, M.; Gonzalez-Diaz, D.; Grosse, E.; Guber, F.; Heilmann, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Kanaki, K.; Karavicheva, T.; Kirschner, D.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kotte, R.; Kozuch, A.; Krasa, A.; Krizek, F.; Krücken, R.; Kühn, W.; Kugler, A.; Kurepin, A.; Lamas-Valverde, J.; Lang, S.; Lange, J. S.; Lapidus, K.; Lopes, L.; Lorenz, M.; Maier, L.; Maiolino, C.; Mangiarotti, A.; Marin, J.; Markert, J.; Metag, V.; Michalska, B.; Michel, D.; Moriniere, E.; Mousa, J.; Münch, M.; Müntz, C.; Naumann, L.; Novotny, R.; Otwinowski, J.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Piatelli, P.; Pietraszko, J.; Pospisil, V.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Roy-Stephan, M.; Rustamov, A.; Sadovsky, A.; Sailer, B.; Salabura, P.; Sapienza, P.; Schmah, A.; Schröder, C.; Schwab, E.; Simon, R.; Smolyankin, V.; Sobolev, Y. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Wagner, V.; Weber, M.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Zhou, P.; Zumbruch, P.

HADES is a secondary generation experiment operated at GSI Darmstadt with the main goal to study dielectron production in proton, pion and heavy ion induced reactions. The first part of the HADES mission is to reinvestigate the puzzling pair excess measured by the DLS collaboration in C+C and Ca+Ca collisions at 1A GeV. For this purpose dedicated measurements with the C+C system at 1 and 2 A GeV were performed. The pair excess above a cocktail of free hadronic decays has been extracted and compared to the one measured by DLS. Furthermore, the excess is confronted with predictions of various model calculations.

Permalink: https://www.hzdr.de/publications/Publ-12773
Publ.-Id: 12773


Mid-frequency deposition of a-C:H films using five different precursors

Peter, S.; Günther, M.; Hauschild, D.; Grambole, D.; Richter, F.

The plasma enhanced chemical vapour deposition of amorphous hydrogenated carbon films from pulsed discharges with frequencies in the range from 50 kHz to 250 kHz was investigated. A Pinnacle Plus+ generator (Advanced Energy Ind., Inc.) was used to power the discharges in the so called mid-frequency range. Five different hydrocarbons (acetylene C2H2, 2-methylpropene/isobutylene C4H8, cyclopentene C5H8, toluene C7H8 and cycolheptatriene C7H8) were probed as film growth precursors. The a-C:H films deposited in a parallel plate reactor were characterised for their thickness/deposition rate (profilometer), hardness (nanoindentation with Berkovich indentor) and hydrogen content (nuclear reaction analysis, NRA). The measurement of neutral reaction products in the gas phase was performed with quadrupole mass spectrometry. The formation of stable, higher molecular hydrocarbons, that means cyclic ring compounds and polyacetylenes, was detected in all precursor plasmas. The hydrogen concentration in the films varied between 20 atomic-% and 37 atomic-%. It is roughly in inverse proportion to the hardness. The film with the highest hardness of 25 GPa was formed at a deposition rate of 0.8 µm/h in the C2H2 discharge at the lowest investigated pressure of 2 Pa. With increasing molecular mass of the precursor mostly weaker films were deposited. Relatively high values of both deposition rate and hardness were achieved using the precursor isobutylene: a hardness of 21 GPa combined with a deposition rate of 4.1 µm/h. But, as an over-all trend the a-C:H hardness decreases with increasing deposition rate.

  • Lecture (Conference)
    4-th Symposium on Vacuum based Science and Technology in conjunction with 8-th Annual Meeting of German Vacuum Society (DVG), 21.-23.09.2009, Koszalin- Kołobrzeg, Poland

Permalink: https://www.hzdr.de/publications/Publ-12772
Publ.-Id: 12772


Studies on multigap resistive plate chamber prototypes for the new NeuLAND detector at the R3B experiment at FAIR

Elvers, M.; Aumann, T.; Bemmerer, D.; Boretzky, K.; Endres, J.; Hehner, J.; Heil, M.; Kratz, J. V.; Prokopowicz, W.; Reifarth, R.; Rossi, D.; Schrieder, G.; Stach, D.; Wagner, A.; Yakorev, D.; Zilges, A.

The NeuLAND detector is part of the R3B experiment at FAIR and will detect neutrons between 0.2 and 1 GeV. The high energy neutrons are converted to charged particles, mainly protons, which are detected by Multigap Resistive Plate Chambers (MRPC). For the detector, a time resolution of σt < 100 ps and a position resolution of σx,y,z ≈ 1 cm is required for given flight paths in the range from 10 to 35 m. An active area of 2 × 2 m2 of the neutron detector at a distance of 12.5 m to the target will match the angular acceptance of ±80 mrad for the neutrons defined by the gap of the superconducting dipole magnet. The salient features of the prototypes will be described, as well as electrical measurements and studies with cosmic rays.

Keywords: MRPC; NeuLAND; R3B; Multigap resistive plate chambers; neutron detector; cosmic rays

  • Lecture (Conference)
    Frühjahrstagung des DPG - Fachverbands Hadronen und Kerne and European Nuclear Phyisics Conference (EuNPC), 16.-20.03.2009, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12771
Publ.-Id: 12771


Timing measurements at ELBE on multigap resistive plate chamber prototypes for NeuLAND

Yakorev, D.; Aumann, T.; Bemmerer, D.; Boretzky, K.; Cowan, T.; Elvers, M.; Hehner, J.; Heil, M.; Kratz, J. V.; Prokopowicz, W.; Reifarth, R.; Rossi, D.; Schrieder, G.; Stach, D.; Wagner, A.; Zilges, A.

The NeuLAND detector for fast neutrons (0.2-1\,GeV) at the R3B experiment at FAIR aims for high time and spatial resolutions ($\sigma_{\rm t}$$<$100\,ps, $\sigma_{\rm x,y,z}$$<$1\,cm). The detector will consist of about 60 sequences of a stacked structure from iron converter material and multigap resistive plate chambers (MRPC's). The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPC's, with excellent timing properties. As part of the ongoing development of the NeuLAND detector, MRPC prototypes designed for this application have been studied at the superconducting electron linac ELBE in Dresden with its picosecond time structure. The ELBE experiments show that the prototypes studied so far have efficiency $\geq$90\% for minimum ionizing particles in a 2x2 gap structure and fulfill the called for time resolution. --- Supported by BMBF (06DR134I) and GSI (FuE DR-GROS).

Keywords: MRPC; NeuLAND; R3B; multigap resistive plate chamber; ELBE

  • Lecture (Conference)
    Frühjahrstagung des DPG - Fachverbands Hadronen und Kerne and European Nuclear Phyisics Conference (EuNPC), 16.-20.03.2009, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12770
Publ.-Id: 12770


MRPC prototyping for NeuLAND

Bemmerer, D.; Heidel, K.; Kempe, M.; Sobiella, M.; Stach, D.; Wagner, A.; Yakorev, D.; Boretzky, K.; Caesar, C.; Hehner, J.; Heil, M.; Schrieder, G.; Prokopowicz, W.; Elvers, M.; Zilges, A.; Datta Pramanik, U.

I review the status of the prototyping effort for multigap resistive plate chamber (MRPC) based neutron detectors for the NeuLAND detector at FAIR. Several MRPC prototypes have been built at FZD Dresden and at GSI Darmstadt. They have been tested using the picosecond time structure of the ELBE electron beam facility at FZD Dresden, Germany. All detectors display the called for time resolution of sigma < 100 ps at > 90% efficiency for 30 MeV electrons. The cross-talk issue is still under investigation. Preliminary data obtained using the new single-electron mode of operation at ELBE are also shown here.

Keywords: MRPC; NeuLAND; R3B; FAIR; neutron; multigap resistive plate chamber; large area neutron detector

  • Lecture (Conference)
    R3B collaboration meeting on technical issues, 27.-30.04.2009, Darmstadt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12769
Publ.-Id: 12769


Grain size control in Al-Si Alloys by grain refinement and electromagnetic stirring

Metan, V.; Eigenfeld, K.; Räbiger, D.; Leonhardt, M.; Eckert, S.

The present study concerns the directional solidification of grain-refined and non-refined AlSi7 alloys under the influence of a travelling magnetic field (TMF). Upwards and downwards travelling fields have been applied to provide a forced convection within the solidifying melt. The formation of a fine equiaxed structure is favoured by both the addition of grain refining AlTi5B1-particles and electromagnetic stirring as well, whereas the addition of grain refiners into the melt appears to be more efficient for achieving a reduction of the mean grain size. A minimum grain size has been observed of the electromagnetic agitation of a grain-refined alloy. A melt stirring by a sufficiently high magnetic field provides a homogeneous grain size distribution in the sample volume, but, gives rise to the formation of segregation zones.

Keywords: Al-Si alloy; Directional solidification; Grain refinement; Electromagnetic stirring; Travelling magnetic field (TMF); Grain size

  • Journal of Alloys and Compounds 487(2009)1-2, 163-172

Permalink: https://www.hzdr.de/publications/Publ-12768
Publ.-Id: 12768


Magnetfelder kontrollieren Erstarrungsprozesse bei Metalllegierungen

Eckert, S.; Schue, A.

In der Arbeitsgruppe Magnetohydrodynamik am Forschungszentrum Dresden-Rossendorf (FZD) werden die komplexen Wechselwirkungen zwischen elektrisch leitfähigen Flüssigkeiten und magnetischen Feldern untersucht, um Strömungsverhalten und Erstarrungsprozesse flüssiger Metalllegierungen kontrolliert zu steuern. Ziel sind optimierte Produktionsprozesse für die Gießereitechnik. Zur Analyse der metallischen Mikrogefüge setzen die Wissenschaftler ein automatisiertes System aus High-end-Mikroskop und PowerMosaic-Bildaufnahme ein, das große Probenoberflächen in hochaufgelösten Einzelbildern abrastert und ein präzises Gesamtbild für quantitative Auswertungen liefert.

Keywords: metal alloys; solidification; electromagnetic stirring; microstructure

  • Giesserei-Praxis 4(2009), 135-138

Permalink: https://www.hzdr.de/publications/Publ-12767
Publ.-Id: 12767


Some recent developments in the field of liquid metal measuring techniques and instrumentation

Eckert, S.; Buchenau, D.; Gerbeth, G.; Stefani, F.; Weiss, F.-P.

Liquid metal cooling or liquid metal targets belong to innovative reactor concepts such as the sodium cooled fast breeder reactor or the lead-bismuth target in a transmutation system. The safe and reliable operation of liquid metal systems requires corresponding measuring systems and control units, both for the liquid metal single-phase flow as well as for gas bubble liquid metal two-phase flows. We report on some recent developments in this field.
Integral flow rate measurements are an important issue. We describe two new, fully contactless electromagnetic solutions and related test measurements at available sodium and lead loops. One of the sensors is of particular interest since its operation does not depend on the electrical conductivity of the liquid metal, hence it is independent on the melt temperature.
A development of the past decade is the local velocity measurement by application of the Ultrasound Doppler Velocimetry (UDV). It provides the velocity profile along the ultrasonic beam, and has the capability to work even through some channel wall. We report on measurements in liquid sodium at 150°C. For higher temperatures, an integrated ultrasonic sensor with an acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200°C. This sensor can presently be applied at maximum temperatures up to 700°C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZD as well as at the THESYS loop of the KALLA laboratory of Forschungszentrum Karlsruhe, Germany (FZK). We will present experimental results obtained in a PbBi bubbly flow at 250...300°C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. At the THESYS loop of FZK, stable velocity profiles were measured in a round tube of diameter 60 mm during a period of about 72 hours at temperatures between 180°C and 350°C.
Further, we report on the development of a contactless magnetic tomography of the mean flow in liquid metals. This method gives the full three-dimensional mean velocity distribution in a liquid metal volume. Results from a laboratory demonstration experiment will be presented.

Keywords: liquid metal cooled reactors; electromagnetic flow meter; ultrasound Doppler velocimetry; magnetic flow tomography

  • Lecture (Conference)
    International Conference on Fast Reactors and Related Fuel Cycles (FR09), 07.-11.12.2009, Kyoto, Japan
  • Contribution to proceedings
    International Conference on Fast Reactors and Related Fuel Cycles (FR09), 07.-11.12.2009, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-12766
Publ.-Id: 12766


Bremsstrahlung and related items

Kämpfer, B.

Bremsstrahlung and related items

  • Invited lecture (Conferences)
    RNM Workshop, 14.05.2009, Darmstadt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12765
Publ.-Id: 12765


A differentiation of the affinity of uranium(VI) to phosphate and carboxylic groups in native phosvitin studied by ATR FT-IR spectroscopy

Li, B.; Raff, J.; Bernhard, G.; Foerstendorf, H.

The toxicity of the uranium to the living organisms is because of its heavy metal characteristic. Proteins, the fundamental component of all living cells and the key to their metabolism, undergo conformational changes upon the heavy metal complexation, thus loss their proper cellular function. In this study, phosvitin, a highly water soluble 34 kDa protein containing roughly 35 phosphate groups and 29 carboxylic residues1, is chosen as an ideal model system for the spectroscopic investigation of the interaction of U(VI) with proteins allowing the differentiation between the U(VI)-phosphate and U(VI)-carboxylic complexation. For this purpose, two different U(VI) concentrations (10−4 M and 10−5 M) are set up at pH 4 with various amounts of phosvitin to acquire complexes with different U(VI)/phosphate group ratios. The aqueous solutions were investigated by ATR FT-IR spectroscopy. For the very first time, soluble protein U(VI) complexes are achieved in aqueous solution providing spectral evidence for U(VI) complexation by the unequivocal identification of the νas(UO22+) mode. The spectra of the soluble complex show that at a low U(VI)/phosphate ratio (1:10.2) U(VI) preferentially binds to the phosphate groups. Interestingly, the νas(UO22+) mode is found at 905 cm−1 which is bathochromic shifted about 60 cm−1 compared to the free uranyl ion2 reflecting a strong coordination to several phosphate groups. With increasing U(VI)/phosphate ratio, U(VI) complexation to carboxylic groups is observed by a hypsochromic shift of the νas(UO22+) mode and characteristic bands of the νs(COO−) and νas(COO−) modes. At a higher U(VI)/phosphate ratio (10:1), complexation between U(VI) and carboxylic groups becomes dominant. From the observed frequency of this mode (925 cm−1) a typical bidental complexation to U(VI) by carboxylic group can be assumed3. In order to reduce the impact of the carboxylic groups on the U(VI) binding, phosvitin is modified using EDC. After subsequent incubation with 10−3 M U(VI) in aqueous solution at pH 4, the obtained IR spectra of the precipitated U(VI)-protein complex confirm this assumption.

Keywords: Phosvitin; U(VI); ATR FT-IR; phosphate groups; carboxylic groups

  • Poster
    European Conference on the Spectroscopy of Biological Molecules 2009, 28.08.-02.09.2009, Palermo, Italy

Permalink: https://www.hzdr.de/publications/Publ-12764
Publ.-Id: 12764


Single Pt/Co(0.5 nm)/Pt Nano-discs: Beyond the Coherent Spin Reversal Model and thermal stability

Adam, J.-P.; Rohart, S.; Jamet, J.-P.; Mougin, A.; Ferre, J.; Bernas, H.; Faini, G.; Fassbender, J.

The dynamics of the magnetization reversal in single Pt/Co(0.5 nm)/Pt nano-discs with diameter 130 nm, fabricated by an He+ ion irradiation is investigated. They exhibit a very narrow distribution of small switching fields and a perpendicular magnetic anisotropy. In spite of the small involved magnetic volume, their dynamics cannot be interpreted within the usual Néel-Braun prediction developed and verified for uniform spin reversal in spherical nano-particles. Non-coherent magnetization reversal proceeds here by fast nucleation at nanodot borders and rather slow wall motion towards their center. Dynamics are perfectly accounted from a refined confined droplet model, involving the wall energy rather than the anisotropy energy. In counterpart, the blocking temperature for these nanodiscs is well described by the Néel-Braun model.

Keywords: magnetism; ion irradiation; switching field; magnetic anisotropy; dynamics; Neel model

  • Journal of the Magnetics Society of Japan (JSMJ) 33(2009), 498

Permalink: https://www.hzdr.de/publications/Publ-12763
Publ.-Id: 12763


Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta

Brunner, E.; Ehrlich, H.; Schupp, P.; Hedrich, R.; Hunoldt, S.; Kammer, M.; Machill, S.; Paasch, S.; Bazhenov, V. V.; Kurek, D. V.; Arnold, T.; Brockmann, S.; Ruhnow, M.; Born, R.

The skeleton of demosponges such as Ianthella basta is known to be a composite material formed from organic constituents, mostly collagenous proteins (spongin). Here, we show for the first time that a filigree, chitin-based scaffold is an integral constituent of the skeleton of I. basta. These chitin-based scaffolds can be isolated from the sponge skeletons using an extraction and purification technique based on the treatment with alkaline solutions. Solidstate 13C NMR, Raman, and FTIR spectroscopy as well as chitinase digestion reveal that the extracted material indeed consists of chitin. The morphology of the extracted material has been determined by light and electron microscopy. It consists of cross-linked chitin fibers of ca. 40 – 100 nm diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. For the first time, solidstate 13C NMR spectroscopy is used to characterize chitin from the skeleton of a marine sponge on a molecular level. The 13C NMR signals of the chitin-based scaffolds are relatively broad indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction shows that the scaffolds extracted from I. basta are indeed lowly crystalline and consist of loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of alpha-chitin than beta-chitin.

Keywords: Sponges; chitin; skeleton; solid-state NMR spectroscopy; optical spectroscopy; X-ray diffraction

  • Journal of Structural Biology 168(2009)3, 539-547

Permalink: https://www.hzdr.de/publications/Publ-12762
Publ.-Id: 12762


Sorption of Th(IV) onto Iron Corrosion Products: EXAFS Study

Seco, F.; Hennig, C.; de Pablo, J.; Rovira, M.; Rojo, I.; Marti, V.; Gimenez, J.; Duro, L.; Grive, M.; Bruno, J.

Long-term performance assessment of nuclear waste repositories is affected by the ability of the outer barrier systems to retain radionuclides after possible corrosive leakage of waste containers. The mobility of the radionuclides released from the spent fuel depends strongly on the processes that take place in the backfill material. The interaction of steel corrosion products and radionuclides is part of such a scenario. In this work, the sorption of Th(IV) onto 2-line-ferrihydrite (FeOOH center dot H2O) and magnetite (Fe3O4), used as models for steel corrosion products, has been studied using EXAFS spectroscopy. Sorption samples were prepared in 0.1 M NaClO4 solutions at acidic pH (initial pH values in the range 3.0-4.2) either from undersaturation and supersaturation conditions with respect to amorphous ThO2. Two oxygen subshells, one at 2.37 angstrom and another at 2.54 angstrom, were observed in the first hydration sphere of Th in the case of the ferrihydrite samples.
Th-Fe distances for the different ferrihydrite samples are similar to 3.60 angstrom. These results indicate a corner sharing surface complex of Th(IV) ion onto the ferrihydrite surface where the Th atom shares one 0 atom with each of two coordinated octahedra. The longer Th-O distance accounts for coordinated water molecules. No significant changes in the structural environment of Th in terms of coordination numbers and distances were detected as a function of Th(IV) concentration. Magnetite samples sorbing Th(IV) also showed also a strong distortion of the 0 shell, but in contrast to ferrihydrite, two types of nearest Fe atoms were detected at 3.50 angstrom and 3.70 angstrom. These results indicate that Th(IV) ion sorbs onto the magnetite surface as bidentate-corner sharing arrangements to [FeO6] octahedra and [FeO4] tetrahedra.

Permalink: https://www.hzdr.de/publications/Publ-12761
Publ.-Id: 12761


Nukleare Endlager - was die Radiochemie dazu beiträgt

Nebelung, C.

Die prinzipiellen Lagerungsmöglichkeiten für radioaktiven Abfall wurden mit den in Deutschland vorhandenen Lagern verglichen. Stand und Planung der möglichen Endlager wurde erläutert. Es wurden die technischen Anforderungen an ein sicheres Endlager beschrieben um Sicherheit für Mensch und Umwelt zu gewährleisten. Wichtige Prozesse der Schadstoffausbreitung wie Rückhaltung (Sorption, Ausfällung, Kristalleinbau), Mobilisierung (Anlagerung an Kolloide, Bildung stabiler in Wasser gelöster Verbindungen, Auflösung) und Diffusion durch Festgestein wurden beschrieben. Ausgewählte Arbeiten aus dem Institut für Endlager in Salz, Ton und Granit wurden vorgestellt, sowie die Möglichkeiten der Sorptionsdatenbank RES3T.

Keywords: Nukleare Endlager; Sicherheitsanforderungen; Zwischenlager Ahaus; Endlager Konrad; Endlager Gorleben; Sorption; Ausfällung; Salzton; Salzbeton; Kaolinit; Bentonit; Granit; Sorptionsdatenbank; Sorptionsmodellierung

  • Lecture (others)
    Tag des offenen Labors 2009, 09.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12760
Publ.-Id: 12760


Microstructure at the water lipid protein interface controls conformational switching mechanisms in the conserved D(E)RY motif of G-protein coupled receptors

Eichler, S.; Madathil, S.; Fahmy, K.

G-Protein coupled receptors (GPCRs) play a fundamental role in many physiological processes due to their ability to switch between different structures upon activation. The prototypical GPCR rhodopsin serves as a model to study molecular switching mechanisms. Upon photoisomerization of the chromophore retinal, protonation of a glutamic acid (Glu 134) in the highly conserved D(E)RY motif at the cytosolic end of transmembrane helix 3 (TM3) leads to breakage of an ionic lock which stabilizes the inactive state [1]. Due to the low dielectricity of the lipidic environment, side chain charges and their neutralization contribute to the energetics of conformational transitions much more than in a purely aqueous environment. Our aim is to elucidate the functional implication of lipid protein interactions and microstructure at the water lipid protein interface in controlling protein conformation. We have studied synthetic peptides derived from rhodopsin TM3 by fluorescence spectroscopy at different pH in a hydrophobic environment. In [2] pH dependency of FRET between Trp at the cytosolic side of a TM3-derived peptide and DANSYL-PE was used as a monitor for helix motion. The observed pH dependency argues for stabilization of the protonated state by lipid protein interactions. In addition, we studied a TM3-derived peptide with a Trp probe shifted into the hydrophobic region. This peptide showed a red-shifted emission maximum of Trp, indicative of water accessibility. Moreover, at low pH the red-shift was less pronounced supporting the hypothesis that the neutralized Glu134 repels water and in general provides a pH-regulated hydration site. We conclude that microstructure at the water lipid protein interface and lipid protein interaction play a key role in the switching mechanism of GPCRs. The predominance of these local interactions which are not strictly dependent on intramolecular contacts to specific amino acids reconciles the highly conserved proton uptake at the D(E)RY motif in GPCR activation on the one hand and the diverse ligand specificity of class-A GPCRs on the other hand.
References
[1] J. A. Ballesteros, A. D. Jensen, G. Liapakis, S. G.F. Rasmussen, L. Shi, U. Gether, J. A. Javitch, J. Biol. Chem. 276, 29171-29177 (2001)
[2] S. Madathil, G. Furlinski, K.Fahmy, Biopolymers 82, 329-333 (2006).

Keywords: G-protein coupled receptor; GPCR; D(E)RY motif; lipid protein interaction; water lipid protein interface

  • Poster
    XIII European Conference on the Spectroscopy of Biological Molecules, 28.08.-02.09.2009, Palermo, Italia

Permalink: https://www.hzdr.de/publications/Publ-12759
Publ.-Id: 12759


Inferring parameters of the geodynamo from temporal reversal characteristics

Stefani, F.; Fischer, M.; Gerbeth, G.; Giesecke, A.

One of the most prominent features of Earth's magnetic field reversals is their asymmetric shape which includes a slow decay of the initial dipole and a fast recreation of the reversed dipole. This relaxation-oscillation-like behaviour can result from a simple mean-field dynamo model in its highly supercritical regime. The same model can also explain the deviation of paleomagnetic reversal sequences from Poisson statistics, as well as the stochastic resonance phenomenon with the Milankovitch cycle of the Earth's orbit eccentricity. Encouraged by this agreement, we utilize those three temporal reversal characteristics to constrain the most essential parameters of the geodynamo, among them the effective (turbulent) magnetic diffusivity, the degree of supercriticality, and the relative strength of the periodic forcing. Using a downhill simplex method we obtain an optimized dynamo model that yields reversal characteristics which are in surprising correspondence with paleomagnetic data.

  • Lecture (others)
    Natural Dynamos, 30.08.-05.09.2009, Stara Lesna, Slovakia
  • Open Access Logo Abstract in refereed journal
    Contributions to Geophysics and Geodesy 39(2009), 31-31
    ISSN: 1335-2806

Permalink: https://www.hzdr.de/publications/Publ-12758
Publ.-Id: 12758


Liquid metal experiments on the magnetorotational instability in a Taylor-Couette flow

Stefani, F.; Gerbeth, G.; Gundrum, T.; Hollerbach, R.; Priede, J.; Rüdiger, G.; Szklarski, J.

The magnetorotational instability (MRI) is known to play a key role in the formation of stars and black holes by triggering turbulence in hydrodynamically stable Keplerian accretion discs. As discussed recently, it might also play a role in the angular momentum transport in the Earth's outer core. We report the experimental demonstration of this instability in a Taylor-Couette flow under the influence of a helical magnetic field. Special focus is laid on a new version of this experiment in which the Ekman pumping is strongly reduced by using split end-caps.

  • Lecture (Conference)
    Natural dynamos, 30.08.-05.09.2009, Stara Lesna, Slovakia
  • Open Access Logo Abstract in refereed journal
    Contributions to Geophysics and Geodesy 39(2009), 90-90
    ISSN: 1335-2806

Permalink: https://www.hzdr.de/publications/Publ-12757
Publ.-Id: 12757


Experiments on the helical magnetorotational instability in a Taylor-Couette flow with reduced Ekman pumping

Gundrum, T.; Gerbeth, G.; Stefani, F.; Hollerbach, R.; Priede, J.; Rüdiger, G.; Szklarski, J.

The magnetorotational instability (MRI) is believed to play a key role in the formation of stars and black holes by triggering turbulence in hydrodynamically stable Keplerian accretion discs. Although the MRI had been discovered by Velikhov as early as 1959, its key role for the understanding of accretion disks was revealed only in 1991 by Balbus and Hawley. While thousands of papers have been written on the astrophysical relevance of MRI since that time, experimental work on MRI is still rare.
In 2004, Sisan et al. had observed a new coupled mode of velocity and magnetic field perturbations in a spherical Couette flow, whose parameter dependencies resemble those of the MRI. However, the background flow in this experiment was already fully turbulent so that the original goal to investigate MRI as the first instability on an otherwise stable flow could not be met. Another MRI experiment, on the basis of a short Taylor-Couette flow, is presently pursued at Princeton University.
Both experiments are carried out with a purely axial magnetic field being applied. In this standard MRI (SMRI) configuration, the governing parameters for the onset of the instability are the magnetic Reynolds number and the Lundquist number. Surprisingly, by adding an azimuthal magnetic field to the axial magnetic field, the governing role is taken over by the hydrodynamic Reynolds number and the Hartmann number. Consequently, this helical MRI (HMRI) can be observed with much less experimental effort than the SMRI.
In previous experiments at the facility PROMISE (Potsdam ROssendorf Magnetic InStability Experiment), the HMRI was observed in a liquid metal Taylor-Couette flow at moderate Reynolds and Hartmann numbers. However, the observation of this HMRI was disrupted by a significant Ekman pumping driven by solid end-caps that confined the instability only to a part of the Taylor-Couette cell. We present the observation of the HMRI in an improved Taylor-Couette setup in which the Ekman pumping is strongly reduced by using split end-caps. The HMRI wave, which now spreads over the whole height of the cell, appears much sharper and in better agreement with numerical predictions. By analyzing various parameter dependencies we conclude that the observed HMRI represents a self-sustained global instability rather than a noise-sustained convective one.

  • Lecture (Conference)
    16th Couette-Taylor Workshop, 09.-11.09.2009, Princeton, USA

Permalink: https://www.hzdr.de/publications/Publ-12756
Publ.-Id: 12756


Generation of axisymmetric modes in cylindrical kinematic mean-field dynamos of VKS type

Giesecke, A.; Nore, C.; Plunian, F.; Laguerre, R.; Ribeiro, A.; Stefani, F.; Gerbeth, G.; Leorat, J.; Guermond, J.-L.

In an attempt to understand why the dominating magnetic field observed in the von-K\'arm\'an-Sodium (VKS) dynamo experiment is axisymmetric, we investigate in the present paper the ability of mean field models to generate axisymmetric eigenmodes in cylindrical geometries. An $\alpha$-effect is added to the induction equation and we identify reasonable and necessary properties of the $\alpha$ distribution so that axisymmetric eigenmodes are generated. The parametric study is done with two different simulation codes. We find that simple distributions of $\alpha$-effect, either concentrated in the disk neighbourhood or occupying the bulk of the flow, require unrealistically large values of the parameter $\alpha$ to explain the VKS observations.

Keywords: Dynamo experiments; Induction equation; Kinematic simulations; alpha-effect

Permalink: https://www.hzdr.de/publications/Publ-12755
Publ.-Id: 12755


Innovative Experimente an der TOPFLOW Versuchsanlage zur Verfikation und Validierung von CFD Codes

Lucas, D.; Hampel, U.; Beyer, M.; Weiß, F.-P.

There is an increasing interest to apply beside system codes also Computational Fluid Dynamics (CFD) codes for special analyses related to Nuclear Reactor Safety (NRS). Presently CFD codes are frequently used in practical applications for single phase flows, e.g. in automobile or aviation industries. Also in nuclear reactor research CFD codes are successfully applied single phase flows, e.g. for problems related to boron mixing in the primary circuit of Pressure Water Reactors. On the other hand two-phase flow simulations using CFD codes are not yet mature due to the complex interactions between the phases. Examples are poly-dispersed bubbly flows which require a multi bubble size modelling or models for separated flows in horizontal or near horizontal channels which are characterized by large interfaces. For two-phase CFD codes additional closure models are needed to describe mass, momentum and energy transfer between the phases. Such models should consider only local flow parameters, i.e. correlations available for system codes cannot be transferred in general for the use in CFD codes. Instead closure models have to be developed and validated basing on new experimental data with high resolution in space and time. Due to the independency of CFD codes on the geometry and scale it is not necessary to do such experiments in real geometries, but the local flow conditions should be similar the ones expected in praxis. TOPFLOW is a unique thermal hydraulic test facility for such two-phase flow studies. Experiments can be carried out for air-water or steam-water two phase flows at pressures up to 7 MPa. For steam production up to 4 MW heating power are available. This allows to conduct experiments at condition which are close to the nuclear application. On the other hand local data characterizing the micro- or meso-scale structure of the flow are required. For this reason unique measurement devices, such as high-pressure wire-mesh sensors and fast X-ray tomography are applied in TOPFLOW experiments. They provide CFD like data, which means data in high resolution in space and time. The TOPFLOW facility was used for different types of flow experiments in vertical test sections and a large pressure chamber. New experimental setups are currently under preparation. The paper gives a general overview on the experiments done at the facility and their importance for CFD model development and validation for two-phase flows. This is illustrated in detail on the example of poly-dispersed bubbly flows. In addition examples for experimental data useful for the CFD code qualification in case of stratified flows are given. Finally the complex flow situation in case two-phase Pressurized Thermal Shock (PTS) is discussed.

Keywords: two-phase flow; bubble; pipe flow; CCFL; experiment; CFD; wire-mseh sensor; X-ray tomography

  • Invited lecture (Conferences)
    Jahrestagung Kerntechnik 2009, 12.-14.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12754
Publ.-Id: 12754


Innovative experiments at the Rossendorf TOPFLOW facility for verification and validation of two-phase flow CFD Codes

Lucas, D.; Hampel, U.; Beyer, M.; Vallée, C.; Weiß, F.-P.

For special analyses related to Nuclear Reactor Safety (NRS), there is an increasing interest to apply beside system codes also Computational Fluid Dynamics (CFD) codes. Presently CFD codes are frequently used in practical applications for single phase flows, e.g. in automobile or aviation industries. Also in the field of nuclear safety research CFD codes are successfully applied to single phase flows, e.g. for problems related to boron mixing in the primary circuit of Pressure Water Reactors. On the other hand two-phase flow simulations using CFD codes are not yet mature due to the complex interactions between the phases. Examples are poly-dispersed bubbly flows which require a multi bubble size modelling or models for separated flows in horizontal or near horizontal channels which are characterized by large interfaces. For two-phase CFD codes, additional closure models are needed to describe mass, momentum and energy transfer between the phases. Such models should consider only local flow parameters, i.e. correlations available for system codes cannot be transferred in general for the use in CFD codes. Instead, closure models have to be developed and validated basing on new experimental data with high resolution in space and time. Due to the independency of CFD codes on the geometry and scale, it is not necessary to do such experiments in real geometries, but the local flow conditions should be similar the ones expected in praxis. TOPFLOW is a unique thermal hydraulic test facility for such two-phase flow studies. Experiments can be carried out for air-water or steam-water two-phase flows at a pressure up to 7 MPa. For steam production, up to 4 MW heating power are available. This allows to conduct experiments at conditions close to the nuclear application. On the other hand, local data characterizing the micro- or meso-scale structure of the flow are required. For this reason unique measurement devices, such as high-pressure wire-mesh sensors and fast X-ray tomography are applied in TOPFLOW experiments. They provide CFD like data, which means data in high resolution in space and time. The TOPFLOW facility was used for different types of experiments in vertical test sections and in a large pressure chamber. New experimental setups are currently under preparation. The paper gives a general overview on the experiments done at the facility and their importance for CFD model development and validation for two-phase flows. This is illustrated in detail on the example of poly-dispersed bubbly flows. In addition, examples for experimental data useful for the CFD code qualification in case of stratified flows are given.

Keywords: two-phase flow; bubble; pipe flow; CCFL; experiment; CFD; wire-mseh sensor; X-ray tomography

  • Contribution to proceedings
    Jahrestagung Kerntechnik, 12.-14.05.2009, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12753
Publ.-Id: 12753


Untersuchungen zur Fluoreszenz von Lactat bei Raumtemperatur und tiefen Temperaturen

Wimmer, C.; Arnold, T.; Großmann, K.

Die Fluoreszenzeigenschaften einer 0,1 M Lactatlösung wurden bei Raumtemperatur und im gefrorenen Zustand bei 200, 100, und 10 K bei einer Anregungswellenlänge von 266 nm durch Kopplung der zeitaufgelösten Laser-induzierten Fluoreszenzspektroskopie (TRLFS) mit einem Kryostatensystem untersucht. Bei Raumtemperatur konnte keine Fluoreszenz nachgewiesen werde. Allerdings war es mit abnehmender Temperatur möglich eine stark zunehmende Fluoreszenzintensität und -lebensdauer zu detektiert. Es konnte ein Intensitätsmaximum bei 472 ± 2 nm und bei 10 K eine Lebensdauer von 6737,5 ± 1,6 ns ermittelt werden.

Keywords: fluorescence lifetime; lactate; laser-induced fluorescence spectroscopy

  • Chemie Ingenieur Technik 81(2009)4, 501-504
    DOI: 10.1002

Permalink: https://www.hzdr.de/publications/Publ-12752
Publ.-Id: 12752


Quality assurance in accelerator mass spectrometry: Results from international round-robin exercises for 10Be and 36Cl

Merchel, S.; Bremser, W.

Driven by the overall progress in the field of accelerator mass spectrometry (AMS) and its spreading application within the geosciences, measurements of increasing numbers of samples with low isotopic ratios of 10Be/9Be and 36Cl/Cl will be required in the future. In order to check the quality of measurements at low 10Be concentrations, we have examined the linearity of 10Be/9Be as a function of isotope ratio. For this purpose we have prepared small quantities of three secondary standards and distributed these to nine AMS laboratories. Ratios can be calculated relative to the diluted NIST SRM 4325 after taking account of the 10Be contribution of the 9Be carrier (10Be/9Be=(1.24±0.23)x10-14) @ ASTER, Gif, VERA). As the initial 10Be/9Be of the primary standard is under discussion, results of the secondary standards (~3x10-12/-13/-14) will be discussed relatively to the primary standard ratio only.
The problem of low ratio samples is even more crucial for 36Cl due to the high volatility of chlorine. Thus, we have prepared large quantities of three 36Cl/Cl solutions from a certified 36Cl activity (NIST SRM 4943) by step-wise dilution with NaCl (MERCK CertiPUR®, Cl traceable to NIST SRM 999a). AgCl precipitated from these solutions has been distributed to nine AMS laboratories. Calculated 36Cl/Cl ratios are 1x10-11/-12/-13.
Results for each nuclide show that these interlaboratory exercises are very valuable, as they show maximum differences between individual AMS labs up to 35% for 10Be, and 25% for 25Cl, respectively. Possible reasons for these discrepancies are standard-like materials in use for calibration and cross-contamination in the ion sputter source. A full statistical data evaluation is in preparation and might help to identify more clearly error sources at individual AMS facilities. Thus, we are taking a step forward on the long way of improving quality assurance systems in the AMS community.
Acknowledgments: This round-robin could not have taken place without the interest and team effort of the participating AMS laboratories, as there are: Laboratory for Ion Beam Physics/ETH Zurich, PRIME Lab/Purdue University, The Australian National University/Canberra, CAMS/Lawrence Livermore National Laboratory, Scottish Universities Environmental Research Centre/East Kilbride, Centro Nacional de Aceleradores/University of Seville, University of Tsukuba/Ibaraki, Vienna Environmental Research Accelerator/Universität Wien. This work was partially funded by CRONUS-EU (Marie-Curie Action, 6th FP #511927).

Keywords: AMS; QM; cosmogenic nuclides; reference materials

  • Lecture (Conference)
    19th International Conference on Ion Beam Analysis, 07.-11.09.2009, Cambridge, UK

Permalink: https://www.hzdr.de/publications/Publ-12751
Publ.-Id: 12751


Glaciation history of Queen Maud Land (Antarctica) using in situ produced cosmogenic 10Be, 26Al and 21Ne

Altmaier, M.; Herpers, U.; Delisle, G.; Merchel, S.; Ott, U.

We have determined exposure ages of more than 50 quartz rich samples primarily from the Wohlthat Massiv / Queen Maud Land, Antarctica, via in situ produced 10Be (T1/2 = 1.51 Ma) and 26Al (T1/2 = 0.7 Ma) using accelerator mass spectrometry (AMS). Measured radionuclide concentrations vary from extremely low values up to saturation. For a scenario with extremely low erosion and minimal tectonic uplift 10Be and 26Al surface exposure ages are generally in good agreement. Long exposure ages up to >8 Ma were confirmed by measurement of stable 21Ne using noble gas mass spectrometry.
Our data call for a decisively higher ice stand in the Wohlthat Massiv / Queen Maud Land about 0.3 Ma ago, the ice level being 200 400 m higher than today. The following successive reduction of the glaciation down to the present level was essentially completed 0.1 Ma ago. Low level changes during the last glacial maximum occurred about 0.02 Ma ago and did affect only a region located close to the present shelf ice. As the extremely low erosion rates (<5 cm Ma-1) inferred for several samples can only exist under extremely cold and hyperarid conditions, we exclude a scenario featuring a prolonged period with warm and humid climatic conditions within the last 8 Ma.

Keywords: Antarctica; Queen Maud Land; landscape evolution; glaciation history; cosmogenic nuclides; AMS

Permalink: https://www.hzdr.de/publications/Publ-12750
Publ.-Id: 12750


Thermal design feasibility of Th-233U PWR breeder

Fridman, E.; Volaski, D.; Shwageraus, E.

This study explores the basic thermal-hydraulic feasibility of a self-sustainable Th-U233 fuel cycle that can be adopted in the current generation of Pressurized Water Reactors. In previous studies we explored some fuel design strategies to achieve (or to approach as closely as possible) a sustainable fuel cycle, including the use of heterogeneous seed-blanket fuel assembly design. Preliminary neutronic analysis suggested that net breeding of U233 is feasible in principle within a typical PWR operating envelope. However considerable core design tradeoffs such as a reduction of core power density would be necessary to achieve such performance. The purpose of this work is to establish the maximum achievable power density for breeding core by evaluation of limiting thermal hydraulic parameters.

  • Contribution to proceedings
    GLOBAL 2009, 06.-11.09.2009, Paris, France
    Thermal design feasibility of Th-233U PWR breeder
  • Lecture (Conference)
    GLOBAL 2009, 06.-11.09.2009, Paris, France

Permalink: https://www.hzdr.de/publications/Publ-12749
Publ.-Id: 12749


Laser-driven soft-X-ray undulator source

Fuchs, M.; Weingartner, R.; Popp, A.; Major, Z.; Becker, S.; Osterhoff, J.; Cortrie, I.; Hoerlein, R.; Tsakiris, G. D.; Schramm, U.; Rowlands-Rees, T. P.; Hooker, S. M.; Habs, D.; Krausz, F.; Karsch, S.; Gruener, F.

Synchrotrons and free-electron lasers (FELs) are the most powerful sources of Xray radiation. They constitute invaluable tools for a broad range of research in physics, biology, materials science, chemistry, and medicine. However, their dependence on large-scale radio-frequency electron accelerators restricted diversification of these X-ray sources to only several sites worldwide. Laser-driven plasma-wave accelerators provide dramatically increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The wellcollimated beams deliver soft-X-ray pulses with an expected pulse duration of ~10 fs, inferred from the physics of plasma-wave accelerators. Our source draws on a dedicated 30-cm-long undulator and a 1.5-cm-long accelerator delivering stable electron beams5 with energies of ~210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centered at a wavelength of ~18 nm (fundamental), a second peak near ~9nm (second harmonic) and a highenergy cutoff at ~7 nm. Magnetic quadrupole lenses ensure efficient electron beam transport and demonstrate an enabling technology for reproducible generation of tunable soft-X-ray undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of brilliant, ultrashort-pulsed X-ray sources becoming available in smallscale laboratories

Keywords: table top FEL; laser driven undulator radiation; EUV

Permalink: https://www.hzdr.de/publications/Publ-12748
Publ.-Id: 12748


Linear and Non-Linear Thomson-Scattering X-Ray Sources Driven by Conventionally and Laser Plasma Accelerated Electrons

Debus, A.; Bock, S.; Bussmann, M.; Cowan, T. E.; Jochmann, A.; Kluge, T.; Kraft, S. D.; Sauerbrey, R.; Zeil, K.; Schramm, U.

Compact tuneable sources of ultrashort hard x-ray pulses can be realized by Thomson scattering, taking advantage of the comparatively short wavelength of a scattered laser pulse with respect to the period length of conventional undulators. Here, we present a detailed analysis and optimization of the efficiency of linear and non-linear Thomson scattering when the process is driven with relativistic laser pulses and when the conventional accelerator is replaced by a laser-plasma wakefield accelerator.

Keywords: laser driven x-ray sources; Thomson scattering

  • Contribution to proceedings
    SPIE Europe, Optics and Optoelectronics, 21.-22.4.2009, Prag, Czech Republic
    Harnessing Relativistic Plasma Waves as Novel Radiation Sources from THz to X-rays and beyond, Bellingham, WA (USA): Proceedings of SPIE, 9780819476333, 735908-1-735908-12
  • Invited lecture (Conferences)
    SPIE Europe Optics and Optoelectronics, 21.-22.4.2009, Prag, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-12747
Publ.-Id: 12747


Measurement of hydrodynamic non-uniformities and their dynamics in porous particle packings using capacitance wire-mesh sensors

Schubert, M.; Schäfer, T.; Da Silva, M. J.; Thiele, S.; Hessel, G.; Kryk, H.; Hampel, U.

Despite intensive work in the past decades, hydrodynamics of the widely used trickle bed reactors are still on the focus of today’s research. There are a lot of questions and obstacles to be solved and simple but accurate and reliable measurement devices to be developed. In this study we present a new capacitance wire-mesh sensor system applied to a trickle bed reactor to investigate steady-state and dynamic hydrodynamic characteristics allowing to get new insights into the temporal and spatial behaviour of the trickle flow and pulse flow.

Keywords: capacitance wire-mesh sensor; trickle bed reactor; liquid distribution; liquid saturation; pulse characteristics; flow visualization

  • Poster
    9th International Conference on Gas-Liquid, Liquid-Solid, Gas-Liquid-Solid Reactor Engineering, GLS-9, 23.-27.08.2009, Montreal, Canada
  • Contribution to proceedings
    9th International Conference on Gas-Liquid, Liquid-Solid, Gas-Liquid-Solid Reactor Engineering, GLS-9, 23.-27.08.2009, Montreal, Canada
    Conference Proceedings of the 8th World Congress of Chemical Engineering

Permalink: https://www.hzdr.de/publications/Publ-12746
Publ.-Id: 12746


Hydrodynamic effects of inclination angle on co-current gas-liquid packed beds

Schubert, M.; Hamidipour, M.; Duchesne, C.; Larachi, F.

The incidence of inclination angle on the hydrodynamic behaviour of cocurrent gas-liquid flows through a packed bed is investigated experimentally in terms of liquid holdup, pressure gradient, and cross-wise and stream-wise gas-liquid segregation. Electrical capacitance tomography was applied for the analysis of the dynamic features of the two-phase flow as well as liquid saturation distribution. As a result of inclination angle, a segregated flow emerged in packed bed as a new flow regime intertwined between the trickle and the pulse flow regimes. Both segregated flow regime and pulse flow regimes were characterized and their relevant hydrodynamic features discussed.

Keywords: inclined bed; packed bed; hydrodynamics; pulse flow; segregated flow

  • Lecture (Conference)
    9th International Conference on Gas-Liquid, Liquid-Solid, Gas-Liquid-Solid Reactor Engineering, GLS-9, 23.-27.08.2009, Montreal, Canada
  • Contribution to proceedings
    9th International Conference on Gas-Liquid, Liquid-Solid, Gas-Liquid-Solid Reactor Engineering, GLS-9, 23.-27.08.2009, Montreal, Canada
    Conference Proceedings of the 8th World Congress of Chemical Engineering

Permalink: https://www.hzdr.de/publications/Publ-12745
Publ.-Id: 12745


Hydrodynamic studies in trickle bed reactors using wire mesh sensors

Schubert, M.; Da Silva, M. J.; Kryk, H.

Multiphase flows exist in many commercial areas such as the manufacture of petroleum-based products and fuels, the production of commodity and specialty chemicals, pharmaceuticals, production of polymers and pollution abatement. The trickle bed reactor (TBR) with a random packing operated in gas-liquid co-current downflow mode is the most widely used multiphase reactor in the chemical, biochemical and waste treatment industry.
There are several advantages of the downflow operation mode, including a wide operating range for gas/liquid flow rates, high capacities as well as high efficiencies. However, due to improper initial gas/liquid distributors, external bed porosity variations, wall effects, partial catalyst wetting and surface tension related effects, intricate problems arise which amongst others are non-uniformities in liquid distribution, liquid velocity and liquid holdup and their dynamics.
A new capacitance wire-mesh sensor for flow imaging is presented which succeeded in overcoming previous difficulties such as applicability for organic liquid flows in porous particle packings, velocity measurements, acquisition time etc. to explore dynamic hydrodynamic features in trickle bed reactors.

  • Lecture (Conference)
    Workshop on Multi-Phase Flows: Simulation, Experiment and Application, 26.-28.05.2009, Dresden, Deutschland
  • Contribution to proceedings
    Workshop on Multiphase Flows: Simulation, Experiment and Application, 26.-28.05.2009, Dresden, Deutschland
    Proceedings of "Multiphase Flows: Simulation, Experiment and Application"

Permalink: https://www.hzdr.de/publications/Publ-12744
Publ.-Id: 12744


Nicht-Newtonsche schäumende Flüssigkeiten in Rieselbettreaktoren – Hydrodynamische Charakterisierung und effiziente Schaumbegrenzung

Aydin, B.; Schubert, M.; Lange, R.; Larachi, F.

Hydrodynamische Studien in Rieselbettreaktoren unter erhöhten Drücken und Temperaturen beschäftigen sich hauptsächlich mit koaleszierenden, also nicht-schäumenden, Systemen. Obwohl in zahlreichen industriellen Prozessen schäumende Flüssigkeiten angewandt werden, ist keine aussagekräftige Datenbasis vorhanden. Für die verlässliche Auslegung und den sicheren Betrieb von Reaktoren wurden die Effekte von Temperatur und Druck auf die hydrodynamischen Kenngrößen für Newtonsche und nicht-Newtonsche schaumbildende Systeme untersucht. Außerdem wurde eine neue operative Methode entwickelt, bei der der Rieselbettreaktor alternierend zyklisch betrieben wird und die ohne die Dosierung von chemischen Zusätzen effektiv zur Begrenzung der Schaumbildung eingesetzt werden kann.

Permalink: https://www.hzdr.de/publications/Publ-12743
Publ.-Id: 12743


Rieselbettreaktoren unter Filtrationsbedingungen – Mechanismus der Ablagerung, Hydrodynamische Folgen, Methoden zur Begrenzung der Filterwirkung

Hamidipour, M.; Schubert, M.; Larachi, F.

Schüttungen in Rieselbettreaktoren wirken gegenüber Feinpartikeln als Filter. Sowohl in Festbettbioreaktoren als auch bei petrochemischen Anwendungen wird durch die reduzierte Permeabilität und die damit verbundenen Druckverluste die Wirtschaftlichkeit der Prozesse stark beeinträchtigt. Obwohl den Anwendern das Problem bewusst ist, sind die Kenntnisse zur Filterwirkung von Rieselbettreaktoren bisher nicht intensiv erforscht.
Die Mechanismen der Ablagerung und die Auswirkungen auf die Hydrodynamik wurden am Beispiel von Kaolin-Feinpartikeln, die ein dominierender Bestandteil in den nachgelagerten Behandlungsstufen bei der Verarbeitung von Athabasca-Ölsanden sind, untersucht. Zusätzlich werden effektive technische Lösungen und operative Methoden zur Begrenzung der Ablagerungen vorgestellt.

Permalink: https://www.hzdr.de/publications/Publ-12742
Publ.-Id: 12742


Rieselbettreaktoren unter künstlichem Schwerkrafteinfluss – Prinzip, Umsetzung, Auswirkung und Anwendung

Munteanu, M. C.; Schubert, M.; Larachi, F.

Die Anwendung von Magnetfeldern hat sich als vielversprechender Ansatz zur Beeinflussung von Gas/Flüssig-Strömungen erwiesen. Obwohl organische Flüssigkeiten gewöhnlich kein magnetisches Verhalten zeigen, kann durch starke Gradienten-Magnetfelder mittels supraleitender Magneten auch in katalytischen Mehrphasenreaktoren, wie zum Beispiel Rieselbettreaktoren, der Schwerkraft entgegengewirkt und damit die Strömung einer erdgebundenen Mikrogravitation ausgesetzt werden. Unter diesen Bedingungen können der Flüssigkeitsanteil in der Katalysatorschüttung und der Benetzungsgrad an der Katalysatoroberfläche effektiv beeinflusst und damit Stofftransport und Umsatz einer katalytischen Reaktion deutlich gesteigert werden.

Permalink: https://www.hzdr.de/publications/Publ-12741
Publ.-Id: 12741


Native aluminum: Does it exist?

Dekov, V. M.; Arnaudov, V.; Munnik, F.; Boycheva, T. B.; Fiore, S.

A number of papers reporting exotic native elements have been published within the last few decades. The "native" occurrences described are rather dubious in view of the lack of solid proof of their relationships with the host-rock minerals. Consequently, the genetic models proposed ranging from bio-reduction to the influence of deep-mantle, strongly-reduced fluids, are somewhat speculative. Here we present data for a unique Al0 flake protruding from the phlogopite matrix of a rock specimen collected from a desilicated pegmatite vein. The geologic setting suggests two processes that might have played a key role in the Al0 formation: (1) desilication of pegmatite, resulting in its Al residual enrichment; and (2) serpentinization of an ultramafic body, providing a strongly reduced front (H2 and hydrocarbons) towards the serpentinite/pegmatite contact. These processes have presumably led to the reduction of Al to Al0 at discrete sites of alumina-rich minerals.

Keywords: Native Al; serpentinization; desilication; reduction; pegmatite

Permalink: https://www.hzdr.de/publications/Publ-12740
Publ.-Id: 12740


Phase holdups in three-phase semi-fluidized beds and the generalized bubble wake model

Schubert, M.; Larachi, F.

A new experimental measurement methodology was proposed to characterize the hydrodynamics in gas-liquid-solid semi-fluidized beds. Using pressure drop measurements in the lower fluidized bed section and a tracer response technique in the upper fixed bed portion, the six phase holdup components of the reactor were determined simultaneously. Available models for macroscopic predictions of holdups, initially proposed for three-phase fluidization, were extended and their applicability was discussed concerning semi-fluidized beds. Special attention was paid to the parameters of the generalized bubble wake model and their predictability with an artificial neural network. Phenomenological observations identified an additional interface region between both beds, which, viewed as an inchoate freeboard region determines the mechanisms of attachment and release of particles from the fluidized bed to the fixed bed portion.

Keywords: gas-liquid-solid semi-fluidization; hydrodynamics; tracer response technique; bubble wake model

Permalink: https://www.hzdr.de/publications/Publ-12739
Publ.-Id: 12739


Two color pump-probe studies of intraminiband relaxation in doped GaAs/AlGaAs superlattices

Stehr, D.; Wagner, M.; Schneider, H.; Helm, M.; Andrews, A. M.; Roch, T.; Strasser, G.

In this work we investigate the miniband relaxation dynamics of electrons in doped GaAs/AlGaAs superlattices by two-color infrared pump-probe experiments using a free electron laser synchronized to a table top broadband IR source. In contrast to single color experiments, by this technique we are able to separate the different contributions from inter- and intraminiband relaxation to the transient behavior after an ultrafast excitation. In particular, the intraminiband relaxation is studied for different miniband widths, below and above the optical phonon energy of GaAs. For minibands wider than this critical value we find fast relaxation, nearly constant for different excitation intensities whereas for narrow minibands, a strong temperature and intensity dependence of the relaxation is found. The results are in good agreement with previously published Monte Carlo simulations.

Keywords: superlattice; intersubband; intrasubband; miniband; ultrafast spectroscopy; relaxation; two-color

  • Invited lecture (Conferences)
    SPIE Photonics West, 24.-29.01.2009, San Jose, CA, USA
  • Contribution to proceedings
    SPIE Photonics West, 24.-29.01.2009, San Jose, Ca, USA
    Two color pump-probe studies of intraminiband relaxation in doped GaAs/AlGaAs superlattices

Permalink: https://www.hzdr.de/publications/Publ-12738
Publ.-Id: 12738


Efficiency calibration of the ELBE nuclear resonance fluorescence setup using a proton beam.

Trompler, E.; Bemmerer, D.; Beyer, R.; Broggini, C.; Caciolli, A.; Erhard, M.; Fülöp, Z.; Grosse, E.; Gyürky, G.; Hannaske, R.; Junghans, A. R.; Marta, M.; Menegazzo, R.; Nair, C.; Schwengner, R.; Szücs, T.; Wagner, A.; Yakorev, D.

The nuclear resonance fluorescence (NRF) setup at ELBE uses bremsstrahlung with endpoint energies up to 20 MeV. The setup consists of four 100% high-purity germanium detectors, each surrounded by a BGO escape-suppression shield and a lead collimator. The detection efficiency up to E = 12 MeV has been determined using the proton beam from the FZD Tandetron and well-known resonances in the 11B(p,gamma)12C, 14N(p,gamma)15O, and 27Al(p,gamma)28Si reactions. The deduced efficiency curve allows to check efficiency curves calculated with GEANT. Future photon-scattering work can be carried out with improved precision at high energy. — This work has been supported in part by the European Union (FP6 AIM RITA 025646).

Keywords: ELBE; HPGe efficiency calibration; Tandetron

  • Lecture (Conference)
    Frühjahrstagung des DPG - Fachverbands Hadronen und Kerne and European Nuclear Phyisics Conference (EuNPC), 16.-20.03.2009, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12737
Publ.-Id: 12737


The 15N(p,gamma )16O reaction studied at LUNA.

Bemmerer, D.; Caciolli, A.; Bonetti, R.; Broggini, C.; Confortola, F.; Corvisiero, P.; Costantini, H.; Elekes, Z.; Formicola, A.; Fulop, Z.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyurky, G.; Junker, M.; Limata, B.; Marta, M.; Menegazzo, R.; Prati, P.; Roca, V.; Rolfs, C.; Alvarez, C. R.; Somorjai, E.; Straniero, O.

The 15N(p,gamma)16O reaction lies at the intersection of the first and second CNO cycle of hydrogen burning. Recent R-matrix extrapolations suggest that its cross section may be lower by about a factor two with respect to previous work. Here we show new, direct experimental data on this reaction obtained at the LUNA 400 kV accelerator deep underground in the Gran Sasso laboratory in Italy.

Keywords: Nuclear astrophysics; Nova burning; CNO cycle; gas target; BGO detector; LUNA

  • Poster
    Frühjahrstagung des DPG - Fachverbands Hadronen und Kerne and European Nuclear Phyisics Conference (EuNPC), 16.-20.03.2009, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-12736
Publ.-Id: 12736


Thermoelectromagnetic convection - an alternative stirring technique in metallurgy

Cramer, A.; Zhang, X.; Gerbeth, G.

Thermoelectromagnetic convection in electrically conducting cubic containers was studied experimentally. Two opposing side walls were cooled and heated, respectively, to produce a uniform temperature gradient. Inhomogeneous magnetic field distributions were achieved either with a small permanent magnet located above the melt layer, or with specifically shaped pole shoes of the magnetic system. Ultrasonic Doppler velocimetry measurements demonstrated that even a moderate temperature gradient may drive a distinct convection. Two different flow regimes were investigated with the permanent magnet. When it was positioned in the vicinity of an isothermal wall, with its direction of magnetization parallel to the temperature gradient, a single vortex spreading the whole container developed while the flow might be assessed as relatively stable. Moving the magnet to the center led to a modified distribution of the magnetic field, which altered the flow structure. The convective pattern changed to four vortices and the velocity fluctuations were intensified. A more generic case was realized with the pole shoes providing a gradient of the magnetic field only in one direction. Since the strength of the field could be raised significantly above that provided by the small permanent magnet and the area of impact onto the melt was larger, developed turbulent regimes were accomplished. Numerical results obtained for the Lorentz force and the rotor thereof support the experimental findings.

  • Contribution to proceedings
    International Symposium on Liquid Metal Processing and Casting, 20.-23.09.2009, Santa Fe, New Mexico, 978-0-87339-743-8
  • Lecture (Conference)
    International Symposium on Liquid Metal Processing and Casting, 20.-23.09.2009, Santa Fe, New Mexico

Permalink: https://www.hzdr.de/publications/Publ-12735
Publ.-Id: 12735


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.]