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Abstract

This paper compares two different methods for the identification of
ductile properties of materials. Both methods use the small punch test
to measure the material response under loading. The resulting load dis-
placement curve contains information about the deformation behavior
of the tested material. The finite element method is used to calculate
the load displacement curve of the punch depending on the parame-
ters of a material law. Via a systematical variation of the material
parameters a data base is built up, which is used to train neural net-
works. This networks can be used either as an inverse function for the
determination of material parameters from a measured load displace-
ment curve or as a function approximating directly the finite element
solution. The second method allows the indentification of material pa-
rameters by using a conjugate directions algorithm, which minimizes
the error between an experimental load displacement curve and one
calculated by the network function. Both methods are described in
detail and results are discussed.

Keywords: small punch test, neural networks, ductile materials,
finite elements, parameter identification

1 Introduction

The ductile material behavior in structural components is changing due to
in service loading, aging, irradiation, embrittlement a.o., which requires an
in situ monitoring of the material state. In order to determine material
parameters at various locations e.g. in weldments or gradient materials, the
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size of the material taken out for a test specimen should be very small but
representative.

In the small punch test (SPT), a disk like specimen of ∅8× 0.5mm size
is deformed in a miniaturized deep drawing experiment. The measurable
output is the load displacement curve (LDC) of the punch, which contains
information about the elasto-plastic deformation behavior and about the
strength properties of the material.

The SPT was introduced to determine post irradiation mechanical prop-
erties of materials used in the nuclear industries [1, 2, 3]. Baik et. al. [4]
defined the area under the LDC as small punch fracture energy and found
correlations between results from Charpy-V-notch and small punch ex-
periments determining the ductile to brittle transition temperature. Some
researchers used the SPT to predict the elastic plastic properties [5, 6] and
the ductile fracture toughness JIc [7, 8] or the brittle fracture toughness KIc

[9].
Huber et. al. [10] showed that neural networks (NN) are suitable for the

determination of constitutive properties from spherical indentation tests. In
[11, 12] deformation and ductile damage properties are determined by using
NNs as inverse approximations of the finite element (FE) solution of the
SPT.

In the present paper, two different approaches are tested to identify the
material parameters of ductile hardening. In both cases the LDC is trans-
fered to a NN, which has been trained with a data base of LDCs generated
by FE simulations of the SPT with systematically varied hardening param-
eters. The NN can either approximate the FE solution directly and the
parameter identification is done by a conjugate directions root finding al-
gorithm (case II) or the NN approximates the inverse problem of the FE
solution and gives the material parameter as answer directly (case I).

These identification procedures were performed for the materials StE-
690, 18Ch2MFA and GGG-40 that are widely used in mechanical engineer-
ing. The advantages and restrictions for using both approaches are dis-
cussed.

2 Experimental Methods

The SPT is performed using the device as seen in Fig. 1. The specimen
(8) is clamped between die (9) and down-holder (4), which are supported
by the bottom housing part (7). The screwable upper housing part (3) is
used to provide the clamping force. The punch (2) driven by the cross head
punch (1) of the testing machine deforms the specimen centrically. The
punch displacement is measured (5) parallel to the punch and close to the
specimen to prevent errors due to the bending of the cross head of the testing
machine and other elastic deformations of the experimental setup. A load
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Figure 1: Cross-section of the loading device and the resulting LDC

cell between cross head and punch measures the force acting on the punch.
The result of this experiment is the LDC of the punch, which can be split

up into several parts. Part I is mainly determined by the elastic properties
of the material, Part II reflects the transition between the elastic and plastic
behavior, Part III shows the hardening properties up to part IV where ge-
ometrical softening and damage occurs. During the steep decent in Part V
the specimen fails and a crack grows circular around the center of the spec-
imen. The remaining force in Part VI is needed to push the punch trough
the already cracked specimen.

In order to verify the material parameters determined by the SPT, tensile
tests with round notched specimens (see Fig. 2) were carried out addition-
ally. A special video extensometer was used to determine the true stress
strain curve. This video extensometer is able to measure the strain in both
length and cross direction. Furthermore, the radius of curvature on the
necking notch ground was measured to account for the influence of triaxi-
ality using the Bridgman [13] formula. The tensile tests were performed
with specimens of the materials 18Ch2MFA and StE-690 only.
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Figure 2: Notched tensile specimen with marks for strain measure

3 Numerical Simulations

After extensive preliminary investigations, a finite element model shown in
Figure 3 was developed, which delivers the necessary accuracy by reason-
able calculation costs. Since the geometries and the load of the SPT are
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axisymmetric, a two dimensional finite element model is sufficient. The
mesh contains 40× 5 axisymmetric reduced integration elements, whereby
all elements have a size of 0.1× 0.1 mm. The die, down-holder and punch are
modelled as rigid bodies. Since the curvature of the punch and the die have
a significant influence on the LDC, they have to be modelled very carefully.
That’s why the exact geometries of these parts have been measured and
utilized. Die and down-holder are fixed in all degrees of freedom, whereas
the punch can be moved vertically by a displacement boundary condition.
The contact between specimen and punch, die and down-holder is modelled
including friction with a friction coefficient µ = 0.12.

Figure 3: Finite element model of the SPT

3.1 Material model

The material model is based on the constitutive damage law developed by
Gurson, Tveergard and Needleman (GTN) [14, 15]. This model as-
sumes an elastic plastic continuum with spherical voids which are allowed to
grow only (fN = 0, fc = ff = 1) in the present analysis. The void volume
fraction f is used as a measure of damage. The central part of the model is
the yield function

Φ =
[

ΣV

σF (εpl)

]2

+ 2q1f cosh
[
3
2
q2

ΣH

σF (εpl)

]
− (1 + q3f

2) = 0 (1)

where ΣV =
√

3
2Σ′ijΣ

′
ij denotes the v. Mises stress and ΣH = 1

3Σkk the
hydrostatic stress, expressed by the macroscopic (deviatoric) stresses Σij

(Σ′ij). The parameters q1 = 1.5, q2 = 1 and q3 = q2
1 weight the different

terms of the yield function. A detailed description of this model and the
implementation into the FE-code Abaqus can be found in [16]. In our cases
the initial void volume fraction f0 was determined by the chemical compo-
sition of the material. The percentage of carbon in GGG-40 is manifested
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as small spherical inclusions which can be considered as voids. For steels
f0 can be estimated by the amount of sulfur and manganese that induce
non-metallic inclusions [17].

The isotropic hardening behavior of the matrix material is denoted with
σF (εpl). Three different hardening models (a, b and c) have been taken
into consideration. Above the initial yield stress Re, σF is a function of the
plastic strain εpl with the parameters Re, ε∗ and n.

σF (εpl) = Re

[εpl

ε∗
+ 1

] 1
n with ε∗ =

ε∗pl[
σ∗
Re

]n
− 1

(2)

where ε∗pl = 1 and σ∗ = σF (ε∗pl) (model a).
Another possibility (model b) is a description of a true stress strain curve

that starts with a perfectly plastic model up to a plastic strain εpy

σF (εpl) =

{
Re for εpl < εpy

σ∗ε1/n
pl for εpl ≥ εpy

, (3)

where εpy depends on Re and σ∗

εpy =
(

Re

σ∗

)n

(4)

or εpy is an additional plastic strain parameter, beyond of which hardening
occurs (model c).
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Figure 4: σF (εpl)-curves Re =500 MPa, σ∗ =1000 MPa, n = 7, (εpy = 0.02)

3.2 Building the data bases

To build the LDC data bases for the different hardening models, the param-
eters have been varied in several steps in ranges as shown in Tab. 1. The
data bases contain 113 = 1331 LDCs for model a and b and 64 = 1296 for
model c.
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model a model b model c
parameter min max steps min max steps min max steps
σ∗ [MPa] 800 1300 11 500 1200 11 500 1200 6
Re [MPa] 200 700 11 0.2σ∗ 0.7σ∗ 11 0.2σ∗ 0.7σ∗ 6

n 5 15 11 5 15 11 4 14 6
εpy - - - εpy = (Re/σ∗)n 0 0.02 6

Table 1: Parameters for building the data bases for the different material models

4 Parameter Identification

To identify the parameters of the true stress strain curve out of the LDC
of the SPT two different approaches have been tested. Further on the pa-
rameters will be denoted with pari. The LDC of the SPT is a function for
the punch force F depending on the displacement of the punch u and the
material parameters pari.

F (u) = f(pari) (5)

To determine pari two principle ways are possible.
Case I : One can try to find the unknown inverse function pari = ϕ(F (u))

(see Fig. 5). Therefore, the direct problem is solved via FEM. The simulated
LDCs are used as input of a NN, to find the material parameters as output.
A training algorithm minimizes the error between the answer of the NN
par′i for a computed LDC and its corresponding parameters pari. After the
training the NN can be used as an approximation of the inverse function
par′i = ϕ(F (u)).

finite element
SPT simulation

F (u, pari)

SPT experiment

F (u)

neural network
approximation
par′i = ϕ(F (u))

ident. material
parameters

par′i

-
- -

Figure 5: Scheme of the parameter identification with an inverse function (case I)

Case II : The second possibility is an optimization procedure as shown
in Fig. 6. A data base is calculated as described above and used to train a
NN, whereby the material parameters pari and the punch displacement u
serve as input and the corresponding punch force F as output, respectively.
These NNs are an approximation for the direct problem and can be used
instead of a FE-calculation. An experimental LDC is compared with the
answer F ′(u) from the NN for an initially given parameter set. By the
optimization procedure the parameters are changed in such a way, that
the error E = ‖ F (u)−F ′(u)|par′i

‖ becomes a minimum. The optimization
algorithm used here is based on Brents [18] algorithm for minimization
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without derivatives. It should be pointed out that common optimization
techniques need a FE-calculation of the SPT for each step, which is now
done very efficiently by the NN.

finite element
SPT simulation
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Figure 6: Scheme of the parameter identification using the direct function and the
conjugate directions algorithm (case II)
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Figure 7: Scheme of a multi-layer perceptron

The NNs that are used here [19] belong to the class of multi-layer per-
ceptrons. They contain three layers of neurons (or units) each having an
activation function

ai =
1

1 + e−neti
(6)

where neti denotes the input for unit i. All units of the input layer i get
an external input exi, which represents in our case the discretisized and
normalized load displacement curve (case I) or the vector of the normalized
material parameters and the normalized punch displacement (case II). The
accumulated and with ωij weighted activations ai serve as input for the
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second (hidden) layer j.

netj =
∑

i

ωijai + θj (7)

The input for the third (output) layer k comes via the weights ωjk from the
hidden layer. The output outk finally represents the normalized values of
the material parameters park (case I) or the normalized punch force (case
II). Normalization is done for the input units with

exi = (pari − parmin
i )

exmax − exmin

parmax
i − parmin

i

+ exmin (8)

and for the output units with

outi = (pari − parmin
i )

outmax − outmin

parmax
i − parmin

i

+ outmin (9)

where exmin = 0.0, exmax = 1.0, outmin = 0.1, outmax = 0.9.
During a training procedure the weights between the layers are changed

by an appropriate training algorithm. Two of them, the scaled conjugate
gradient (scg) and the classical back-propagation (bprop) algorithm [19] have
been tested (see Tab. 3). To check the accuracy of a NN for unknown data,
validation data sets are used, which contain randomly selected subsets of
the simulated data and were not part of the training patterns.

ident. no. of neurons
case net

input hidden output
A 51 25 3

I
B 51 25 4
C 4 100 1

II
D 5 100 1

Table 2: Size of the NNs used for the different identification tasks

5 Results and Conclusion

Tab. 3 gives an overview about the training of the different networks. Ob-
viously, for case I the accuracy for the approximation is much poorer than
for case II. This is due to the fact that different parameter sets can lead
to quite similar LDCs. This problem does not occur for case II, where the
approximations of the direct FE-solution is very precise.

The identified hardening parameters for the three different materials are
listed in Tab. 4. As shown in Fig. 8, FE-simulations using the identified
parameters fit the experiments very well up to that point, where damage
occurs.
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training validation
ident. net material

no. of MSE
[
10−6

]
no. of MSE

[
10−6

]
case model

patt. scg bprop patt. scg bprop
a 1321 8850 7310 10 9250 8650

I
A

b 1321 19350 17520 10 22410 26320
B c 1286 43170 44630 10 70460 66030

a 67781 240 20 100 290 20
II

C
b 67781 300 110 100 410 120

D c 65996 150 20 100 190 10

Table 3: Number of patterns and the mean square error after 1000 cycles for
training and validation of the used networks

ident. material parameter
case net model specimen

εpy σ∗ Re n

II C a 18Ch2MFA-017 - 1030 652 7.64
II D c StE690-008 0.0102 1140 696 11.1
II D c GGG40-024 0.0129 532 264 11.6

Table 4: Identified parameters for the different materials ([σ∗, Re]=MPa)
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Figure 8: Experimental and simulated load displacement curves of the SPT

Using the parameters from Tab. 4, notched tensile tests have been simu-
lated for the materials 18Ch2MFA and StE-690. Even here, the simulations
predict the behavior of the experiments reasonably well (see Fig. 8) up to
the point, where damage plays an important role.

In general it was found that the identification strategy (case II) using
the direct approximation of the FE-solution leads to better results, than the
strategy using an inverse approximation.
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Figure 9: Experimental and simulated tensile tests of notched specimen for the
material 18Ch2MFA
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Figure 10: Experimental and simulated tensile tests of notched specimen for the
material StE-690

Looking back to Fig. 8, one can found that not all information of the LDC
of the SPT have been used. Especially the part where the load decreases
can be used to identify parameters of the damage model, that has been
mentioned earlier.
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