Selected publications

2024

Towards tailoring hydrophobic interaction with uranyl(VI) oxygen for C-H activation

Tsushima, S.(1); Kretzschmar, J.(2); Doi, H.; Okuwaki, K.(3); Kaneko, M.(4); Mochizuki, Y.(5); Takao, K.(6)


2023

Large-Scale Formation of DNA Origami Lattices on Silicon

Tapio, K.(8); Kielar, C.(9); Parikka, J. M.(10); Keller, A.(11); Järvinen, H.(12); Fahmy, K.(13); Jussi Toppari, J.(14)


Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5f Orbitals

Takeyama, T.(16); Tsushima, S.(17); Gericke, R.(18); Kaden, P.(19); März, J.(20); Takao, K.(21)


Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants

Hanke, M.; Dornbusch, D.(23); Tomm, E.; Grundmeier, G.; Fahmy, K.; Keller, A.


Exploring Antibacterial Activity and Bacterial-Mediated Allotropic Transition of Differentially Coated Selenium Nanoparticles

Ruiz-Fresneda, M. A.; Schaefer, S.; Hübner, R.(25); Fahmy, K.(26); Merroun, M. L.

Related publications


Interaction between the transferrin protein and plutonium (and thorium), what’s new?

Zurita, C.; Tsushima, S.(29); Lorenzo Solari, P.; Menut, D.; Dourdain, S.; Jeanson, A.; Creff, G.; Den Auwer, C.


Europium(III) Meets Etidronic Acid (HEDP): a Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods

Heller, A.; Senwitz, C.; Foerstendorf, H.(31); Tsushima, S.(32); Holtmann, L.; Drobot, B.(33); Kretzschmar, J.(34)


Special Issue “Advances in Monitoring Metabolic Activities of Microorganisms by Calorimetry”

Matulis, D.; Wadsö, L.; Fahmy, K.(36)


Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Oertel, J.; Sachs, S.(38); Flemming, K.; Hassan Obeid, M.; Fahmy, K.(39)


Utility of redox-active ligands for reversible multi-electron transfer in uranyl(VI) complexes

Takeyama, T.; Tsushima, S.(41); Takao, K.


Neptunyl(VI) Nitrate Coordination Polymer with Bis(2-pyrrolidone) Linkers Highlighting Crystallographic Analogy and Solubility Difference in Actinyl(VI) Nitrates

Takeyama, T.(43); März, J.(44); Ono, R.(45); Tsushima, S.(46); Takao, K.(47)


Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC – An Improved Approach to More Robust Thermodynamics

Friedrich, S.(49); Sieber, C.; Drobot, B.(50); Tsushima, S.(51); Barkleit, A.(52); Schmeide, K.(53); Stumpf, T.(54); Kretzschmar, J.(55)


Crystal Structures of Ce(IV) Nitrates with Bis(2-pyrrolidone) Linker Molecules Deposited from Aqueous Solutions with Different HNO3 Concentrations

Ono, R.; Kazama, H.; März, J.(57); Tsushima, S.(58); Takao, K.


Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin

Fahmy, K.(60); Sakmar, T.


2022

Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms

Fahmy, K.(62)


Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset

Gutenthaler, S. M.(64); Tsushima, S.(65); Steudtner, R.(66); Gailer, M.; Hoffmann-Röder, A.; Drobot, B.(67); Daumann, L. J.

Related publications


Anion-specific structure and stability of guanidinium-bound DNA origami

Hanke, M.; Dornbusch, D.(70); Hadlich, C.; Roßberg, A.; Hansen, N.; Grundmeier, G.; Tsushima, S.(71); Keller, A.; Fahmy, K.(72)


2-Phosphonobutane-1,2,4,-Tricarboxylic Acid (PBTC): pH-Dependent Behavior Studied by Means of Multinuclear NMR Spectroscopy

Kretzschmar, J.(74); Wollenberg, A.; Tsushima, S.(75); Schmeide, K.(76); Acker, M.

Related publications


Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate

Hanke, M.; Hansen, N.; Ruiping, C.; Grundmeier, G.; Fahmy, K.(79); Keller, A.


Fully Chelating N3O2-Pentadentate Planar Ligands Designed for Strongest and Selective Capture of Uranium from Seawater

Mizumachi, T.; Sato, M.; Kaneko, M.; Takeyama, T.; Tsushima, S.(81); Takao, K.


Hydrophobic Core Formation and Secondary Structure Elements in Uranyl(VI)–Binding Peptides

Tsushima, S.(83); Takao, K.


Synthesis and characterization of a uranyl(vi) complex with 2,6-pyridine-bis(methylaminophenolato) and its ligand-centred aerobic oxidation mechanism to a diimino derivative

Takeyama, T.; Iwatsuki, S.; Tsushima, S.(85); Takao, K.


Interaction of Th(IV), Pu(IV) and iron(III) with ferritin protein : how similar ?

Zurita, C.; Tsushima, S.(87); Lorenzo Solari, P.; Jeanson, A.; Creff, G.; Den Auwer, C.


2021

Effects of Substituents on the Molecular Structure and Redox Behavior of Uranyl(V/VI) Complexes with N3O2‑Donating Schiff Base Ligands

Takeyama, T.(89); Tsushima, S.(90); Takao, K.(91)


Quenching Mechanism of Uranyl(VI) by Chloride and Bromide in Aqueous and Non-Aqueous Solutions

Haubitz, T.; Drobot, B.(93); Tsushima, S.(94); Steudtner, R.(95); Stumpf, T.; Kumke, M. U.


Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is able to form Dimers and Oligomers in a Redox Dependent Manner

Berndt, N.(97); Bippes, C. C.; Michalk, I.; Bachmann, D.; Bachmann, J.; Puentes-Cala, E.; Bartsch, T.; Loureiro, L. R.; Kegler, A.; Bergmann, R.(98); Gross, J. K.; Gross, T.; Kurien, B. T.; Scofield, R. H.; Farris, A. D.; James, J. A.; Schmitz, M.; Fahmy, K.(99); Feldmann, A.(100); Arndt, C.(101); Bachmann, M.(102)


DNA-Mediated Stack Formation of Nanodiscs

Subramanian, M.; Kielar, C.; Tsushima, S.(104); Fahmy, K.(105); Oertel, J.

Related publications


Fluorite-like hydrolyzed hexanuclear coordination clusters of Zr(IV) and Hf(IV) with syn-syn bridging N,N,N-trimethylglycine in soft crystal structures exhibiting cold-crystallization

Matsuoka, M.; Tsushima, S.(109); Takao, K.


How does iron storage protein ferritin interact with plutonium (and thorium) ?

Zurita, C.; Tsushima, S.(111); Bresson, C.(112); Garcia-Cortes, M.(113); Solari, P. L.(114); Jeanson, A.; Creff, G.(115); Den Auwer, C.(116)


Impact of the microbial origin and active microenvironment on the shape of biogenic elemental selenium nanomaterials

Fischer, S.; Jain, R.(118); Krause, T.; Jain, P.; Tsushima, S.(119); Shevchenko, A.; Hübner, R.(120); Jordan, N.(121)


Dimeric and Trimeric Uranyl(VI)–Citrate Complexes in Aqueous Solution

Kretzschmar, J.(123); Tsushima, S.(124); Lucks, C.; Jäckel, E.; Meyer, R.; Steudtner, R.(125); Müller, K.(126); Roßberg, A.; Schmeide, K.(127); Brendler, V.(128)

Related publications


2020

A metabolic switch regulates the transition between growth and diapause in C. elegans

Penkov, S.; Raghuraman, B. K.; Erkut, C.; Oertel, J.; Galli, R.; Ackerman, E. J. M.; Vorkel, D.; Verbavatz, J. M.; Koch, E.; Fahmy, K.; Shevchenko, A.; Kurzchalia, T. V.

Related publications


C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress

Gade, V. R.; Traikov, S.; Oertel, J.; Fahmy, K.; Kurzchalia, T. V.


Trimeric uranyl(VI)–citrate forms Na+, Ca2+, and La3+ sandwich complexes in aqueous solution

Kretzschmar, J.(136); Tsushima, S.(137); Drobot, B.(138); Steudtner, R.(139); Schmeide, K.(140); Stumpf, T.

Related publications


Essential Role of Heterocyclic Structure of N-Alkylated 2-Pyrrolidone Derivatives for Recycling Uranium from Spent Nuclear Fuels

Inoue, T.; Kazama, H.; Tsushima, S.(144); Takao, K.(145)


Crystallization of colourless hexanitratoneptunate(IV) with anhydrous H+ countercations trapped into hydrogen bond polymer with diamide linkers

Takao, K.(147); März, J.(148); Matsuoka, M.; Mashita, T.; Kazama, H.; Tsushima, S.(149)


2019

Crystallization of Anhydrous Proton from Acidic Aqueous Solution with Diamide Building Block

Kazama, H.; Tsushima, S.; Takao, K.


Lanthanide–induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone

Tsushima, S.(152)

  • Physical Chemistry Chemical Physics 21(2019), 21979-21983
    Online First (2019) DOI: 10.1039/C9CP03953H(153)
    Cited 12 times in Scopus
  • Poster
    17th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere (Migration 2019), 15.-20.09.2019, Kyoto, Japan

Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity

Hoyer, E.; Knöppel, J.; Liebmann, M.; Steppert, M.; Raiwa, M.; Herczynski, O.; Hanspach, E.; Zehner, S.; Göttfert, M.; Tsushima, S.; Fahmy, K.; Oertel, J.


Photocatalytic Oxygenation of Cyclohexene Initiated by Excitation of [UO2(OPCyPh2)4]2+ under Visible Light

Mashita, T.; Tsushima, S.(155); Takao, K.(156)


Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians

Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; Quek, Y.; Fahmy, K.; Shevchenko, A.; Friedrich, B. M.; Jülicher, F.; Rink, J. C.


Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach

Jain, R.; Fan, S.; Kaden, P.; Tsushima, S.; Foerstendorf, H.; Barthen, R.; Lehmann, F.; Pollmann, K.


Destabilization of DNA through interstrand crosslinking by UO22+

Rossberg, A.; Abe, T.; Okuwaki, K.; Barkleit, A.; Fukuzawa, K.; Nakano, T.; Mochizuki, Y.; Tsushima, S.

Related publications


Crystal Structure of Regularly Th-Symmetric [U(NO3)6]2− Salts with Hydrogen Bond Polymers of Diamide Building Blocks

Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S.


Cm3+/ Eu3+ Induced Structural, Mechanistic and Functional Implications for Calmodulin

Drobot, B.(164); Schmidt, M.(165); Mochizuki, Y.(166); Abe, T.; Okuwaki, K.; Brulfert, F.; Falke, S.(167); Samsonov, S.(168); Komeiji, Y.(169); Betzel, C.(170); Stumpf, T.; Raff, J.(171); Tsushima, S.(172)


Interdisciplinary round-robin test on molecular spectroscopy of the U(VI) acetate system

Müller, K.; Foerstendorf, H.; Steudtner, R.; Tsushima, S.; Kumke, M. U.; Lefèvre, G.; Rothe, J.; Mason, H.; Szabó, Z.; Yang, P.; Adam, C.; André, R.; Brennenstuhl, K.; Cho, H.; Creff, G.; Coppin, F.; Dardenne, K.; Den Auwer, C.; Drobot, B.; Eidner, S.; Hess, N. J.; Kaden, P.; Kremleva, A.; Kretzschmar, J.; Krüger, S.; Platts, J. A.; Panak, P. J.; Polly, R.; Powell, B. A.; Rabung, T.; Redon, R.; Reiller, P. E.; Rösch, N.; Rossberg, A.; Scheinost, A. C.; Schimmelpfennig, B.; Schreckenbach, G.; Skerencak-Frech, A.; Sladkov, V.; Solari, P. L.; Wang, Z.; Washton, N. M.; Zhang, X.

Related publications


2018

Ultrafast transient absorption spectroscopy of UO22+ and [UO2Cl]+

Haubitz, T.; Tsushima, S.; Steudtner, R.; Drobot, B.; Geipel, G.; Stumpf, T.; Kumke, M. U.


Controlling the lability of uranyl(VI) through intramolecular π-π Stacking

Mashita, T.; Tsushima, S.; Takao, K.


DNA-encircled lipid bilayers

Iric, K.; Subramanian, M.; Oertel, J.; Agarwal, N. P.; Matthies, M.; Periole, X.; Sakmar, T. P.; Huber, T.; Fahmy, K.; Schmidt, T.-L.


Layer-by-Layer assembly of heparin and peptide-polyethylene glycol conjugates to form hybrid nanothin films of biomatrices

Thomas, A. K.; Wieduwild, R.; Zimmermann, R.; Lin, W.; Friedrichs, J.; Bickle, M.; Fahmy, K.; Werner, C.; Zhang, Y.


The oxidation of borohydrides by photoexcited [UO2(CO3)3]4−

Takao, K.(180); Tsushima, S.(181)


Uranium(VI) complexes with a calix[4]arene-based 8-hydroxyquinoline ligand: Thermodynamic and structural characterization based on calorimetry, spectroscopy, and liquid-liquid extraction

Bauer, A.; Jäschke, A.(183); Schöne, S.(184); Barthen, R.; März, J.(185); Schmeide, K.(186); Patzschke, M.(187); Kersting, B.(188); Fahmy, K.(189); Oertel, J.; Brendler, V.(190); Stumpf, T.


2017

Molecular and Crystal Structures of Uranyl Nitrate Coordination Polymers with Double-headed 2-Pyrrolidone Derivatives

Kazama, H.; Tsushima, S.; Ikeda, Y.; Takao, K.


Calorimetrically determined U(VI) toxicity in Brassica napus correlates with oxidoreductase activity and U(VI) speciation

Sachs, S.; Geipel, G.; Bok, F.; Oertel, J.; Fahmy, K.


Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure

Fischermeier, E.; Pospíšil, P.; Sayed, A.; Hof, M.; Solioz, M.; Fahmy, K.


Shape change of biogenic elemental selenium nanomaterials decreases their colloidal stability

Jain, R.; Jordan, N.; Tsushima, S.; Hübner, R.; Weiss, S.; Lens, P.


Analysis of self‑assembly of S‑layer protein slp‑B53 from Lysinibacillus sphaericus

Liu, J.; Falke, S.; Drobot, B.; Oberthuer, D.; Kikhney, A.; Guenther, T.; Fahmy, K.; Svergun, D.; Betzel, C.; Raff, J.


2016

The molecular switching mechanism at the conserved D(E)RY motif in class-A GPCRs

Sandoval, A.; Eichler, S.; Madathil, S.; Reeves, P. J.; Fahmy, K.; Boeckmann, R. A.


Rational Structure-Based Rescaffolding Approach to de Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

Ruiz-Gómez, G.; Hawkins, J. C.; Philipp, J.; Künze, G.; Wodtke, R.; Löser, R.; Fahmy, K.; Pisabarro, M. T.


Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis

Obeid, M. H.; Oertel, J.; Solioz, M.; Fahmy, K.


Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

Oertel, J.; Keller, A.; Prinz, J.; Schreiber, B.; Hübner, R.; Kerbusch, J.; Bald, I.; Fahmy, K.


Speciation Studies of Metals in Trace Concentrations: The Mononuclear Uranyl(VI) Hydroxo Complexes

Drobot, B.; Bauer, A.; Steudtner, R.; Tsushima, S.; Bok, F.; Patzschke, M.; Raff, J.; Brendler, V.


Uranyl(VI) binding by bis(2-hydroxyaryl)diimine and bis(2-hydroxyaryl)diamine ligand derivatives. Synthetic, X-ray, DFT and solvent extraction studies

Jeazet, H. B. T.; Gloe, K.; Doert, T.; Mizera, J.; Kataeva, O. N.; Tsushima, S.; Bernhard, G.; Weigand, J. J.; Lindoy, L. F.; Gloe, K.


2015

A single-strand annealing protein clamps DNA to detect and secure homology

Ander, M.; Subramaniam, S.; Fahmy, K.; Stewart, F.; Schäffer, E.


The interaction of Eu(III) with organoborates – a further approach to understand the complexation in the An/Ln(III)–borate system

Schott, J.; Kretzschmar, J.; Tsushima, S.; Drobot, B.; Acker, M.; Barkleit, A.; Taut, S.; Brendler, V.; Stumpf, T.


Spectroscopic evidence for selenium(IV) dimerization in aqueous solution

Kretzschmar, J.; Jordan, N.; Brendler, E.; Tsushima, S.; Franzen, C.; Foerstendorf, H.; Stockmann, M.; Heim, K.; Brendler, V.


Combining Luminescence Spectroscopy, Parallel Factor Analysis and Quantum Chemistry to Reveal Metal Speciation - a Case Study of Uranyl (VI) Hydrolysis

Drobot, B.; Steudtner, R.; Raff, J.; Geipel, G.; Brendler, V.; Tsushima, S.


2014

The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans

Abusharkh, S. E.; Erkut, C.; Oertel, J.; Kurzchalia, T. V.; Fahmy, K.


Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

Petrovska, I.; Nüske, E.; Munder, M. C.; Kulasegaran, G.; Malinovska, L.; Kroschwald, S.; Richter, D.; Fahmy, K.; Gibson, K.; Verbavatz, J.-M.; Alberti, S.


Paramagnetic Decoration of DNA origami Nanostructures by Eu3+ Coordination

Opherden, L.; Oertel, J.; Barkleit, A.; Fahmy, K.; Keller, K.


Experimental and Theoretical Approaches to Redox Innocence of Ligands in Uranyl Complexes: What is Formal Oxidation State of Uranium in Reductant of Uranyl(VI)?

Takao, K.; Tsushima, S.; Ogura, T.; Tsubomura, T.; Ikeda, Y.


Americium(III) and Europium(III) Complex Formation with Lactate at Elevated Temperatures Studied by Spectroscopy and Quantum Chemical Calculations

Barkleit, A.; Kretzschmar, J.; Tsushima, S.; Acker, M.


Uranium(VI) Chemistry in Strong Alkaline Solution: Speciation and Oxygen Exchange Mechanism

Moll, H.; Rossberg, A.; Steudtner, R.; Drobot, B.; Müller, K.; Tsushima, S.

Related publications


2013

Structural characterization of the aqueous dimeric uranium(VI) species: (UO2)2CO3(OH)3−

Gückel, K.; Tsushima, S.; Foerstendorf, H.


Formic acid interaction with uranyl(VI) ion: structural and photochemical characterization

Lucks, C.; Roßberg, A.; Tsushima, S.; Foerstendorf, H.; Fahmy, K.; Bernhard, G.

Related publications


2012

Aqueous Uranium(VI) Complexes with Acetic and Succinic Acid: Speciation and Structure Revisited

Lucks, C.; Rossberg, A.; Tsushima, S.; Foerstendorf, H.; Scheinost, A. C.; Bernhard, G.

Related publications


Curium(III) citrate speciation in biological systems: An europium(III) assisted spectroscopic and quantum chemical study

Heller, A.; Barkleit, A.; Foerstendorf, H.; Tsushima, S.; Bernhard, G.

  • Dalton Transactions 41(2012)45, 13969-13983

3D Profile-Based Approach to Proteome-Wide Discovery of Novel Human Chemokines

Tomczak, A.; Sontheimer, J.; Drechsel, D.; Hausdorf, R.; Gentzel, M.; Shevchenko, A.; Eichler, S.; Fahmy, K.; Buchholz, F.; Pisabarro, M. T.


How worms survive desiccation: Trehalose pro water

Erkut, C.; Penkov, S.; Fahmy, K.; Kurzchalia, T. V.


Dinuclear complexes of tetravalent cerium in an aqueous perchloric acid solution

Ikeda-Ohno, A.; Tsushima, S.; Hennig, C.; Yaita, T.; Bernhard, G.

Related publications


EXAFS and DFT Investigations of Uranyl-Arsenate Complexes in Aqueous Solution

Gezahegne, W. A.; Hennig, C.; Tsushima, S.; Planer-Friedrich, B.; Scheinost, A. C.; Merkel, B. J.

Related publications


“yl”-Oxygen Exchange in Uranyl(VI) Ion: A Mechanism Involving (UO2)2(μ-OH)22+ via U-Oyl-U Bridge Formation

Tsushima, S.


2011

Trehalose renders dauer larva of Caenorhabditis elegans resistant to extreme desiccation

Erkut, C.; Penkov, S.; Khesbak, H.; Vorkel, D.; Verbavatz, J. M.; Fahmy, K.; Kurzchalia, T. V.

  • Current Biology 21(2011)15, 1331-1336

The role of water H-bond imbalances in B-DNA substate transitions and peptide recognition revealed by time-resolved FTIR spectroscopy

Khesbak, H.; Savchuk, O.; Tsushima, S.; Fahmy, K.

  • Journal of the American Chemical Society 133(2011), 5834-5842

On the "yl" bond weakening in uranyl(VI) coordination complexes

Tsushima, S.


Eu3+-Mediated Polymerization of Benzenetetracarboxylic Acid Studied by Spectroscopy, Temperature-Dependent Calorimetry, and Density Functional Theory

Barkleit, A.; Tsushima, S.; Savchuk, O.; Philipp, J.; Heim, K.; Acker, M.; Taut, S.; Fahmy, K.


2010

S-Layer protein from Lysinibacillus sphaericus JG-A12 as matrix for Au-III sorption and Au-nanoparticle formation

Jankowski, U.; Merroun, M.; Selenska-Pobell, S.; Fahmy, K.


Aqueous coordination chemistry and photochemistry of uranyl(VI) oxalate revisited: a density functional theory study

Tsushima, S.; Brendler, V.; Fahmy, K.


Photoluminescence of uranium(VI): quenching mechanism and role of uranium(V)

Tsushima, S.; Götz, C.; Fahmy, K.


Heterologous expression of the S-layer-like protein SllB induces the formation of long filaments of E. coli consisting of protein stabilized outer membrane

Lederer, F.; Günther, T.; Flemming, K.; Raff, J.; Fahmy, K.; Springer, A.; Pollmann, K.


2009

Neptunium Carbonato Complexes in Aqueous Solution: An Electrochemical, Spectroscopic, and Quantum Chemical Study

Ikeda-Ohno, A.; Tsushima, S.; Takao, K.; Rossberg, A.; Funke, H.; Scheinost, A.; Bernhard, G.; Yaita, T.; Hennig, C.


The role of Ge-related oxygen-deficiency centers in controlling the blueviolet photo- and electroluminescence in Ge-rich SiO2 via Er doping

Kanjilal, A.; Tsushima, S.; Götz, C.; Rebohle, L.; Voelskow, M.; Skorupa, W.; Helm, M.


Lipid Protein Interactions Couple Protonation to Conformation in a Conserved Cytosolic Domain of G-Protein-Coupled Receptors

Madathil, S.; Fahmy, K.

  • Journal of Biological Chemistry 284(2009)42, 28801-28809

Speciation and Structural Study of U(IV) and -(VI) in Perchloric and Nitric Acid Solutions

Ikeda-Ohno, A.; Hennig, C.; Tsushima, S.; Scheinost, A. C.; Bernhard, G.; Yaita, T.


The sulfate coordination of Np(IV), Np(V) and Np(VI) in aqueous solution

Hennig, C.; Ikeda-Ohno, A.; Tsushima, S.; Scheinost, A.


Spectroscopic comparison of aqueous Np(VI) and U(VI) species

Müller, K.; Foerstendorf, H.; Tsushima, S.; Brendler, V.; Bernhard, G.

  • Lecture (Conference)
    Goldschmidt 2009 - "Challenges to Our Volatile Planet", 21.-26.06.2009, Davos, Schweiz
  • Geochimica et Cosmochimica Acta 73(2009)13S, A914

X-ray absorption fine structures of uranyl(V) complexes in non-aqueous solutions

Takao, K.; Tsushima, S.; Takao, S.; Scheinost, A. C.; Bernhard, G.; Ikeda, Y.; Hennig, C.

Related publications

  • Lecture (Conference)
    Actinides 2009, 12.-17.07.2009, San Francisco, USA
  • Inorganic Chemistry 48(2009)20, 9602-9604

Photochemical reduction of UO22+ in the presence of alcohol studied by DFT calculations

Tsushima, S.

  • Inorganic Chemistry 48(2009)11, 4856-4862
  • Lecture (Conference)
    ROBL-Radiochemie Workshop, 18.12.2008, Dresden, Germany

Direct spectroscopic characterization of aqueous actinyl(VI) species: A Comparative Study of Np and U

Müller, K.; Foerstendorf, H.; Tsushima, S.; Brendler, V.; Bernhard, G.


Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-MUSIC modeling

Rossberg, A.; Ulrich, K.-U.; Weiss, S.; Tsushima, S.; Hiemstra, T.; Scheinost, A. C.

  • Environmental Science & Technology 43(2009)5, 1400-1406
  • Lecture (Conference)
    12th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, 20.-25.09.2009, Kennewick,, USA

Abort after 100 records

Publications Repository(238)



URL of this article
https://www.hzdr.de/db/Cms?pOid=12082


Contact

Prof. Dr. Karim Fahmy

Head
Biophysics
k.fahmyAthzdr.de
Phone: +49 351 260 2952
+49 351 260 3601


Links of the content

(1) https://orcid.org/0000-0002-4520-6147
(2) https://orcid.org/0000-0001-5042-8134
(3) https://orcid.org/0000-0002-4510-5717
(4) https://orcid.org/0000-0001-5428-2144
(5) https://orcid.org/0000-0002-7310-5183
(6) https://orcid.org/0000-0002-0952-1334
(7) https://doi.org/10.1039%2FD4CC01030B
(8) https://orcid.org/0000-0001-6932-9742
(9) https://orcid.org/0000-0002-3002-6098
(10) https://orcid.org/0000-0003-0897-1461
(11) https://orcid.org/0000-0001-7139-3110
(12) https://orcid.org/0009-0000-8672-3645
(13) https://orcid.org/0000-0002-8752-5824
(14) https://orcid.org/0000-0002-1698-5591
(15) https://doi.org/10.1021%2Facs.chemmater.2c03190
(16) https://orcid.org/0000-0001-6827-2799
(17) https://orcid.org/0000-0002-4520-6147
(18) https://orcid.org/0000-0003-4669-0206
(19) https://orcid.org/0000-0002-9414-2936
(20) https://orcid.org/0000-0003-4960-3745
(21) https://orcid.org/0000-0002-0952-1334
(22) https://doi.org/10.1002%2Fchem.202302702
(23) https://orcid.org/0000-0002-3635-4690
(24) https://doi.org/10.1039%2Fd3nr02045b
(25) https://orcid.org/0000-0002-5200-6928
(26) https://orcid.org/0000-0002-8752-5824
(27) https://doi.org/10.17815/jlsrf-3-159
(28) https://doi.org/10.1021%2Facsami.3c05100
(29) https://orcid.org/0000-0002-4520-6147
(30) https://doi.org/10.1002%2Fchem.202300636
(31) https://orcid.org/0000-0002-8334-9317
(32) https://orcid.org/0000-0002-4520-6147
(33) https://orcid.org/0000-0003-1245-0466
(34) https://orcid.org/0000-0001-5042-8134
(35) https://doi.org/10.3390%2Fmolecules28114469
(36) https://orcid.org/0000-0002-8752-5824
(37) https://doi.org/10.3390%2Fmicroorganisms11051204
(38) https://orcid.org/0000-0001-9097-9299
(39) https://orcid.org/0000-0002-8752-5824
(40) https://doi.org/10.3390%2Fmicroorganisms11030584
(41) https://orcid.org/0000-0002-4520-6147
(42) https://doi.org/10.1039%2FD3QI00189J
(43) https://orcid.org/0000-0001-6827-2799
(44) https://orcid.org/0000-0003-4960-3745
(45) https://orcid.org/0000-0002-6854-4894
(46) https://orcid.org/0000-0002-4520-6147
(47) https://orcid.org/0000-0002-0952-1334
(48) https://doi.org/10.3390%2Finorganics11030104
(49) https://orcid.org/0009-0007-3878-0734
(50) https://orcid.org/0000-0003-1245-0466
(51) https://orcid.org/0000-0002-4520-6147
(52) https://orcid.org/0000-0003-3241-3443
(53) https://orcid.org/0000-0002-6859-8366
(54) https://orcid.org/0000-0002-4505-3865
(55) https://orcid.org/0000-0001-5042-8134
(56) https://doi.org/10.3390%2Fmolecules28124881
(57) https://orcid.org/0000-0003-4960-3745
(58) https://orcid.org/0000-0002-4520-6147
(59) https://doi.org/10.1021%2Facs.inorgchem.2c03554
(60) https://orcid.org/0000-0002-8752-5824
(61) https://doi.org/10.1007%2Fs12551%2D022%2D01003%2Dy
(62) https://orcid.org/0000-0002-8752-5824
(63) https://doi.org/10.3390%2Fmicroorganisms10071397
(64) https://orcid.org/0000-0002-8412-3328
(65) https://orcid.org/0000-0002-4520-6147
(66) https://orcid.org/0000-0002-3103-9587
(67) https://orcid.org/0000-0003-1245-0466
(68) https://www.hzdr.de/publications/Publ-34792
(69) https://doi.org/10.1039%2Fd2qi00933a
(70) https://orcid.org/0000-0002-3635-4690
(71) https://orcid.org/0000-0002-4520-6147
(72) https://orcid.org/0000-0002-8752-5824
(73) https://doi.org/10.1016%2Fj.csbj.2022.05.037
(74) https://orcid.org/0000-0001-5042-8134
(75) https://orcid.org/0000-0002-4520-6147
(76) https://orcid.org/0000-0002-6859-8366
(77) https://www.hzdr.de/publications/Publ-35617
(78) https://doi.org/10.3390%2Fmolecules27134067
(79) https://orcid.org/0000-0002-8752-5824
(80) https://doi.org/10.3390%2Fijms23052817
(81) https://orcid.org/0000-0002-4520-6147
(82) https://doi.org/10.1021%2Facs.inorgchem.2c00306
(83) https://orcid.org/0000-0002-4520-6147
(84) https://doi.org/10.1039%2FD1CP05401E
(85) https://orcid.org/0000-0002-4520-6147
(86) https://doi.org/10.1039%2FD2DT00325B
(87) https://orcid.org/0000-0002-4520-6147
(88) https://doi.org/10.1107%2FS1600577521012340
(89) https://orcid.org/0000-0001-6827-2799
(90) https://orcid.org/0000-0002-4520-6147
(91) https://orcid.org/0000-0002-0952-1334
(92) https://doi.org/10.1021%2Facs.inorgchem.1c01449
(93) https://orcid.org/0000-0003-1245-0466
(94) https://orcid.org/0000-0002-4520-6147
(95) https://orcid.org/0000-0002-3103-9587
(96) https://doi.org/10.1021%2Facs.jpca.1c02487
(97) https://orcid.org/0000-0001-6921-0848
(98) https://orcid.org/0000-0002-8733-4286
(99) https://orcid.org/0000-0002-8752-5824
(100) https://orcid.org/0000-0001-5099-2448
(101) https://orcid.org/0000-0002-1285-5052
(102) https://orcid.org/0000-0002-8029-5755
(103) https://doi.org/10.3390%2Fijms22073377
(104) https://orcid.org/0000-0002-4520-6147
(105) https://orcid.org/0000-0002-8752-5824
(106) https://www.hzdr.de/publications/Publ-33585
(107) https://www.hzdr.de/publications/Publ-32927
(108) https://doi.org/10.3390%2Fmolecules26061647
(109) https://orcid.org/0000-0002-4520-6147
(110) https://doi.org/10.1016%2Fj.ica.2021.120622
(111) https://orcid.org/0000-0002-4520-6147
(112) https://orcid.org/0000-0002-0835-9371
(113) https://orcid.org/0000-0002-7554-8236
(114) https://orcid.org/0000-0003-3637-2669
(115) https://orcid.org/0000-0003-2366-7628
(116) https://orcid.org/0000-0003-2880-0280
(117) https://doi.org/10.1002%2Fchem.202003653
(118) https://orcid.org/0000-0002-5494-3106
(119) https://orcid.org/0000-0002-4520-6147
(120) https://orcid.org/0000-0002-5200-6928
(121) https://orcid.org/0000-0002-4625-1580
(122) https://doi.org/10.1021%2Facs.est.0c07217
(123) https://orcid.org/0000-0001-5042-8134
(124) https://orcid.org/0000-0002-4520-6147
(125) https://orcid.org/0000-0002-3103-9587
(126) https://orcid.org/0000-0002-0038-1638
(127) https://orcid.org/0000-0002-6859-8366
(128) https://orcid.org/0000-0001-5570-4177
(129) https://www.hzdr.de/publications/Publ-32805
(130) https://doi.org/10.1107/S1600577520014265
(131) https://www.hzdr.de/publications/Publ-35617
(132) https://doi.org/10.1021%2Facs.inorgchem.1c00522
(133) https://www.hzdr.de/publications/Publ-32145
(134) https://doi.org/10.1186%2Fs12915%2D020%2D0760%2D3
(135) https://doi.org/10.1038%2Fs41598%2D020%2D70311%2D8
(136) https://orcid.org/0000-0001-5042-8134
(137) https://orcid.org/0000-0002-4520-6147
(138) https://orcid.org/0000-0003-1245-0466
(139) https://orcid.org/0000-0002-3103-9587
(140) https://orcid.org/0000-0002-6859-8366
(141) https://www.hzdr.de/publications/Publ-32805
(142) https://www.hzdr.de/publications/Publ-35617
(143) https://doi.org/10.1039%2FD0CC05460G
(144) https://orcid.org/0000-0002-4520-6147
(145) https://orcid.org/0000-0002-0952-1334
(146) https://doi.org/10.1246%2Fbcsj.20200061
(147) https://orcid.org/0000-0002-0952-1334
(148) https://orcid.org/0000-0003-4960-3745
(149) https://orcid.org/0000-0002-4520-6147
(150) https://doi.org/10.1039%2FC9RA10090C
(151) https://doi.org/10.1021%2Facs.cgd.9b01214
(152) https://orcid.org/0000-0002-4520-6147
(153) https://doi.org/10.1039%2FC9CP03953H
(154) https://doi.org/10.1038%2Fs41598%2D019%2D42898%2D0
(155) https://orcid.org/0000-0002-4520-6147
(156) https://orcid.org/0000-0002-0952-1334
(157) https://doi.org/10.1021%2Facsomega.9b00635
(158) https://doi.org/10.7554%2FeLife.38187
(159) https://doi.org/10.1016%2Fj.watres.2019.04.005
(160) https://doi.org/10.1107/S1600577520014265
(161) https://doi.org/10.1039%2FC8CC09329F
(162) https://doi.org/10.1002%2Fanie.201811731
(163) https://doi.org/10.1002%2Fange.201811731
(164) https://orcid.org/0000-0003-1245-0466
(165) https://orcid.org/0000-0002-8419-0811
(166) https://orcid.org/0000-0002-7310-5183
(167) https://orcid.org/0000-0003-3409-1791
(168) https://orcid.org/0000-0002-5166-4849
(169) https://orcid.org/0000-0002-9708-6175
(170) https://orcid.org/0000-0002-3879-5019
(171) https://orcid.org/0000-0002-0520-3611
(172) https://orcid.org/0000-0002-4520-6147
(173) https://doi.org/10.1039%2FC9CP03750K
(174) https://doi.org/10.1107/S1600577520014265
(175) https://doi.org/10.1021%2Facsomega.9b00164
(176) https://doi.org/10.1021%2Facs.jpca.8b05567
(177) https://doi.org/10.1039%2FC8DT02600A
(178) https://doi.org/10.1039%2FC8NR06505E
(179) https://doi.org/10.1021%2Facsami.8b02014
(180) https://orcid.org/0000-0002-0952-1334
(181) https://orcid.org/0000-0002-4520-6147
(182) https://doi.org/10.1039%2Fc8dt00559a
(183) https://orcid.org/0000-0003-0622-0306
(184) https://orcid.org/0000-0002-0723-7778
(185) https://orcid.org/0000-0003-4960-3745
(186) https://orcid.org/0000-0002-6859-8366
(187) https://orcid.org/0000-0003-3125-1278
(188) https://orcid.org/0000-0001-5386-2809
(189) https://orcid.org/0000-0002-8752-5824
(190) https://orcid.org/0000-0001-5570-4177
(191) https://doi.org/10.1002%2Fopen.201800085
(192) https://doi.org/10.1021%2Facs.inorgchem.7b02250
(193) https://doi.org/10.1021%2Facs.est.7b02564
(194) https://doi.org/10.1002%2Fanie.201611582
(195) https://doi.org/10.1039%2Fc7en00145b
(196) https://doi.org/10.1007%2Fs00249%2D016%2D1139%2D9
(197) https://doi.org/10.1016%2Fj.bpj.2016.06.004
(198) https://doi.org/10.1371%2Fjournal.pone.0154046
(199) https://doi.org/10.1128%2FAEM.00538%2D16
(200) https://doi.org/10.1038%2Fsrep26718
(201) https://doi.org/10.1021%2Facs.analchem.5b03958
(202) https://doi.org/10.1016%2Fj.poly.2015.01.005
(203) https://doi.org/10.1371%2Fjournal.pbio.1002213
(204) https://doi.org/10.1039%2Fc5dt00213c
(205) https://doi.org/10.1039%2Fc5dt00730e
(206) https://doi.org/10.1039%2FC4SC02022G
(207) https://doi.org/10.1021%2Fla502654j
(208) https://doi.org/10.7554%2FeLife.02409
(209) https://doi.org/10.1021%2Fla501112a
(210) https://doi.org/10.1021%2Fic5006314
(211) https://doi.org/10.1039%2FC4DT00440J
(212) https://doi.org/10.1107/S1600577520014265
(213) https://doi.org/10.1021%2Fic402664n
(214) https://doi.org/10.1039%2FC3DT50814E
(215) https://doi.org/10.1107/S1600577520014265
(216) https://doi.org/10.1039%2FC3DT51711J
(217) https://doi.org/10.1107/S1600577520014265
(218) https://doi.org/10.1021%2Fic301565p
(219) https://doi.org/10.1371%2Fjournal.pone.0036151
(220) https://doi.org/10.4161%2Fworm.19040
(221) https://doi.org/10.1107/S1600577520014265
(222) https://doi.org/10.1039%2FC2DT12406H
(223) https://doi.org/10.1107/S1600577520014265
(224) https://doi.org/10.1021%2Fes203284s
(225) https://doi.org/10.1021%2Fic201679e
(226) https://doi.org/10.1039%2FC1DT10481K
(227) https://doi.org/10.1021%2Fic102292j
(228) https://doi.org/10.3233%2FSPE%2D2010%2D0408
(229) https://doi.org/10.1039%2FC0DT00974A
(230) https://doi.org/10.1002%2Fchem.201000408
(231) https://doi.org/10.1099%2Fmic.0.040808%2D0
(232) https://doi.org/10.1021%2Fic901838r
(233) https://doi.org/10.1063%2F1.3225911
(234) https://doi.org/10.1021%2Fic9004467
(235) https://doi.org/10.1021%2Fic9003005
(236) https://doi.org/10.1107/S1600577520014265
(237) https://doi.org/10.1021%2Fjp9008948
(238) https://www.hzdr.de/db/!Publications?pSelIndexAuthor=Fahmy,%20K.&pSelIndexAuthor=Tsushima,%20S.&pSelPublForm=1&pSelSort=JAHR_SORT&pSelDescAsc=DESC&pSelInfoText=0&pSelShowAbstract=0&pSelShowKeywords=0&pSelShowDownloads=0&pSelShowPublId=0&pSelApproved=%2D1&pSelShowH1=%2D1&pSelWithSubmitted=0&pNid=1636
(239) https://www.hzdr.de/db/Cms?pOid=11732
(240) https://www.hzdr.de/db/Cms?pOid=11727
(241) https://www.hzdr.de/db/Cms?pOid=11724
(242) https://www.hzdr.de/db/Cms?pOid=11723
(243) https://www.hzdr.de/db/Cms?pOid=11729
(244) https://www.hzdr.de/db/Cms?pOid=11726
(245) https://www.hzdr.de/db/Cms?pOid=11730
(246) https://www.hzdr.de/db/Cms?pOid=11720
(247) https://www.hzdr.de/db/Cms?pOid=11719
(248) https://www.hzdr.de/db/Cms?pOid=11733