Interface magnetism


Dr. Kay Potzger
Project group leader
Tel.: 0351-260-3244, 2411

Group members

Dr. Rantej Bali

Alexander Schmeink

Former group members

Jonathan Ehrler
Dr. Maciej Oskar Liedke
Dr. Anna Semisalova
Naren Srinivasan

Alireza Heidarian
Julius Beck
Alevtina Smekhova

Oguz Yildirim
Steffen Cornelius
Camilo Otalora

Daniel Blaschke
Maik Butterling
Nico Spahn
Falk Meutzner
Armin Haase

Tim Andrae
Kerstin Bernert
Nikolas Blum
Marcel Höwler

Tina Nestler
Julia Osten
Artem Shalimov
Georg Talut
Gufei Zhang
Shengqiang Zhou


-FWIN-G -meeting thursdays at 12:45 (Meeting minutes)


PREM (Preisach simulations)

MBE sample sheet

Further MBE instructions: O:\Labs\MBE_712_108_108a


- Magnetic materials, TUBA Freiberg, summer semester

Structural and magnetic transitions of embedded Fe and FePt nanoparticles

Funding: DFG grant PO1275/2-1

Collaboration: Prof. H. Lichte, TU Dresden



The investigation of structural phase transitions of magnetic nanoparticles is recently intensely investigated. Especially if the particles are coherently embedded inside a host crystalline material, such transitions may show interesting properties. Even the stabilization of structural phases that usually would not exist in nature is possible. High resolution transmission electron microscopy and holography in combination with integral methods enables us to gain unique insight into the transitions on an atomic scale. The current project consists of two parts:

  • Structural transitions from the fcc to the ferromagnetic bcc phase are investigated. The analysis is focused mainly on the magnetic properties of the exotic fcc phase.
  • The transition from the disordered fcc phase to the ordered fct phase of embedded FePt nanoparticles is investigated. We focus on the influence of the host matrix on the

In addition, a simulation program based on the Preisach model was developed (PREM1.0) which allows interpretation of magnetometry data. It can be downloaded here.


  • Embedded α-Fe nanoparticles in YSZ have been investigated by Transmission electron microscopy and holography





High resolutuion TeM allows the identification of the individual nanoparticle to be α-Fe. TEH shows magnetic dipoles around individual nanoparticles (circles)
  • Simulations of zero field cooled and field cooled magnetization dependencies as well as hysteresis loops using the program PREM 1.0: The two magnetic systems exhibit equal hysteresis loops! The upper is fluctuation dominated, the lower anisotropy dominated. 

prem11 prem12
prem21 prem22


Multiple ferromagnetic secondary phases in Fe implanted yttria stabilized zirconia

A. Shalimov, S. Q. Zhou, O. Roshchupkina, N. Jeutter, C. Baehtz, G. Talut, H. Reuther, K. Potzger

J. Appl. Phys. 108, 024907 (2010).

Fe nanoparticles embedded in MgO crystals

A. Shalimov, K. Potzger, D. Geiger, H. Lichte, G. Talut, A. Misiuk, H. Reuther, F. Stromberg, S. Q. Zhou, C. Baehtz, J. Fassbender

J. Appl. Phys. 105, 064906 (2009).

Memory effect of magnetic nanoparticle systems originating from particle size distribution

G. Zhang, K. Potzger, S. Q. Zhou, A. Muecklich, Y. C. Ma, and J. Fassbender

Nucl. Instrum. Meth. B 267, 1596 (2009).

Formation of metallic clusters in oxide insulators by means of ion beam mixing

G. Talut, K. Potzger, A. Muecklich, and Shengqiang Zhou

J. Appl. Phys. 103, 07D505 (2008).

Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

K. Potzger, H. Reuther, S. Q. Zhou, A. Mucklich, R. Grotzschel, F. Eichhorn, M. O. Liedke, J. Fassbender, H. Lichte, A. Lenk

J. Appl. Phys. 99, 08N701 (2006).