Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Switch on selection | Login

1 Publication
The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and alumosilicates studied by in situ vibrational spectroscopy
Müller, K.
The migration behavior of actinides and other radioactive contaminants in the environment is controlled by prominent molecular phenomena such as hydrolysis and complexation reactions in aqueous solutions as well as the diffusion and sorption onto minerals present along groundwater flow paths. These reactions significantly influence the mobility and bioavailability of the metal ions in the environment, in particular at liquid-solid interfaces.
Hence, for the assessment of migration processes the knowledge of the mechanisms occurring at interfaces is crucial. The required structural information can be obtained using various spectroscopic techniques.
In the present study, the speciation of uranium(VI) and neptunium(V) at environmentally relevant mineral – water interfaces of oxides of titania, alumina, silica, zinc, and alumosilicates has been investigated by the application of attenuated total reflection Fouriertransform infrared (ATR FT-IR) spectroscopy. Moreover, the distribution of the hydrolysis products in micromolar aqueous solutions of U(VI) and Np(V/VI) at ambient atmosphere has been characterized for the first time, by a combination of ATR FT-IR spectroscopy, near infrared (NIR) absorption spectroscopy, and speciation modeling applying updated thermodynamic databases.
From the infrared spectra, a significant change of the U(VI) speciation is derived upon lowering the U(VI) concentration from the milli- to the micromolar range, strongly suggesting the dominance of monomeric U(VI) hydrolysis products in the micromolar solutions. In contradiction to the predicted speciation, monomeric hydroxo species are already present at pH ≥ 2.5 and become dominant at pH 3. At higher pH levels (> 6), a complex speciation is evidenced including carbonate containing complexes.
For the first time, spectroscopic results of Np(VI) hydrolysis reactions are provided in the submillimolar concentration range and at pH values up to 5.3, and they are comparatively discussed with U(VI). For both actinides, the formation of similar species is suggested at pH ≤ 4, whereas at higher pH, the infrared spectra evidence structurally different species. At pH 5, the formation of a carbonate-containing dimeric complex, that is (NpO2)2CO3(OH)3^-, is strongly suggested, whereas carbonate complexation occurs only under more alkaline conditions in the U(VI) system.
The results from the experiments of the sorption processes clearly demonstrate the formation of stable U(VI) surface complexes at all investigated mineral phases. This includes several metal oxides, namely TiO2, Al2O3, and SiO2, serving as model systems for the elucidation of more complex mineral systems, and several alumosilicates, such as kaolinite, muscovite and biotite. From a multiplicity of in situ experiments, the impact of sorbent characteristics and variations in the aqueous U(VI) system on the sorption processes was considered.
A preferential formation of an inner-sphere complex is derived from the spectra of the TiO2 and SiO2 phases. In addition, since the in situ FT-IR experiments provide an online monitoring of the absorption changes of the sorption processes, the course of the formation of the U(VI) surface complexes can be observed spectroscopically. It is shown that after prolonged sorption time on TiO2, resulting in a highly covered surface, outer-sphere complexation predominates the sorption processes. The prevailing crystallographic modification, namely anatase and rutile, does not significantly contribute to the spectra, whereas surface specific parameters, e.g. surface area or porosity are important.
A significant different surface complexation is observed for Al2O3. The formation of innerspheric species is assumed at low U(VI) surface coverage which is fostered at low pH, high ionic strength and short contact times. At proceeded sorption the surface complexation changes. From the spectra, an outer-spheric coordination followed by surface precipitation or polymerization is deduced. Moreover, in contrast to TiO2, the appearance of ternary U(VI) carbonate complexes on the γ-Al2O3 surface is suggested.
The first results of the surface reactions on more complex, naturally occurring minerals (kaolinite, muscovite and biotite) show the formation of U(VI) inner-sphere sorption complexes. These findings are supported by the spectral information of the metal oxide surfaces.
In this work, first spectroscopic results from sorption of aqueous Np(V) on solid mineral phases are provided. It is shown that stable inner-sphere surface species of NpO2 ^+ are formed on TiO2. Outer-sphere complexation is found to play a minor role due to the pH independence of the sorption species throughout the pH range 4 – 7.6. The comparative spectroscopic experiments of Np(V) sorption onto TiO2, SiO2, and ZnO indicate structurally similar bidentate surface complexes.
The multiplicity of IR spectroscopic experiments carried out within this study yields a profound collection of spectroscopic data which will be used as references for future investigations of more complex sorption systems in aqueous solution. Furthermore, from a methodological point of view, this study comprehensively extends the application of ATR FT-IR spectroscopic experiments to a wide range in the field of radioecology.
The results obtained in this work contribute to a better understanding of the geochemical interactions of actinides, in particular U(VI) and Np(V/VI), in the environment. Consequently, more reliable predictions of actinides migration which are essential for the safety assessment of nuclear waste repositories can be performed.
  • Open Access LogoWissenschaftlich-Technische Berichte / Forschungszentrum Dresden-Rossendorf; FZD-535 2010
    ISSN: 1437-322X


Publ.-Id: 14401 - Permalink