Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Switch on selection | Login

1 Publication
Simulation studies for the in-vivo dose verification of particle therapy
Rohling, H.
Abstract: An increasing number of cancer patients is treated with proton beams or other light ion beams which allow to deliver dose precisely to the tumor. However, the depth dose distribution of these particles, which enables this precision, is sensitive to deviations from the treatment plan, as e.g. anatomical changes. Thus, to assure the quality of the treatment, a non-invasive in-vivo dose verification is highly desired. This monitoring of particle therapy relies on the detection of secondary radiation which is produced by interactions between the beam particles and the nuclei of the patient’s tissue.
Up to now, the only clinically applied method for in-vivo dosimetry is Positron Emission Tomography which makes use of the beta+-activity produced during the irradiation (PT-PET). Since from a PT-PET measurement the applied dose cannot be directly deduced, the simulated distribution of beta+-emitting nuclei is used as a basis for the analysis of the measured PT-PET data. Therefore, the reliable modeling of the production rates and the spatial distribution of the beta+-emitters is required. PT-PET applied during instead of after the treatment is referred to as in-beam PET. A challenge concerning in-beam PET is the design of the PET camera, because a standard full-ring scanner is not feasible. For instance, a double-head PET camera is applicable, but low count rates and the limited solid angle coverage can compromise the image quality. For this reason, a detector system which provides a time resolution allowing the incorporation of time-of-flight information (TOF) into the iterative reconstruction algorithm is desired to improve the quality of the reconstructed images.
Secondly, Prompt Gamma Imaging (PGI), a technique based on the detection of prompt gamma-rays, is currently pursued. Concerning the emissions of prompt gamma-rays during particle irradiation, experimental data is not sufficiently available, making simulations necessary. Compton cameras are based on the detection of incoherently scattered photons and are investigated with respect to PGI. Monte Carlo simulations serve for the optimization of the camera design and the evaluation of criteria for the selection of measured events.
Thus, for in-beam PET and PGI dedicated detection systems and, moreover, profound knowledge about the corresponding radiation fields are required. Using various simulation codes, this thesis contributes to the modelling of the beta+-emitters and photons produced during particle irradiation, as well as to the evaluation and optimization of hardware for both techniques.
Concerning the modeling of the production of the relevant beta+-emitters, the abilities of the Monte Carlo simulation code PHITS and of the deterministic, one-dimensional code HIBRAC were assessed. The Monte Carlo tool GEANT4 was applied for an additional comparison. For irradiations with protons, helium, lithium, and carbon, the depth-dependent yields of the simulated beta+-emitters were compared to experimental data. In general, PHITS underestimated the yields of the considered beta+-emitters in contrast to GEANT4 which provided acceptable values. HIBRAC was substantially extended to enable the modeling of the depth-dependent yields of specific nuclides. For proton beams and carbon ion beams HIBRAC can compete with GEANT4 for this application. Since HIBRAC is fast, compact, and easy to modify, it could be a basis for the simulations of the beta+-emitters in clinical application. PHITS was also applied to the modeling of prompt gamma-rays during proton irradiation following an experimental setup. From this study, it can be concluded that PHITS could be an alternative to GEANT4 in this context.
Another aim was the optimization of Compton camera prototypes. GEANT4 simulations were carried out with the focus on detection probabilities and the rate of valid events. Based on the results, the feasibility of a Compton camera setup consisting of a CZT detector and an LSO or BGO detector was confirmed. Several recommendations concerning the design and arrangement of the Compton camera prototype were derived. Furthermore, several promising event selection strategies were evaluated. The GEANT4 simulations were validated by comparing simulated to measured energy depositions in the detector layers. This comparison also led to the reconsideration of the efficiency of the prototype. A further study evaluated if electron-positron pairs resulting from pair productions could be detected with the existing prototype in addition to Compton events. Regarding the efficiency and the achievable angular resolution, the successful application of the considered prototype as pair production camera to the monitoring of particle therapy is questionable.
Finally, the application of a PET camera consisting of Resistive Plate Chambers (RPCs) providing a good time resolution to in-beam PET was discussed. A scintillator-based PET camera based on a commercially available scanner was used as reference. This evaluation included simulations of the detector response, the image reconstructions using various procedures, and the analysis of image quality. Realistic activity distributions based on real treatment plans for carbon ion therapy were used. The low efficiency of the RPC-based PET camera led to images of poor quality. Neither visually nor with the semi-automatic tool YaPET a reliable detectability of range deviations was possible. The incorporation of TOF into the iterative reconstruction algorithm was especially advantageous for the considered RPC-based PET camera in terms of convergence and artifacts.
The application of the real-time capable back projection method Direct TOF for the RPCbased PET camera resulted in an image quality comparable to the one achieved with the iterative algorihms. In total, this study does not indicate the further investigation of RPC-based PET cameras with similar efficiency for in-beam PET application.
To sum up, simulation studies were performed aimed at the progress of in-vivo dosimetry. Regarding the modeling of the beta+-emitter production and prompt gamma-ray emissions, different simulation codes were evaluated. HIBRAC could be a basis for clinical PT-PET simulations, however, a detailed validation of the underlying cross section models is required. Several recommendations for the optimization of a Compton Camera prototype resulted from systematic variations of the setup. Nevertheless, the definite evaluation of the feasibility of a Compton camera for PGI can only be performed by further experiments. For PT-PET, the efficiency of the detector system is the crucial factor. Due to the obtained results for the considered RPC-based PET camera, the focus should be kept to scintillator-based PET cameras for this purpose.
Keywords: Monte-Carlo Simulation, Partikeltherapie, in-vivo Reichweitenkontrolle, GEANT4, PHITS, Prompt Gamma Imaging, Compton-Kamera, Positronen-Emissions-Tomographie, Paarbildungskamera, Monte Carlo simulation, particle therapy, in-vivo range verification, GEANT4, PHITS, Prompt Gamma Imaging, Compton camera, positron emission tomography
  • Open Access LogoWissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-062 2015
    ISSN: 2191-8716


Registration No. 22256 - Permalink