Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Switch on selection | Login

1 Publication
Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the presence of repository-relevant organics
Schmeide, K.; Fritsch, K.; Lippold, H.; Poetsch, M.; Kulenkampff, J.; Lippmann-Pipke, J.; Jordan, N.; Joseph, C.; Moll, H.; Cherkouk, A.; Bader, M.
The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this purpose, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol/kg) and the background electrolyte.
The U(VI) complexation by propionate was studied in dependence on ionic strength (up to 4 mol/kg NaClO4) by TRLFS, ATR FT-IR spectroscopy, and DFT calculations. An influence of ionic strength on stability constants was detected, depending on the charge of the respective complexes. The conditional stability constants, determined for 1:1, 1:2, and 1:3 complexes at specific ionic strengths, were extrapolated to zero ionic strength.
The interaction of the bacteria Sporomusa sp. MT-2.99 and Paenibacillus sp. MT-2.2 cells, isolated from Opalinus Clay, with Pu was studied. The experiments can be divided into such without an electron donor where biosorption is favored and such with addition of Na-pyruvate as an electron donor stimulating also bioreduction processes. Moreover, experiments were performed to study the interactions of the halophilic archaeon Halobacterium noricense DSM-15987 with U(VI), Eu(III), and Cm(III) in 3 M NaCl solutions.
Research for improving process understanding with respect to the mobility of multivalent metals in systems containing humic matter was focused on the reversibility of elementary processes and on their interaction. Kinetic stabilization processes in the dynamics of humate complexation equilibria were quantified in isotope exchange studies. The influence of high salinity on the mobilizing potential of humic-like clay organics was systematically investigated and was described by modeling.
The sorption of Tc(VII)/Tc(IV) onto the iron(II)-containing minerals magnetite and siderite was studied by means of batch sorption experiments, ATR FT-IR and X-ray absorption spectroscopy. The strong Tc retention at these minerals could be attributed to surface-mediated reduction of Tc(VII) to Tc(IV). An influence of ionic strength was not observed.
The influence of ionic strength (up to 3 mol/kg) and background electrolyte (NaCl, CaCl2, MgCl2) on U(VI) sorption onto montmorillonite was studied. The U(VI) sorption is influenced by the background electrolyte, the influence of ionic strength is small. Surface complexation modeling was performed applying the 2SPNE SC/CE model. Surface complexation constants were determined for the NaCl and CaCl2 system and were extrapolated to zero ionic strength. Surface complexation in mixed electrolytes can be modeled applying surface complexation constants derived for pure electrolytes.
The influence of citrate on U(VI) diffusion in Opalinus Clay was studied using Opalinus Clay pore water as background electrolyte. The diffusion parameter values obtained for the HTO through-diffusion and the U(VI) in-diffusion in the absence of citric acid were in agreement with literature data. In the presence of citric acid, U(VI) diffusion was significantly retarded, which was attributed to a change in speciation, probably U(VI) was reduced to U(IV).
Larger-scale heterogeneous material effects on diffusive transport were investigated with PET. Diffusion parameters were derived by optimum fit of a FEM-model to the measurement. These parameters are in accordance with the results from 1D-through-diffusion experiments. Deviations from the simple transversal-isotropic behavior, which are identified as residuals from the model, are indications for heterogeneous transport on the mm-scale.
PET measurements were also conducted in order to display the improvement of the EDZ with waterglass injections. These experiments enable to draw conclusions on the complex reactive transport process and thus an estimation of the achieved improvement of the barrier function. The image reconstruction procedure was largely improved, mainly with the aid of Monte-Carlo simulations, and now allows quantitative analysis and error estimation.
Keywords: actinides, uranium, curium, technetium, terbium, europium, clay, Opalinus Clay, montmorillonite, clay organics, model ligands, complexation, reduction, sorption, diffusion, heterogeneity, upscaling, migration, repository
  • Open Access LogoWissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-068 2016

Downloads:

Registration No. 23251 - Permalink