Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Switch on selection | Login

1 Publication
Terahertz Near-Field Investigation of a Plasmonic GaAs Superlens
Fehrenbacher, M.
This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration.
For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 ┬Ám, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared.
  • Open Access LogoWissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-070 2016


Publ.-Id: 23470 - Permalink