Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Giant THz nonlinearity in topological and trivial HgTe-based heterostructures

Uaman Svetikova, T. A.; de Oliveira, T.; Pashkin, A.; Ponomaryov, O.; Berger, C.; Fuerst, L.; Bayer, F.; Novik, E.; Buhmann, H.; Molenkamp, L.; Helm, M.; Kiessling, T.; Winnerl, S.; Kovalev, S.; Astakhov, G.

Nonlinear phenomena in the THz spectral domain are important for the understanding of optoelectronic properties of quantum systems and provide a basis for modern information technologies. Here, we report a giant THz nonlinearity in high-mobility 2D topological insulators based on HgTe quantum wells, which manifests itself in a highly efficient third harmonic generation. We observe a third harmonic THz susceptibility several times higher than in bare graphene and many orders of magnitude higher than in trivial quantum well structures based on other materials. To explain the strong nonlinearity of HgTe-based heterostructures at the THz frequencies, we consider the acceleration of free carriers with high mobility and variable dispersion. This acceleration model, for which the non-parabolicity of the band dispersion is key, in combination with independently measured scattering time and conductivity is in good agreement with our experimental data in a wide temperature range for THz fields below the saturation. Our approach provides a route to material engineering for THz applications based on frequency conversion.

Keywords: topological insulators; HgTe; third harmonic generation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37451