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Introduction

The CIRCUS test facility (Circulation
during startup) has been built to study
the start-up phase of a natural-circula-
tion BWR. During the start-up so called
flashing-induced instabilities can arise.
These instabilities are induced by flash-
ing, due to steam production in the long
adiabatic riser section, which is placed
above the core to enhance the flow rate.
Flashing occurring in the riser causes an
unbalance between driving force and
pressure losses in the natural-circulation
loop, giving rise to flow oscillations.

The thermohydraulic code ATHLET,
which has been developed by GRS (Ge-
sellschaft für Anlagen- und Reaktor-
s icherhei t  mbH),  is  used for the
calculation of natural circulation exper-
iments at the CIRCUS test facility. In
this paper calculations of selected ex-
periments at low pressure conditions are
presented. For the calculations the code
version ATHLET Mod 1.2 CYCLE B
was used [3].

The CIRCUS test facility

The CIRCUS test facility (Fig. 1) consists of a single loop with a core section, riser and down-
comer, the upper and lower horizontal parts, a buffer vessel and a steam dome. The core section
consists of four electrically heated rods and four bypass channels. In the riser above the core the
natural circulation is enhanced. In the heat exchanger the two-phase mixture is condensed. With
help of the buffer vessel temperature and flow oscillations can be suppressed. A pump is in-
stalled in a downcomer bypass (not used during the experiments). The test facilitiy operates at
low pressure (typically at 1 or 2 bar) with different core powers (up to 3 kW per heated channel).
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Fig. 1: Overview about the CIRCUS test facility, [1]
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Thermohydraulic model

The presented calculations were
performed with ATHLET Mod 1.2
Cycle B, [3]. The input dataset mod-
els all main parts of the CIRCUS test
facility (see Fig. 2). The core section
is modelled by 4 parallel channels.
The core bypass channels are not
modelled. Each core channel is sim-
ulated as a pipe with an electrical
heater. For the nodalization of the
riser, downcomer, upper and lower
horizontal parts the exact dimen-
sions, heat capacities of glass and
copper, heat losses and pressure
drops are considered. The riser is
modelled as an adiabatic section. At
the top of the facility the buffer ves-
sel and steam dome are connected to
a pressure dependent volume to
maintain the pressure during a
steady state calculation.

Experiments

Different experiments were carried
out at the CIRCUS test facility to
study the characteristics of flashing-
induced flow instabilities and to provide a data base on which basis thermal-hydraulic codes can
be validated, Ref. [4]. The experiments were performed at pressures of 1 and 2 bar, with differ-
ent core powers, core inlet temperatures and for different heights of the steam cushion in the
steam dome. During each experiment the core power and the temperature at the inlet of the heat-
ed section were kept constant. Within a series of experiments the core inlet temperature was
stepwise increased, while the systeme pressure and core power were kept constant. Fig. 3 shows
typical results from such a series of experiments (pressure 1 bar, core power 8 kW). At a certain
core inlet temperature the flashing-induced instabilities arise and with increasing inlet temper-
atures the period of the instabilities decreases.

Five experiments from a test series with 8 kW power and a system pressure of 1 bar were se-
lected for a comparison with ATHLET calculations, see Table 1. The whole test series consists
of 17 experiments with different core inlet temperatures.

Test No. Tinlet Test No. Tinlet Test No. Tinlet

010913_M01 72.7 °C 010912_M03 78.25 °C 010912_M05 83.0 °C
010912_M07 87.3 °C 010912_M09 93.5 °C

Table 1: Selected experiments from a test series at a pressure of 1 bar and a core power
of 8 kW (2kW per channel)
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Fig. 2: Nodalization scheme for CIRCUS



Steady state calculation

At first steady state calculations with constant boundary conditions were performed. With help
of these calculations the pressure losses, heat losses and the temperature distribution along the
loop were adjusted according to the boundary conditions described in [2]. For each test scenario
(different pressures, core inlet temperatures and loop mass flows) a steady state calculation was

performed. The steady state calculation starts with zero power. After a few seconds the core
power is switched on and the power is increased stepwise with time. The steady steate calcula-
tion is stopped if the loop mass flow is nearly stable (see Fig. 4). At this point the reactor power
is a bit lower than the nominal value. The temperature in the riser and also in the upper part of
the facility is below the saturation temperature and in this way no flashing can occur.

Transient calculations

The transient calculations start if the mass flow in the loop is nearly stable and the reactor power
has reached the nominal level, as described in the experimental scenario [2]. During the tran-
sient calculation the temperature in the adiabatic section increases with time. If the temperature
in the upper part of the riser reaches saturation conditions, the flashing induced instabilities oc-
cur. Due to the void production in the riser, the natural circulation mass flow is increased. The
increase of flow rate leads to a decrease of the coolant temperature at the inlet of the adiabatic
section, so that the process of flashing will stop and the flow rate will be low again. After a few
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Fig. 3:  Loop mass flow for different core inlet temperatures (experiment)
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Fig. 4: Core power and loop mass flow - steady state calculation
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seconds delay the coolant temperature entering the adiabatic section increases again, leading to
a new flashing cycle. This behaviour in case of the calculated void fraction and mass flow can
be seen in Figure 5. In this calculation a dataset with finer nodalization was used to visualize the
void fraction distribution. The blue color in the nodalization corresponds to a void fraction of
0 % and the red color is equivalent to a void fraction of 100 %.

Fig. 6 and Fig. 7 show a comparison between calculated and experimental results in case of ex-
periment 010912_M05 and 010912_M09. These two experiments were performed with 8 kW
core power, a system pressure of 1 bar and core inlet temperatures of 83 °C and 93 °C. The
ATHLET calculations show, that the period of the instabilities is shorter for higher core inlet
temperatures. This corresponds to the experimental results. In general the calculated mass flows
show a good agreement with the experimental data. How described further above, the flashing
induced instabilities start when the temperature in the riser reaches saturation conditions.

Fig. 5: Void fraction (AV) and mass flow
(GJ) in the upper part of the test
facility
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Fig. 6: Mass flow at core inlet (FL1) and heat exchanger outlet (FL2)
ATHLET calculation (left) and experiment 010912_M05 (right) - Tinlet = 83 °C



Already at the core outlet flashing can occur. Above the core the void fraction increases with
the height of the riser. The time dependent behavior of the void fraction ist illustrated in Fig. 8
for the ATHLET calculations. The void production in the riser leads to an increased mass flow
in the loop and afterwards to a decrease of the core inlet temperature, so the flashing will stop.
After a few seconds delay the core inlet temperature increases again and a new flashing cycle
can start. As in the experiments in all ATHLET calculations the period of the flashing induced
instabilities depends on the core inlet temperature. In case of the mass flow rate Fig. 9 show a
comparison of all 5 ATHLET calculations with the experimental data. The calculated periods
show a very good agreement with the experiments.

Further ATHLET calculations show, that the heat capacities and heat losses of the CIRCUS
loop have also an influence on the calculated period. The results of different calculations with
and without heat structures show, that the period of the instabilities can fluctuate by a factor of
about 20 or 30%. Without consideration of heat losses and heat capacities the period is shorter,
see Fig. 10. In addition calculations with a more detailed nodalization has been performed to
investigate the influence of the nodalization. These calculations show, that the calculated period
did not depend on the number of nodes used in the ATHLET model. In a calculation with a finer
nodalization the flashing induced instabilities starts later in time, but the period of the instabil-
ties is the same as in the previous calculation, see Fig. 11.
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Fig. 7: Mass flow at core inlet (FL1) and heat exchanger outlet (FL2)
ATHLET calculation (left) and experiment 010912_M09 (right) - Tinlet = 93 °C
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Fig. 8: Calculated void fraction at core inlet (P1-SL-1,-,1), core outlet (P1-SL-3,-,1),
middle (P1-SL-4,-,3) and top of the riser (P1-SL-4,-,6)

Calculation of experiment 010912_M05 (Tinlet = 83 °C): left
Calculation of experiment 010912_M09 (Tinlet = 93 °C): right
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Fig. 9: Measured and calculated loop mass flows and periods of the instabilities for different
core inlet temperatures - experiment (left) and calculation (right)
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Summary

The presented calculations show, that the flashing induced instabilities can be modelled with the
code ATHLET. The period of the instabilities depends mainly on the core inlet temperature. The
ATHLET calculations reproduce this behaviour very well in a qualitative and also quantitative
way. Additional calculations show, that the period depends on the heat capacities and also on
the heat losses of the CIRCUS test facility. Without consideration of heat losses and / or heat
capacities the period is shorter. To predict the period of the instabilities, the heat capacities and
heat losses must be modelled as exactly as possible.
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Fig. 11: Calculated loop mass flows with a more detailed nodalization (a) compared to the
nodalization used in the other calculations in this paper (b) - see also Fig. 2.
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