Contact

Dr. Tom Weier
Magnetohydrodynamics
t.weierAthzdr.de
Phone: +49 351 260 - 2226, 2013
Fax: +49 351 260 - 12226, 12013, 2007

Dr. Gerd Mutschke
Institute of Fluid Dynamics
g.mutschkeAthzdr.de
Phone: +49 351 260 - 2480
Fax: +49 351 260 - 12480

Magnetic control of mass transfer and convection in electrochemical processes

Motivation

  • the Lorentz force can utilize the existing Faraday current.
  • the magnetic gradient force acts on a para- or diamagnetic electrolyte.
  • the control by magnetic fields is contactless.

Fields of research

  • detailed understanding of the interplay of magnetic forcing, convection and mass transfer
  • increasing the limiting current (space-time yield) in copper electrolysis
  • improving the uniformity of deposits, thus saving energy and material
  • structured deposition of para- and diamagnetic ions by utilizing the magnetic gradient force
  • gas evolution under the influence of magnetic fields for improving the process efficiency and/or the quality of deposits

Methods

  • lab-scale experiments; visualization of electrolyte convection and species concentration
  • numerical modelling and simulation

Selected References

  • D. Baczyzmalski, F. Karnbach, X. Yang, G. Mutschke, M. Uhlemann, K. Eckert, C. Cierpka,  On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field, J. Electrochem. Soc. 163 (2016) 9, E248-E257.
  • D. Baczyzmalski, T. Weier, C. Cierpka, C.J. Kähler,  Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes, Exp. Fluids 56 (2015), 162.
  • G. Mutschke, K. Tschulik, M. Uhlemann, J. Fröhlich,  Numerical simulation of the mass transfer of magnetic species at electrodes exposed to small-scale gradients of the magnetic field, Magnetohydrodynamics 51(2015)2, 369-374.
  • S. Mühlenhoff, G. Mutschke, M. Uhlemann, X. Yang, S. Odenbach, J. Fröhlich, K. Eckert, On the homogenization of the thickness of Cu deposits by means of MHD convection within small dimension cells, Electrochem. Comm. 36 (2013) 80-83.
  • T. Weier, S. Landgraf,  The two-phase flow at gas-evolving electrodes: bubble-driven and Lorentz-force-driven convection, Eur. Phys. J. Spec. Top. 220 (2013), 313-322.
  • G. Mutschke, K. Tschulik, M. Uhlemann, A. Bund, J. Fröhlich, Comment on “Magnetic structuring of electrodeposits”, Phys. Rev. Lett. 109 (2012) 229401.
  • G. Mutschke, K. Tschulik, T. Weier, M. Uhlemann, A. Bund, J. Fröhlich, On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 55 (2010) 9060-9066.
  • G. Mutschke, A. Hess, A. Bund, J. Fröhlich, On the origin of horizontal counter-rotating electrolyte flow during copper magnetoelectrolysis. Electrochim. Acta 55 (2010) 1543-1547.
  • T. Weier, K. Eckert, S. Mühlenhoff, C. Cierpka, A. Bund, M. Uhlemann, Confinement of paramagnetic ions under magnetic field
    influence: Lorentz versus concentration gradient force based explanations, Electrochem. Comm. 9 (2007) 2479–2483.

Contact

Dr. Tom Weier
Magnetohydrodynamics
t.weierAthzdr.de
Phone: +49 351 260 - 2226, 2013
Fax: +49 351 260 - 12226, 12013, 2007

Dr. Gerd Mutschke
Institute of Fluid Dynamics
g.mutschkeAthzdr.de
Phone: +49 351 260 - 2480
Fax: +49 351 260 - 12480