Contact

Dr. Silke Merchel
Scientist
Analytics
s.merchelAthzdr.de
Phone: +49 351 260 - 2802, 3701
Fax: +49 351 260 - 12802

Eye catcher

"Impatient" scientists: Accelerator mass spectrometry (AMS)
for the determination of long-lived radionuclides

Introduction   Cosmogenic radionuclides   Chemical sample preparation   Machine layout   Access for external users   www & References


Introduction

The Ion Beam Center of HZDR has expanded its measurement capability by another highly-sensitive analytical method, accelerator mass spectrometry (AMS), which is used for the determination of long-lived radionuclides.

In contrast to ordinary decay counting, the "impatient" scientists do not wait for the disintegration of a radioactive nucleus. In fact, they determine the not-yet-decayed radionuclides by mass spectrometry, which is much more efficient.

There is a main advantage of using a high-energy accelerator for mass spectrometry: The background and interfering signals, resulting from molecular ions and ions with similar masses e.g. isobars, are nearly completely eliminated. Thus, AMS generally provides much lower detection limits in comparison to conventional mass spectrometry. Our AMS system offers excellent measurement capabilities also for external users.

In contrary to common low-energy AMS facilities in Germany and Europe, which have mainly specialized in radiocarbon analyses (14C), the HZDR-AMS is the first modern-type facility in the EU that runs at a terminal voltage of 6 MV. Maximum stability is guaranteed by producing the high-voltage of the accelerator by a high-frequency cascade generator.

The benefits from using AMS for radiation protection, nuclear safety, nuclear waste, radioecology, phytology, nutrition, toxicology, and pharmacology research are obvious and manifold: Smaller sample sizes, easier and faster sample preparation, higher sample throughput and the redundancy for radiochemistry laboratories will largely reduce costs. Lower detection limits widen applications to shorter and longer time-scales and to sample types that could never be investigated before.

Especially in environmental and geosciences, the determination of long-lived cosmogenic radionuclides like 10Be, 26Al, and 36Cl became more and more important. Using these nuclides dating of suddenly occurring prehistoric mass movements, e.g. volcanic eruptions, rock avalanches, tsunamis, meteor impacts, earth quakes and glacier movements, is possible. Additionally, glacier movements and data from ice cores give hints for the reconstruction of historic climate changes and providing information for the validation of climate model predicting future changes.

Field work advices with respect to a sampling strategy for geomorphological applications can be downloaded here:
Download-Button

Please contact us for new projects before sampling.

Gletscher

 

Nach Oben


Cosmogenic radionuclides

At the moment, we are able to determine at DREAMS the long-lived cosmogenic radionuclides listed in the table.

AMS-measurements of other radionuclides, e.g. actinides, and stable nuclides (by so-called Super-SIMS) are under development. We are capable of measuring isotopic ratios (radioactive/stable) as low as 10-16.

nuclide

half-life

10Be

1.387 Ma

26Al

0.7 Ma

36Cl

0.301 Ma

41Ca

0.104 Ma

129I

15.7 Ma

Nach Oben


Chemical sample preparation

AMS measurements of long-lived radionuclides are only possible if samples are chemically treated, as the original samples (water, rocks etc.) that contain reasonable amounts of radionuclides are too big (100 g - 10 kg). Or in other words, the radionuclide concentrations in the range of sub-ppq are too low to allow an analysis of typical 1 mg-targets. Besides, the chemical separation is doing most of the work reducing the troublesome isobars, and eliminating possible contamination from other sources. For instance, the analysis of cosmogenic 10Be in quartz can only be performed if samples are previously cleaned from atmospherically-produced 10Be. The preparation of 10Be-, 26Al-, and 41Ca-AMS-targets needs the use of large quantities of hydrochloric acid (HCl) and, thus, should be preferably performed in a separated place than 36Cl- und 129I-AMS-target preparation keeping the risk of cross-contamination as low as possible.

Probenpräparation AMS

Nach Oben


Machine layout

Ions are extracted from two identical hybrid ion sources, which can handle gaseous and solid samples. Each Cs-sputter source is equipped with a 200-sample wheel. On the low-energy (LE) side the ions are separated by an energy-analyser, a 54° electrostatic deflector, and a mass-analyzer, a 90° magnet, equipped with a fast-bouncing system. The tandetron accelerator [Gottdang et al., 2002] contains a gas stripper and active stripper gas regulation. On the high-energy (HE) side, a 90° analysing magnet is followed by a Faraday-Cup for stable isotope measurements. The rare isotopes are detected by a 4-anode gas ionization chamber, after passing a 35° electrostatic deflector and a 30° vertical analysing magnet for further background reduction. For 10Be and 36Cl measurements a silicon nitride absorber foil (1 µm) can be inserted in the HE-part for post-stripping [Klein et al., 2008].

6 MV AMS

6 MV-Ionenbeschleuniger am FZD

Nach Oben


Access for external users

Of course, we are performing AMS measurements also for external users. For scientific purposes you can apply for beamtime (rule of thumb: 8 AMS samples need about 10 hours of beamtime) at "Application for beamtime at the IBC". After positive evaluation by an (external) committee, you will get free beamtime at DREAMS for your samples. Before starting to write a proposal, please contact us for further information.

Additionally, we offer "in-house-training" for AMS sample preparation in our chemistry labs at HZDR, which are already functional since 2009. Unique in Germany, is the possibility to prepare 36Cl- and 129I-samples in a Cl- and S-free lab environment. If you are interested in setting up your own sample preparation labs, please do not hesitate to contact us for our mentoring programme.

   

Oliver Forstner, Helmholtz Institute Jena

Oliver Forstner,
Helmholtz Institute Jena 

 Spyros-Christos Olivotos, GFZ Potsdam

Spyros-Christos Olivotos,
GFZ Potsdam

Anne-Sophie Meriaux,
U Newcastle (UK)

 Lisa LUNA, U Potsdam

Lisa Luna, U Potsdam

Ezequiel Garcia Morabito, U Bern (CH)

Ezequiel Garcia Morabito,
U Bern (CH)

 Andreas GÄRTNER, Senckenberg Dresden

Andreas Gärtner,
Senckenberg Dresden

Luisa von Albedyll, AWI Potsdam

Luisa von Albedyll, Alfred Wegener Institute Potsdam 

 Lars ZIPF, U Heidelberg

Lars Zipf, U Heidelberg

 Jane Lund Andersen

Jane Lund Andersen, U Aarhus (DK) 

Elisa PERNAK

Elisa Pernak, TUBA Freiberg 

Swenja Rosenwinkel, U Potsdam

Swenja Rosenwinkel, U Potsdam 

Tomas STOR, Charles Universität, Prag (CZ)

Tomas Stor, Charles University, Prag (CZ)

Michaela Srncik, ANU

Michaela Fröhlich (nee Srncik), Australian National University (AUS)

Darío Rodrigues, TANDAR

Darío Rodrigues, TANDAR, Buenos Aires (AR)

Marie KANSTRUP, U Aarhus, DK

Marie Kanstrup, U Aarhus (DK)

Thomas SMITH, U Bern

Thomas Smith, U Bern (CH)

Cornelia Wilske

Cornelia Wilske, UFZ Halle

Vasila Sulaymonova

Vasila Sulaymonova, TUBA Freiberg

Guillem Domènech i Surinyach (Universitat Politècnica de Catalunya)

Guillem Domènech i Surinyach, U Politècnica de Catalunya (E)

Lisa Michel und Rebecca Schmidt

Lisa Michel & Rebecca Schmidt, TU Dresden

Angela Landgraf, U Potsdam

Angela Landgraf, U Potsdam

Peter Ludwig, TU Munich

Peter Ludwig, TU Munich

Jenny Feige

Jenny Feige, VERA, U Vienna (A)

Anna Seither, TUBAF

Anna Seither, TUBA Freiberg

HUTZLER, Aurore

Aurore Hutzler, CEREGE, Aix-en-Provence (F)

Ines Röhringer

Ines Röhringer, U Bayreuth

Cengiz YILDIRIM (GZF/U Potsdam)

Cengiz Yilderim, U & GFZ Potsdam

Maggi Fuchs & Katja Klemm (TUBA Freiberg)

Maggi Fuchs & Katja Klemm, TUBA Freiberg

Bernhard Kuczewski

Bernhard Kuczeweski, U Cologne

Working in the AMS chemistry lab

Christoff Andermann, TUBA Freiberg & U Rennes (F)

Target preparation for AMS measurements @ DREAMS (Power-Point-/Movie-Animation; 154 MB!!!)

Download

Visiting DREAMS to learn more about it

Students from TU Berlin, Lecture  

We are proud of DREAMS and our work! We love to explain how and why! Please contact us to schedule your visit!

The picture shows students from TU Berlin, Lecture "Nuclear astrophysics", with Jenny Feige (TUB) and Georg Rugel (HZDR) in front of the DREAMS accelerator tank.

Next beam times:

  • 5.-9. September 2016
  • 10.-14. October 2016
  • 7.-11. November 2016
  • 12.-16. December 2016

Nach Oben


References

G. Rugel, S. Pavetich, S. Akhmadaliev, S.M. Enamorado Baez, A. Scharf, R. Ziegenrücker, S. Merchel, The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data, Nucl. Instr. and Meth. in Phys. Res. B 370 (2016) 94-100.

Download-Button

S. Akhmadaliev, R. Heller, D. Hanf, G. Rugel, S. Merchel, The new 6 MV AMS-facility DREAMS at Dresden, Nucl. Instr. and Meth. in Phys. Res. B 294 (2013) 5-10.
Download

S. Merchel, S. Akhmadaliev, S. Pavetich, G. Rugel, Ungeduldige Forscher träumen mit DREAMS - Bestimmung langlebiger Radionuklide mit Beschleunigermassenspektrometrie, GIT Labor-Fachzeitschrift 56 (2012) 88-90.
Download


Useful links

Video about 14C-dating @ GNS, New Zealand (in English)

Animation about 14C AMS @ ANSTO, Austrailia (in English)

Talk about "Accelerator Mass Spectrometry in Biology and Health Care" (Science on Saturday, LLNL, USA, in English)

Video about 26Al/10Be-dating of the "Peking Man" @ PRIME Lab, USA (in English)

Cosmogenic nuclides in meteorites and AMS for "German dummies" (in German)

Further information "Cosmic radiation" und "Cosmogenic nuclides" (in German)


Please contact Silke Merchel for further information or have a look at the following papers:

Further reading particularly with respect to terrestrial produced cosmogenic radionuclides

  • Reviews

P. R. Bierman, Rock to sediment – slope to sea with 10Be – rates of landscape change, Ann. Rev. Earth Planet. Sci. 32 (2004) 215-225.

T. E. Cerling, H. Craig. Geomorphology & in-situ cosmogenic isotopes, Ann. Rev. Earth Planet. Sci. 22 (1994) 273-317.

J. C. Gosse, F. M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Science Review 20 (2001) 1475-1560.

S. Ivy-Ochs, M. Schaller, Examining Processes and Rates of Landscape Change with Cosmogenic Radionuclides, In: Radioactivity in the Environment, Chapter 6, 16 (2009) 231-294.

W. Kutschera, Progress in isotope analysis at ultra-trace level by AMS, International Journal of Mass Spectrometry 242 (2005) 145-160.

A. E. Litherland, X-L. Zhao, W. E. Kieser, Mass spectrometry with accelerators, Mass Spectrometry Reviews 30 (2011) 1037-1072.

P. Muzikar, D. Elmore, D.E. Granger, Accelerator mass spectrometry in geologic research, GSA Bulletin 115 (2003) 643-654.

  • Chemical separation: 10Be und 26Al

E. T. Brown, J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, E. J. Brook, Examination of surface exposure ages of Antarctic moraines using in-situ produced 10Be and 26Al, Geochim. Cosmochim. Acta 55 (1991) 2269-2283.

R. G. Ditchburn. N. E. Whitehead, The separation of 10Be from silicates, 3rd Workshop of the South Pacific Environmental Radioactivity Association (1994) 4-7. / expanded description on http://depts.washington.edu/cosmolab/chem.shtml

C. P. Kohl, K. Nishiizumi, Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Acta 56 (1992) 3583-3587.

S. Merchel, U. Herpers, An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry, Radiochim. Acta 84 (1999) 215-219.
Download-Button

  • Chemical separation: 36Cl

S. Jiang, Y. Lin, H. Zhang, Improvement of the sample preparation method for AMS measurement of 36Cl in natural environment, Nucl. Instr. and Meth. in Phys. Res. B223-224 (2004) 318-322.

S. Merchel, U. Herpers, An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry, Radiochim. Acta 84 (1999) 215-219.
Download-Button

S. Merchel, R. Braucher, V. Alfimov, M. Bichler, D.L. Bourlès, J.M. Reitner, The potential of historic rock avalanches and man-made structures as chlorine-36 production rate calibration sites, Quat. Geochron. 18 (2013) 54-62.
Download

J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60 (1996) 679-692. / expanded description on http://depts.washington.edu/cosmolab/chem.shtml

  • Accelerator mass spectrometry

R. C. Finkel, M. Suter, AMS in the Earth Sciences: Technique and Applications, Advances in Analytical Geochemistry 1 (1993) 1-114.

S. Merchel, M. Arnold, G. Aumaître, L. Benedetti, D. L. Bourlès, R. Braucher, V. Alfimov, S. P. H. T. Freeman, P. Steier, A. Wallner, Towards more precise 10Be and 36Cl data from measurements at the 10-14 level: Influence of sample preparation, Nucl. Instr. and Meth. in Phys. Res. B266 (2008) 4921-4926.
Download

C. Tuniz, J. R. Bird, D. Fink, G. F. Herzog, Accelerator Mass Spectrometry, CRC Press (1998).

  • Production rates

J.M. Licciardi, C.L. Denoncourt, R.C. Finkel, Cosmogenic 36Cl production rates from Ca spallation in Iceland, Earth Planet. Sci. Lett. 267 (2008) 365-377.

J. Masarik, K. J. Kim, R. C. Reedy, Numerical simulation of in situ production of terrestrial cosmogenic nuclides, Nucl. Instr. and Meth. in Phys. Res. B259 (2007) 642-645.

K. Nishiizumi, E. L. Winterer, C. P. Kohl, J. Klein, R. Middleton, D. Lal, J. R. Arnold, Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res. 94 (1989) 17907-17915.

F. M. Phillips, W. D. Stone, J. T. Fabryka-Martin, An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface, Chemical Geology 175 (2001) 689-701.

I. Schimmelpfennig, Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates, Quaternary Geochronology 4 (2009) 441-461.

J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60 (1996) 679-692.

J. O. H. Stone, J. M. Evans, L. K. Fifield, G. L. Allan, R. G. Cresswell, Cosmogenic chlorine-36 production in calcite from muons, Geochim. Cosmochim. Acta 62 (1998) 433-454.

  • Scaling factors

D. Desilets, M. Zreda, Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating, Earth Planet. Sci. Lett. 206 (2003) 21-42.

T. J. Dunai, Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical re-evaluation, Earth Planet. Sci. Lett. 176 (2000) 157-169.  See also comments by Desilets et al. 188 (2001) 283-287 and reply by Dunai 188 (2001) 289-298.

T. J. Dunai, Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides, Earth Planet. Sci. Lett. 193 (2001) 197-212.

D. Lal, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett. 104 (1991) 424-439.

J. Masarik, M. Frank, J. M. Schäfer, R. Wieler, Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variation during the past 800,000 years, Geochim. Cosmochim. Acta 65 (2001) 2995-3003.

N. A. Lifton, J. W. Bieber, J. M. Clem, M. L. Duldig, P. Evenson, J. E. Humble, R. Pyle, Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications, Earth Planet. Sci. Lett. 239 (2005) 140-161.

N. Lifton, D. F. Smart, M. A. Shea, Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model, Earth Planet. Sci. Lett. 268 (2008) 190-201.

J. S. Pigati, N. A. Lifton, Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be, Earth Planet. Sci. Lett. 226 (2004) 193-205.

J. O. Stone, Air pressure and cosmogenic isotope production, J. Geophys. Res. 105 (2000) 23753-23759.

  • Dating of groundwater

IAEA - Isotope methods for dating old groundwater, Vienna: International Atomic Energy Agency, 2013, ISBN 978–92–0–137210–9, 379 pages.

Download

J.A. Corcho Alvarado, R. Purtschert, K. Hinsby, L. Troldborg, M. Hofer, R. Kipfer, W. Aeschbach-Hertig, H. Arno-Synal, 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr): a case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark, Applied Geochemistry 20 (2005) 599-609.

S. N. Davis, S. Moysey, L. DeWayne Cecil, M. Zreda, Chlorine-36 in groundwater of the United States: empirical data, Hydrogeology Journal 11 (2003) 217-227.

V. Lavastre, C. Le Gal La Salle, J. L. Michelot, S. Giannesini, L. Benedetti, J. Lancelot, B..Lavielle, M. Massault, B. Thomas, E. Gilabert, D. Bourlès, N. Clauer, P. Agrinier, Establishing constraints on groundwater ages with 36Cl, 14C, 3H, and noble gases: A case study in the eastern Paris basin, France, Applied Geochemistry 25 (2010) 123-142 (and erratum).

M.J. Lenahan, D.M. Kirste, D.C. McPhail, L.K. Fifield, Cl- AND 36Cl DISTRIBUTION IN A SALINE AQUIFER SYSTEM: CENTRAL NEW SOUTH WALES, AUSTRALIA, In: Roach I.C. ed. 2005. Regolith 2005 – Ten Years of CRC LEME. CRC LEME (2005) 187-190.

C. Münsterer, J. Fohlmeister, M. Christl, A. Schröder-Ritzrau, V. Alfimov, S. Ivy-Ochs, A. Wackerbarth, A. Mangini, Cosmogenic 36Cl in karst waters from Bunker Cave North Western Germany – A tool to derive local evapotranspiration?, Geochim. Cosmochim. Acta 86 (2012) 138-149. 

E. Nolte, P. Krauthan, G. Korschinek, P. Maloszewski, P. Fritz, M. Wolf, Measurements and interpretations of 36Cl in groundwater, Milk River aquifer, Alberta, Canada, Applied Geochemistry 6 (1991) 435-445.

J. Park, C.M. Bethke, T. Torgersen, T.M. Johnson, Transport modeling applied to the interpretation of groundwater 36Cl age, WATER RESOURCES RESEARCH 38 (2002) 1043.


  • House advertising - some of our latest publications ;-)

2016

A. Landgraf, A. Djumabaeva, K.E. Abdrakhmatov, M. Strecker, E.A. Macaulay, J.R. Arrowsmith, F. Preusser, H. Sudhaus, G. Rugel, S. Merchel, Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: the northern Tien Shan, Kyrgyzstan, accepted for publication in Journal of Geophysical Research: Solid Earth.
Download-Button

P. Ludwig, S. Bishop, R. Egli, V. Chernenko, B. Deneva, T. Faestermann, N. Famulok, L. Fimiani, J.M. Gómez-Guzmán, K. Hain, G. Korschinek, M. Hanzlik, S. Merchel, G. Rugel, Time-Resolved Two Million Year Old Supernova Activity Discovered in the Earth's Microfossil Record, Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Download-Button

G. Rugel, S. Pavetich, S. Akhmadaliev, S.M. Enamorado Baez, A. Scharf, R. Ziegenrücker, S. Merchel, The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data, Nucl. Instr. and Meth. in Phys. Res. B 370 (2016) 94-100.

Download-Button

W. Schwanghart, A. Bernhardt, A. Stolle, P. Hoelzmann, B.R. Adhikari, C. Andermann, P. Hölzmann, S. Tofelde, S. Merchel, G. Rugel, M. Fort, O. Korup, Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya, Science 351 (2016) 147-150.
Download-Button

A. Wallner, J. Feige, N. Kinoshita, M. Paul, L.K. Fifield, R. Golser, M. Honda, U. Linnemann, H. Matsuzaki, S. Merchel, G. Rugel, S. Tims, P. Steier, T. Yamagata, S.R. Winkler, Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe, Nature 532 (2016) 69-72.
Download-Button

L. Zipf, S. Merchel, P. Bohleber, G. Rugel, A. Scharf, Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis, Results in Physics 6 (2016) 78-79.
Download-Button

2015

M.C. Fuchs, R. Gloaguen, S. Merchel, E. Pohl, V. A. Sulaymonova, C. Andermann, G. Rugel, Denudation rates across the Pamir based on 10Be concentrations in fluvial sediments: dominance of topographic over climatic factors, Earth Surf. Dynam. 3 (2015) 423-439.

Download-Button

M.C. Fuchs, R. Gloaguen, S. Merchel, E. Pohl, V.A. Sulaymonova, C. Andermann, G. Rugel, Millennial erosion rates across the Pamir based on 10Be concentrations in fluvial sediments: Dominance of topographic over climatic factors, Earth Surf. Dynam. Discuss. 3 (2015) 83-128.

2014

S. Merchel, I. Mrak, R. Braucher, L. Benedetti, B. Repe, D.L. Bourlès, J.M. Reitner, Surface exposure dating of the Veliki vrh rock avalanche in Slovenia associated with the 1348 earthquake, Quat. Geochron. 22 (2014) 33-42.

Download

U. Ott, S. Merchel, S. Herrmann, S. Pavetich, G. Rugel, T. Faestermann, L. Fimiani, J.M. Gomez-Guzman, K. Hain, G. Korschinek, P. Ludwig, M. D’Orazio, L. Folco, Cosmic ray exposure and pre-atmospheric size of the Gebel Kamil iron meteorite, Meteorit. Planet. Sci. 49 (2014) 1365-1374.

Download

S. Pavetich, S. Akhmadaliev, M. Arnold, G. Aumaître, D. Bourlès, J. Buchriegler, R. Golser, K. Keddadouche, M. Martschini, S. Merchel, G. Rugel, P. Steier, Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry, Nucl. Instr. and Meth. in Phys. Res. B 329 (2014) 22-29.

Download

D. Rodrigues, G. Korschinek, S. Merchel, G. Rugel, A. Arazia, G. V. Martí, APLICACION DE LA TECNICA DE ESPECTROMETRIA DE MASAS CON ACELERADORES EN EL ESTUDIO DE LA DINAMICA DE SEDIMENTOS SUBMARINOS, ANALES AFA (Asociación Física Argentina) 25 (2014) 51-55.


 M. Wiedenbeck, L.P. Bédard, R. Bugoi, M. Horan, K. Linge, S. Merchel, L.F.G. Morales, D. Savard, A.K. Souders, P. Sylvester, Critical Review of Analytical Developments Since 2012, Geostandards and Geoanalytical Research 38 (2014) 467-512.

2013

S. Akhmadaliev, R. Heller, D. Hanf, G. Rugel, S. Merchel, The new 6 MV AMS-facility DREAMS at Dresden, Nucl. Instr. and Meth. in Phys. Res. B 294 (2013) 5-10.
Download

M. Arnold, G. Aumaître, D.L Bourlès, K. Keddadouche, R. Braucher, R.C Finkel, E. Nottoli, L. Benedetti, S. Merchel, The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I, Nucl. Instr. and Meth. in Phys. Res. B 294 (2013) 24-28.
Download

K. Hahne, R. Naumann, S. Niedermann, H.-U. Wetzel, S. Merchel, G. Rugel, Geochemische Untersuchungen an Moränen des Inylchek-Gletschers im Tien Shan, System Erde. GFZ-Journal 3 (2) (2013) 44-49.

Download

D. Hampe, B. Gleisberg, S. Akhmadaliev, G. Rugel, S. Merchel, Determination of 41Ca with LSC and AMS: method development, modifications and applications, Journal of Nuclear and Radioanalytical Chemistry 296 (2013) 617-624.
Download   

J. Llorca, J. Roszjar, J.A. Cartwright, A. Bischoff, A. Pack, U. Ott, S. Merchel, G. Rugel, L. Fimiani, P. Ludwig, D. Allepuz, J.V. Casado, The Ksar Ghilane 002 shergottite – the 100th registered Martian meteorite fragment, Meteorit. Planet. Sci. 48 (2013) 493–513.

Download
S. Merchel, R. Braucher, V. Alfimov, M. Bichler, D.L. Bourlès, J.M. Reitner, The potential of historic rock avalanches and man-made structures as chlorine-36 production rate calibration sites, Quat. Geochron. 18 (2013) 54-62.
Download
S. Merchel, W. Bremser, D.L. Bourlès, U. Czeslik, J. Erzinger, N.-A. Kummer, L. Leanni, B. Merkel, S. Recknagel, U. Schaefer, Accuracy of 9Be-data and its influence on 10Be cosmogenic nuclide data, J. Radioanal. Nucl. Chem. 298 (2013) 1871-1878.
Download

C. Yildirim, T.F. Schildgen, H. Echtler, D. Melnick, B. Bookhagen, A. Çiner, S. Niedermann, S. Merchel, M. Martschini, P. Steier, M. R. Strecker, Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides, Tectonics 32 (2013) 1107-1120.
Download

R. Zech, I. Röhringer, P. Sosin, H. Kabgov, S. Merchel, S. Akhmadaliev, W. Zech, Late Pleistocene glaciation in the Gisssar Range, Tajikistan, based on 10Be surface exposure dating, Palaeogeography, Palaeoclimatology,        Palaeoecology 369 (2013) 253-261.

Download

2012

S. Merchel, S. Akhmadaliev, S. Pavetich, G. Rugel, Ungeduldige Forscher träumen mit DREAMS - Bestimmung langlebiger Radionuklide mit Beschleunigermassenspektrometrie, GIT Labor-Fachzeitschrift 56 (2012) 88-90.
Download

S. Merchel, W. Bremser, S. Akhmadaliev, M. Arnold, G. Aumaître, D. L. Bourlès, R. Braucher, M. Caffee, M. Christl, L. K. Fifield, R. C. Finkel, S. P. H. T. Freeman, A. Ruiz-Gómez, P. W. Kubik, M. Martschini, D. H. Rood, S. G. Tims, A. Wallner, K. M. Wilcken, S. Xu, Quality assurance in accelerator mass spectrometry: Results from an international round-robin exercise for 10Be, Nucl. Instr. and Meth. in Phys. Res. B. 289 (2012) 68-73.
Download

2011

R. Braucher, S. Merchel, J. Borgomano, D.L Bourlès, Production of cosmogenic radionuclides at great depth: A multi element approach, Earth Planet. Sci. Lett. 309 (2001) 1-9.
Download

S. Merchel, W. Bremser, V. Alfimov, M. Arnold, G. Aumaître, L. Benedetti, D. L. Bourlès, M. Caffee, L. K. Fifield, R. C. Finkel, S. P. H. T. Freeman, Y. Matsushi, D. H. Rood, K. Sasa, P. Steier, T. Takahashi, M. Tamari, S. G. Tims, Y. Tosaki,  K. M. Wilcken, S. Xu, Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study, Anal. Bioanal. Chem. 400 (2011) 3125-3132.
Download

2010

M. Altmaier, U. Herpers, G. Delisle, U. Ott, S. Merchel, Glaciation history of Queen Maud Land (Antarctica) using in-situ produced cosmogenic 10Be, 26Al and 21Ne, Polar Science 4 (2010) 42-61.
Download

M. Arnold , S. Merchel, D.L. Bourlès, R. Braucher, L. Benedetti, R.C. Finkel, G. Aumaître, A. Gottdang, M. Klein, The French accelerator mass spectrometry facility ASTER: Improved performance and developments, Nucl. Instr. and Meth. in Phys. Res. B 268 (2010) 1954-1959.
Download

S. Merchel, L. Benedetti, D.L. Bourlès, R. Braucher, A. Dewald, T. Faestermann, R.C. Finkel, G. Korschinek, J. Masarik, M. Poutivtsev, P. Rochette, G. Rugel, K.-O. Zell, A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: 10Be, 26Al, 36Cl and 41Ca from carbonate rocks, Nucl. Instr. and Meth. in Phys. Res. B 268 (2010) 1179-1184.
Download

T. Orlowski, O.Forstner, R. Golser, W. Kutschera, S. Merchel, M. Martschini, A. Priller, P. Steier, C. Vockenhuber, A. Wallner, Comparison of detector systems for the separation of 36Cl and 36S with a 3-MV tandem, Nucl. Instr. and Meth. in Phys. Res. B 268 (2010) 847-850.
Download

P. Steier, R. Golser, W. Kutschera, M. Martschini, S. Merchel, T. Orlowski, A. Priller, C. Vockenhuber, A. Wallner, 36Cl exposure dating with a 3-MV tandem, Nucl. Instr. and Meth. in Phys. Res. B 268 (2010) 744-747.
Download

Nach Oben



Contact

Dr. Silke Merchel
Scientist
Analytics
s.merchelAthzdr.de
Phone: +49 351 260 - 2802, 3701
Fax: +49 351 260 - 12802