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Abstract

This paper describes an approach to identify plastic deformation and failure properties of ductile materials. The

experimental method of the small punch test is used to determine the material response under loading. The resulting

load displacement curve is transferred to a neural network, which was trained using load displacement curves generated

by finite element simulations of the small punch test and the corresponding material parameters. The simulated material

behavior of the specimen is based on the ductile elastoplastic damage theory of Gurson, Tvergaard and Needleman.

During a training process the neural network generates an approximated function for the inverse problem relating the

material parameters to the shape of the load displacement curve of the small punch test. This technique was tested for

three different materials (ductile steels). The identified parameters are verified by testing and simulating notched tensile

specimens.
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1. Introduction

In recent years, different continuum damage
models developed by Rice and Tracey, Gurson,

Rousselier, Lemaitre, Chaboche etc. are widely

accepted to describe ductile failure of metals.

Usually, such models contain a set of parameters,

which are unknown for the most ductile materials

used in mechanical engineering.
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The ductile material behavior in structural

components is changing due to in service loading,

aging, irradiation, embrittlement and some other
influences. That requires an in situ monitoring of

the material state. In order to determine material

parameters at various locations e.g. in weldments

or gradient materials, the size of the material taken

out for a test specimen should be very small but

representative.

In the small punch test (SPT), a disk like

specimen of £8 · 0.5 mm size is deformed in a
miniaturized deep drawing experiment. The mea-

surable output is the load displacement curve of
ed.
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the punch, which contains information about the

elasto-plastic deformation behavior and about the

strength properties of the material.

Manahan et al. [1] introduced a disk bending

test to determine post irradiation mechanical
properties of materials used in the nuclear power

industries [2,3]. Baik et al. [4,5] defined the area

under the load displacement curve as small

punch fracture energy and found correlations

between results from Charpy-V-notch and small

punch experiments determining the ductile to

brittle transition temperature DBTT. The small

punch test is often used to analyze irradiation
effects [6–8]. Some researchers used the SPT to

predict the elastic plastic properties [9] and the

ductile fracture toughness JIc [10–13] or the

brittle fracture toughness KIc [14]. Most recently

a group [15] developed an inverse method for

the estimation of the Ramberg–Osgood stress

strain relation using the SPT load displacement

curve. Huber et al. [16] showed that neural net-
works are suitable for the determination of con-

stitutive properties from spherical indentation

tests.

In the present paper, a new approach is estab-

lished to identify the material parameters of

hardening and damage. The load displacement

curve is transferred to a neural network (NN)

[17,18], which has been trained with load dis-
placement curves generated by FEM-simulations

of the SPT with the corresponding material pa-

rameters. The simulated material behavior of the

specimen is based on the elastoplastic damage

theory of Gurson, Tvergaard and Needleman

(GTN-model) [19–21]. The output of the neural

network is a set of material parameters describing

hardening and damage behavior of the tested
material. Subsequently, simulations of tensile tests,

SENB- or CT-specimen can be performed pre-

dicting ductile crack growth behavior and material

parameters of ductile fracture.

These identification procedure was performed

for the steels 10MnMoNi55, StE-690, 18Ch2MFA

that are widely used in mechanical engineering.

The advantages and restrictions for applying this
identification approach are discussed. An outlook

to further improvements and research activities is

given.
2. Experimental methods

The small punch test is performed using the

device as seen in Fig. 1. The specimen is clamped
between die and down-holder, which are sup-

ported by the bottom housing part. The screwable

upper housing part is used to provide the clamping

force. The punch driven by the cross-head plate of

the testing machine deforms the specimen centri-

cally. The punch displacement is measured parallel

to the punch and close to the specimen to prevent

errors due to the bending of the cross-head of the
testing machine and other elastic deformations of

the experimental setup. A load cell between cross-

head and punch measures the force acting on the

punch. The bottom face of the specimen can be

observed by two CCD-cameras via a conical bor-

ing in the ground plate. A speckle pattern is

sprayed on the bottom face of the specimen, so

that the deformation field can be measured using a
3-dimensional grating method [22].

The results of this experiment are the load dis-

placement curve of the punch and a deformation

field as can be seen in Fig. 2. The load displace-

ment curve can be divided into several parts. Part I

is mainly controlled by the elastic properties of the

material, Part II reflects the transition between

the elastic and plastic behavior, Part III shows the
hardening properties up to part IV where geo-

metrical softening and damage occurs. During the

steep decent in Part V the specimen fails and a

crack grows circular around the center of the

specimen. The remaining force in Part VI is needed

to push the punch trough the already cracked

specimen.

The small punch test was performed using
specimens of three different steels. These are the

grades 10MnMoNi55, 18Ch2MFA used often in

nuclear power plants for pipes and pressure vessels

and StE-690 a fine-grained high strength steel

widely used in many fields of technology especially

in civil engineering.

In order to verify the material parameters de-

termined by the SPT, tensile tests with round
notched specimens (Fig. 3) were carried out addi-

tionally. A special video extensometer (VE) was

used to obtain the true stress strain curve. The VE

is able to measure the strain in both length and



Fig. 1. Cross-section of the loading device and experimental setup of the SPT: (1) cross-head punch of testing machine, (2) punch, (3)

housing (upper part), (4) down-holder, (5) position encoder, (6) holder, (7) housing (bottom part), (8) specimen, (9) die, (10) clamp,

(11) ground plate.

Fig. 2. Load displacement curve and deformed specimen after failure (seen with one of the CCD-cameras).
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cross-direction. Furthermore, the radius of curva-

ture on the necking notch ground can be measured

and the influence of triaxiality using the Bridgman

[23] formula

rwBridgman
¼ 4F

pd2
1

�
þ 4r

d

�
ln 1

�
þ d
4r

�
ð1Þ

can be taken into account. Here F denotes the

tensile force, d the lowest actual diameter and r the
radius of curvature on the notch ground. The

tensile tests were performed only with specimens of

the materials 18Ch2MFA and StE-690.
3. Numerical simulations

After extensive preliminary investigations, the

finite element model shown in Fig. 4 was selected,
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Fig. 3. Notched tensile specimen with marks for strain mea-

sure.

Fig. 4. Finite element model of the SPT.
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which delivers the necessary accuracy by reason-
able calculation costs. Since the geometries and the

load of the SPT are axisymmetric, a two dimen-

sional finite element model is sufficient. The mesh

contains 40 · 5 axisymmetric reduced integration

elements, whereby all elements have a size of

0.1 · 0.1 mm. The die, down-holder and punch are

modeled as rigid bodies each one constrained on a

master node. Die and down-holder are fixed in all
degrees of freedom, whereas the punch can be

moved vertically by a displacement boundary

condition. The contact between specimen and

punch, die and down-holder is modelled including

friction whereas the friction coefficient l can be

varied. It should be pointed out that the simula-

tions where performed using the FE-code ABA-

QUS/Explicit [24] which works with finite
deformations in the current configuration, relating

the corotational Green–Naghdi stress rate with the
rate of deformation according to the GTN con-

stitutive law by a hypoelastic approach, which is

already implemented into ABAQUS/Explicit.

Since the experimental test lasts approximately

two minutes and according to the very small time
increments that have to be used with an explicit

code, one gets a large computational burden.

There are two ways to reduce this computational

costs, time scaling or mass scaling. Here, mass

scaling was used carefully to keep the influence of

dynamic effects as low as necessary.

3.1. Material model

The material model is based on the constitutive

damage law developed by Gurson, Tveergard and

Needleman (GTN) [19–21,25]. This model assumes
spherical voids in an elastic plastic continuum

where the voids can grow and nucleate. The void

volume fraction f is used as a measure of damage.

The central part of the model is the yield function

U ¼ RV

rFðeplÞ

� �2
þ 2q1f � cosh

3

2
q2

RH

rFðeplÞ

� �
� ð1þ q3f �2Þ ¼ 0 ð2Þ

where RV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
R0

ijR
0
ij

q
denotes the v. Mises stress

and RH ¼ 1
3
Rkk the hydrostatic stress, expressed by

the macroscopic (deviatoric) Cauchy stresses

RijðR0
ijÞ. The damage variable is denoted with f �

and q1, q2, q3 are parameters to weight the different

terms of the yield function. The isotropic harden-

ing behavior of the matrix material is denoted with

rFðeplÞ. Up to the initial yield stress Re the material

remains purely elastic. Above Re the yield stress rF

is a function of the plastic strain epl with the pa-

rameters Re, e� and n.

rFðeplÞ ¼ Re

epl
e�

h
þ 1
i1=n

ð3Þ

e� can be expressed as

e� ¼
e�pl

r�
Re

h in
� 1

ð4Þ

where e�pl ¼ 1 and r� ¼ rFðe�plÞ. In Eq. (2) the

damage parameter f � depends on the void volume

fraction f
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f � ¼
f if f 6 fc
fc þ

f �
f
�fc

ff�fc
ðf � fcÞ if fc < f < ff

f �
f if f P ff

8<
: ð5Þ

with

f �
f ¼ q1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 � q3

p
q3

ð6Þ

In the above relationship, fc is a critical value of

the void volume fraction, and ff is the ultimate

value of void volume fraction where the material

completely fails. The macroscopic plastic Euler–

Almansi strain rate _EEpl
ij is assumed to be normal to

the yield surface

_EEpl
ij ¼ _kk

oU
oRij

ð7Þ

where _kk denotes the plastic multiplier. The evolu-

tion of the equivalent plastic strain in the matrix

material is obtained from the equivalent plastic
macroscopic work expression

ð1� f ÞrF
_�ee�eeplm ¼ Rij

_EEpl
ij ð8Þ

with the equivalent plastic strain

�eepl ¼ �eepl
����
0

þ
Z

Rij
_EEpl
ij

ð1� f ÞrF

ð9Þ

The change in void volume fraction is

_ff ¼ _ffgr þ _ffnucl ð10Þ
where _ffgr is the change due to void growth and _ffnucl
due to nucleation of new voids. The void growth is

based on the law of conservation of mass

_ffgr ¼ ð1� f Þ _EEpl
kk ð11Þ

and the nucleation of voids follows the strain

controlled relationship

_ffnucl ¼ A_�ee�eepl ð12Þ
with

A ¼ fN
sN

ffiffiffiffiffiffi
2p

p exp

2
4� 1

2

�eepl � eN
sN

 !2
3
5 ð13Þ

The normal distribution of the nucleation strain

has a mean value eN and a standard deviation sN.
fN denotes the volume fraction of void seeds.
4. Parameter identification

First of all an overview is given about all the

different geometric and material parameters that
are involved in the finite element model of the

SPT. During preliminary investigations concern-

ing the geometry of the specimen and the loading

device the values as listed in Table 1 were found to

be suitable for the needs of a material parameter

identification. Thus we can assume this geometric

parameters as fixed. Furthermore, we concentrate

on ductile materials with a hardening behavior
that follows Eq. (3). The elastic properties and

friction coefficients are known for the materials

used here, thus have not to be determined, too.

The initial void volume fraction f0 can be deter-

mined in many cases by the chemical composition

of the material. The percentage of carbon in

GGG-40 is manifested as small spherical inclu-

sions which can be treated as voids. Following a
suggestion by Franklin [26], f0 can be estimated

for steels by the amount of sulfur and manganese

that induce non-metallic inclusions. The void vol-

ume fraction at final failure ff is material depen-

dent and can be measured by microscopic

investigations of the crack surfaces. The parame-

ters q1, q2 and q3 are fixed to the values given in

Table 1 according to a suggestion given in [27].
The load displacement curve is very insensitive to

the parameters eN and sN, why they are fixed to 0.3

and 0.1. Under these assumptions there remain

three parameters for the hardening behavior (Re,

r�, n) and two (fc, fN) for the damage model to be

identified by the neural network.
4.1. The identification procedure

The scheme of the identification procedure can

be seen in Fig. 5. We start with finite element

simulations (lower left) of the SPT using system-

atically varied sets of material parameters. Each

simulation calculates the global load displacement

curve f ðuÞ of the punch. This function is stored

tabular as a discrete number of n pairs ðfi; uiÞ,
where f1 ¼ f ðu¼ 0 mmÞ and fn ¼ f ðumax ¼ 2 mmÞ.
This given tabular function is converted into a

force vector



Table 1

Parameters of the finite element model of the SPT

Parameter Id Description Value

Geometric

Specimen D Diameter 8.00 mm

h Thickness 0.50 mm

Device d Die diameter 4.00 mm

r Die edge radius 0.50 mm

R Punch radius 1.25 mm

Material

Elastic E Young�s modulus �200 GPa

h Poisson�s Ratio 0.30

Plastic Re Yield stress at epl ¼ 0 50–1000 MPa

r� Yield stress at epl ¼ 1 300–2000 MPa

n Hardening coefficient 3–20

Friction l Friction coefficient 0.15

Damage f0 Initial vvf 0–15%

fc Critical vvf 0–ff
fN vvf due to nucleation 0–ff
ff vvf at final failure 1–100%

q1 Parameter of the yield function 1.5

q2 Parameter of the yield function 1.0

q3 Parameter of the yield function 2.25

eN Mean nucleation stress 0.3

sN Standard dev. for nucleation 0.1

Fig. 5. Scheme of the identification procedure.
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Fig. 6. Scheme of a multi-layer perceptron (feed forward neural

network).
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Fj ¼ fi þ
fiþ1 � fi
uiþ1 � ui

ðuj � uiÞ ð14Þ

with

uj ¼
j� 1

m
umax and ui 6 uj < uiþ1 ð15Þ

where m denotes the integer number of elements of
F . The corresponding parameters park and the

force vector Fj are normalized using

outk ¼
park

parnormk

; exi ¼
Fi

F norm
ð16Þ

Both vectors are stored in a data base, which is
used to train a neural network. During a training

process (see Section 4.2) the neural network gen-

erates an approximated function outk ¼ f ðexiÞ,
where outk represents the normalized material

parameters and exi the normalized load displace-

ment curve. This function can be used to identify

unknown material parameters out of an experi-

mentally ascertained load displacement curve. The
following table presents the values for normalizing

the in- and output of the neural network.

4.2. The neural network

The neural network that is used here belongs to

F norm Rnorm
e r�norm nnorm f norm

c f norm
N

2500

N

800

MPa

1200

MPa

20 0.5 0.1
the class of multi-layer perceptrons or feed for-
ward neural networks [17,18]. It contains three

layers of neurons (or units) each having an acti-

vation function (see Fig. 6)

ai ¼
1

1þ e�neti
ð17Þ

where neti denotes the input for unit i. All units of

the input layer get an external input exi, which

represents in our case the discretisized load dis-

placement curve. In other words, each input exi
represents the punch force value for a certain load
step. The accumulated and with xij weighted ac-

tivations ai serve as input for the second (hidden)

layer.

netj ¼
X
i

xijai þ hj ð18Þ

The input for the third (output) layer comes via

the weights xjk from the hidden layer. The output

outk finally represents the normalized values of the

material parameters park.
The training procedure is done by changing

the weights between the layers with an appro-

priate learning function. Different training algo-

rithms are known [28] and have been tested (see

Fig. 7). The lowest mean square error (MSE)

after 1000 training cycles was reached with the

scaled conjugate algorithm (SCG). The back-

propagation algorithm reached nearly the same
accuracy but runs faster then the SCG. Finally

the resilent propagation (RPROP) algorithm has

been tested, which delivers the poorest accuracy.

To check the accuracy of the network for un-

known data a validation data set is used. This

data set contains an arbitrarily chosen subset of

the simulated data which was not part of the

training pattern.
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Therefore, we favoured the back propagation

algorithm [28], which works as follows: Initially,

all weights get a random value in the range [)0.1,
0.1]. An input pattern (discretisized load dis-

placement curve) is feed into the network and
propagated forward until it reaches the output

layer. The difference or error dk between the out-

put ak and the target output outk (normalized

material parameter used for the simulation) of the

training pattern for the output unit k is used to-

gether with the activation of the source unit aj to
compute the necessary change of the weight xjk.

To compute the errors for the hidden and input
layers, for which no teaching value is available, the

dk of the following layers which are already com-

puted are used. The second term in Eq. (19) called

the momentum term considers the change of

weights from the previous training step.

Dxij ¼ gdjai þ lDðt�1Þwij ð19Þ

dj ¼
f 0
j ðnetjÞðoutk � akÞ if unit j is an output unit

f 0
j ðnetjÞ

P
k dkwjk if unit j is a hidden unit

(

ð20Þ

f 0
j ðnetjÞ ¼

oaj
onetj

ð21Þ
5. Results

Fig. 8 shows the computed void volume frac-

tion at different stages of loading. Damage occurs
on the bottom side of the specimen about 1 mm

out of center of the specimen and grows across the

specimen until complete failure. The same position

of the ductile crack can be observed at Fig. 2,

which shows the bottom face of the specimen seen

with one of the CCD-cameras. In the case of ten-

sile specimens (see Fig. 9) damage occurs first in

the center of the specimen and grows like a penny
shaped crack until the whole cross-section of the

specimen has failed.

Fig. 10 shows three different load displacement

curves corresponding to three different materials.

Here the significant differences in all parts of the

load displacement curves become visible.

The result of a first parameter identification for

10MnMoNi55 is shown in Fig. 11. The experi-
mental result is compared with the simulated load

displacement curve calculated by using the identi-

fied material parameters:

These parameters were found using a neural

fc fN Re r� n

0.171 0.047 129 MPa 1069 MPa 7.96
network containing 101 input units, 25 hidden

units and 5 output units. This neural network was

trained with 55 ¼ 3125 simulated load displace-

ment curves, where

were hold constant. The curve (data base) in Fig.

11 represents that one of the training curves that

fits the experiment best.

Investigations for the material 18Ch2MFA

yielded the following parameter set, which fits

equally well both the small punch and tensile test

results (see Figs. 12 and 13).

E f0 ff q1 q2 q3 eN sN

206.5
GPa

0.002 0.2 1.5 1.0 2.25 0.3 0.1



Fig. 8. Evolution of the void volume fraction (damage) in a small punch specimen.
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The maximum load for the small punch test is

slightly underestimated, whereas the point of fail-

ure is predicted very well. The parameter set given

above simulates the tensile specimen with notch

radius 4 and 8 mm very well. For the smaller

notches the failure point is estimated at higher

strains and for the unnotched specimen the simu-
lated failure occurs too early.

For the StE-690 the following parameter set

was found to predict the small punch test as well as

the tensile tests (see Figs. 14 and 15):

E Re r� n

210 GPa 129 MPa 900 MPa 20

f0 fc ff q1 q2 q3 fN eN sN

0.002 0.062 0.2 1.5 1.0 2.25 0.03 0.3 0.1
Here, no void nucleation is simulated, therefore

the parameters having the index N remain zero. To

estimate the point of failure right, the values for fc
and ff have to be very low, much lower than one

would expect from a physical point of view.

E Re r� n

210 GPa 150 MPa 1100 MPa 14

f0 fc ff q1 q2 q3 fN eN sN

0.002 0.0084 0.012 1.5 1.0 2.25 0.0 0.0 0.0
6. Conclusions

A new approach is developed to identify defor-

mation and failure properties of ductile materials



Fig. 9. Evolution of the void volume fraction (damage) in a tensile specimen.
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by exploiting the experimental results of the small

punch test. The set up of the technical device for

determining the load displacement curve of the

SPT is described in detail.
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As has been shown, neural networks are able to

generate an approximated function for the mate-
rial parameters depending on the shape of the load

displacement curve of the punch. This function is

obtained during a training process with results

from numerical simulations using the GTN-mate-

rial model. It is necessary to make pre-selection of
the parameters, which have to be identified be-

cause an identification of all 12 GTN-Parameters

is too complex. This pre-selection is depending on

the type of material.

For the three different steels 10MnMoNi55,

18Ch2MFA and StE690, sets of material param-

eters have been found that determine the material

behavior reasonably well. For the 18Ch2MFA and
StE690 material this parameters could be verified

by experiments and simulations of notched tensile

specimens using the same parameters. In excep-

tional cases the values for the critical and ultimate

void volume fraction do not agree with values one

would expect from a physical point of view. Since

the GTN-model assumes that only spherical void

growth and nucleation cause damage and neglects
all other influences, the void volume fraction

should be understood as a phenomenological

damage variable. Anyway, it has be demonstrated

that this damage model can predict the ductile

deformation and failure of metals very well for

quite different stress states.
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