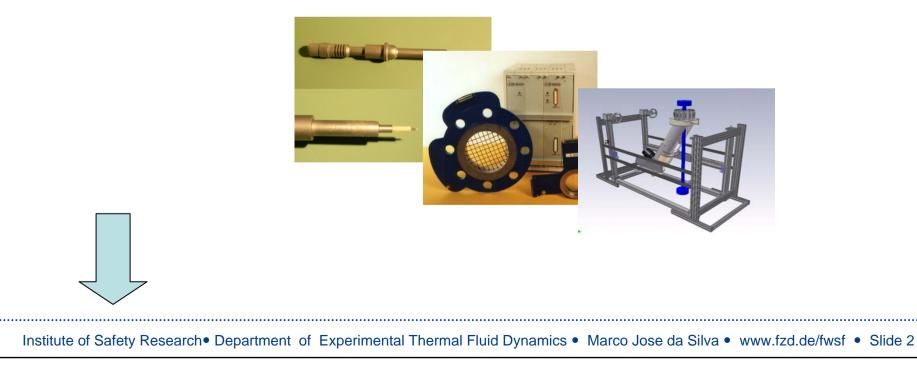
Special Sensors for the Process Industry

Technology transfer at the Institute of Safety Research

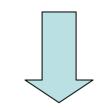
ForMaT – a BMBF-initiative

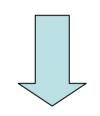
Institute of Safety Research • Department of Experimental Thermal Fluid Dynamics • www.fzd.de/fwsf • Member of Leibniz-Gemeinschaft


Starting Point

Broad portfolio of sensor technologies at Research Center Dresden-Rossendorf

Unique Expertise:


Imaging techniques and local process sensors for rough operational conditions


Starting Point

So far focusing on instruments for research purposes only

Goal: Transfer from low-volume, scientific instruments to products ready for the market

<u>The way:</u> ForMaT initiative subsidized by BMBF (analysis of opportunities)

Federal Ministry of Education and Research

Team

Dr. Uwe Hampel Head of Division ext.: -2772

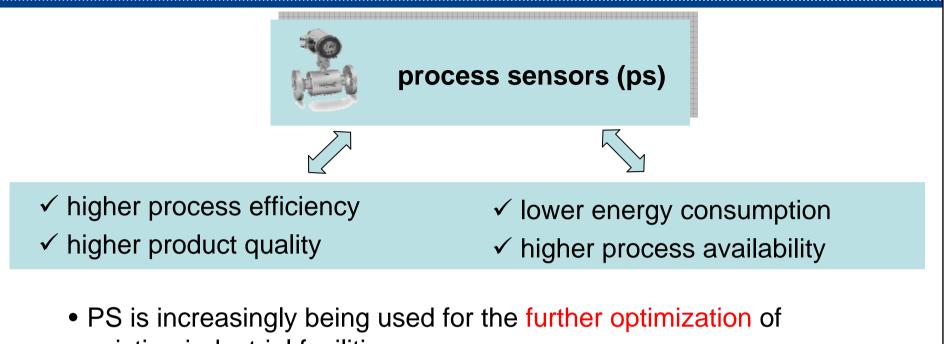
Dr. Marco Jose Da Silva Research Associate ext.: -2467

Eckhard Schleicher Research Associate ext.: -3230

Sebastian Thiele PhD student ext.: -2320

Robert Schmid MBE project assistant ext.: -2037

Tobias Hauptmann MBE project assistant ext.: -2037


Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research Experimental Thermal Fluid Dynamics Division Bautzner Landstr. 400 01328 Dresden

www.fzd.de/FWS/format Phone: +49 351 260 - 0

- existing industrial facilities
- PS can measure process information as well as inter- and trend information for control purposes
- Process data with higher accuracy are required for specific applications
- Necessity of measuring spatial distribution of process data

*NAMUR & VDI/VDE GMA Technology Roadmap Process-Sensors 2005-2015

Visions

Requirements on sensors for industrial applications

- possibility to operate in the process
- real-time measurement with sufficient sampling frequency
- reflect current developments and trends of process parameters
- visualize interfaces or phases
- low cost
- failure-free
- intuitive to operate

Visions

Multiphase flows

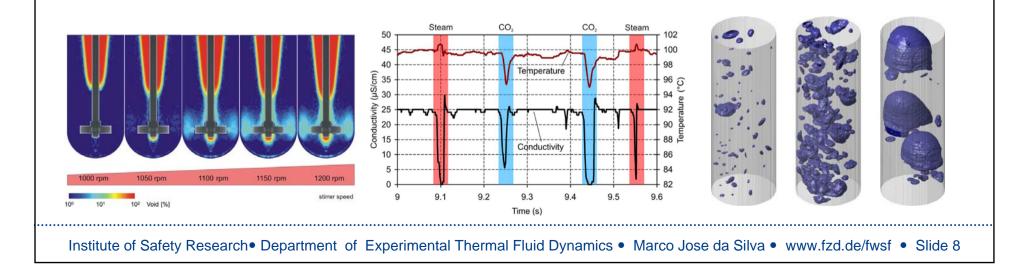
... have specific requirements on sensors

fast measurement of

- phase distribution
- particle size distribution
- phase velocities
- interfacial area density
- temperature and component concentration in each single phase

Flow

gas

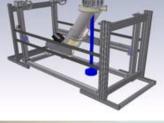

liquid

particles

Measurement of multiphase flows is a main focus of research at Forschungszentrum Dresden-Rossendorf

Our expertise

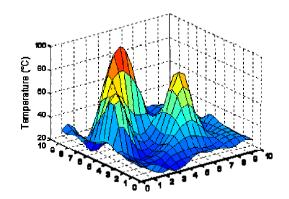
- phase measurement (for instance gas fraction)
- temperature field measurement
- imaging and spatial-resolved measurement techniques
- high-speed measurements and data acquisition
- sensor for high pressures and temperatures

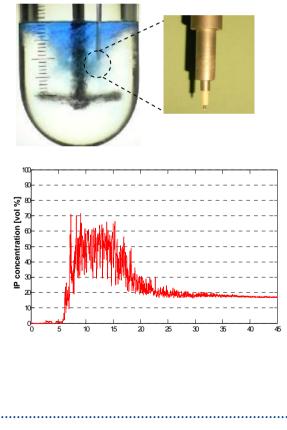


What we have to offer, what we want...

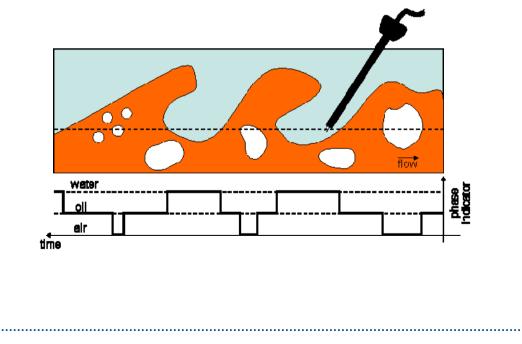
Technically matured sensors

- Needle probes
- Wire-mesh sensors
- Tomography
- Multi-channel, fast temperature measurement
- Optical flow microscope

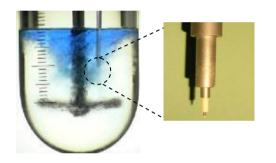


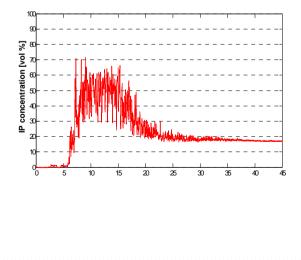

Sensor concepts in the stage of development

- Multiphase flow meter
- Temperature field measurement
- Velocity field measurement
- Autonomous process sensor


Needle Probes

Fast local measurement of phase, concentration and temperature


Functional principle


- Fast local measurement of impedance, phase indicator and/or temperature in process
- Temperature measurement up to 1 kHz, 0.5 K
- Phase measurement up to 10 kHz
- High accuracy of measurement due to triaxial electrode configuration
- Robust design

Needle Probes

Fast local measurement of phases, concentrations and temperatures

Functional principle

- Fast local measurement of impedance, phase indicator and/or temperature in process
- Temperature measurement up to 1 kHz, 0.5 K
- Phase measurement up to 10 kHz
- High accuracy of measurement due to triaxial electrode configuration
- Robust design

Fields of Application

- Power plants
- Chemical reactor
- Process engineering

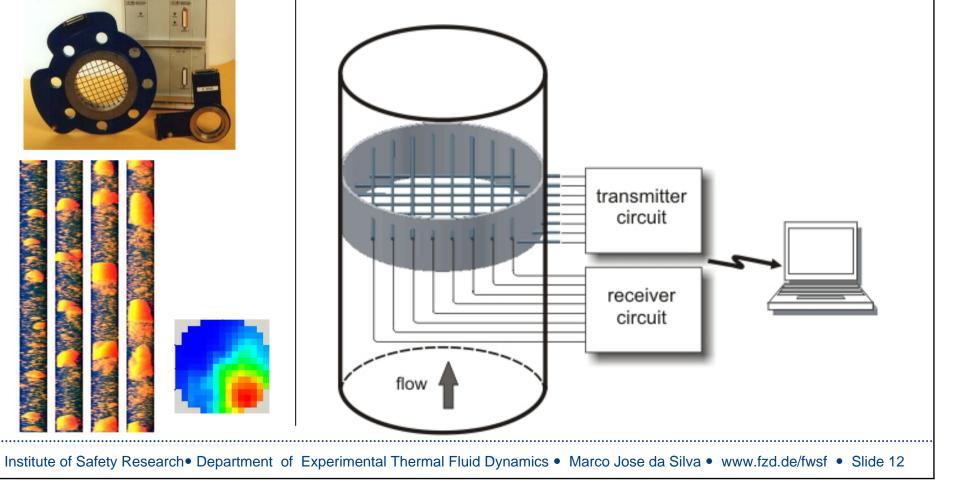
Operational Conditions

- Temperature up to 300°C
- Pressure up to 20 MPa

Status

small series

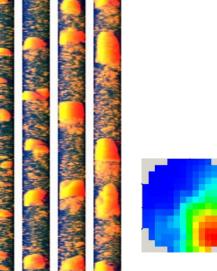
Costs


approx. 10 kEUR / system

Wire-mesh sensors

Visualization of phases and interfaces

Functional principle


- Fast two-dimensional measurement of phases in cross-sections of vessels
- Visualization of flows with extreme velocity (10,000 frames per second)

Wire-mesh sensors

Visualization of phases and interfaces

Functional principle

- Fast two-dimensional measurement of phases in cross-sections of vessels
- Visualization of flows with extreme velocity (10.000 frames per second)

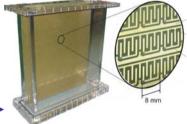
Fields of Application

- Fluid flow in pipes
- Chemical reactors
- Components of industrial facilities
- Filter systems
- Dynamic fluid level measurement —

Operational Conditions

- Temperature up to 250°C
- Pressure up to 7 MPa
- Flow velocity up to 10 m/s

Status


small series

Costs

approx. 70 kEUR / system

Institute of Safety Research • Department of Experimental Thermal Fluid Dynamics • Marco Jose da Silva • www.fzd.de/fwsf • Slide 13

Planar array sensor

Fast, Multi-channel Temperature Measurement

Functional Principle

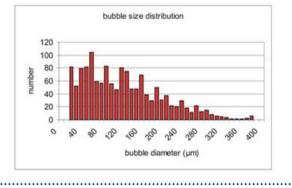
- 200-channel measurement system for parallel temperature data acquisition at 1 kHz
- use of micro-thermocouples
- measurement uncertainty of 0.5 K

Fields of Application

- Power plants
- Process Engineering
- Monitoring systems for industrial facilities, components and buildings
- overall there, where IR-cameras are not suitable

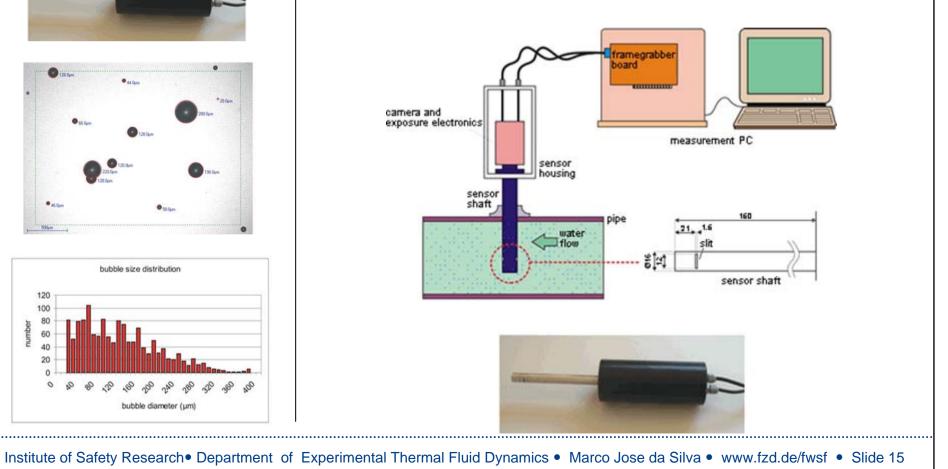
Operational Conditions

• Temperature up to 250°C


Status Costs prototype

approx. 50 kEUR / system

Optical Flow Microscopes



Functional Principle

- Transmitted light images of particles using endoscopic imaging systems
- Developed for high pressure and temperature
- Image resolution up to 30 Hz (increase is possible)
- Resolution approx. 3 µm

Optical Flow Microscopes

bubble size distribution

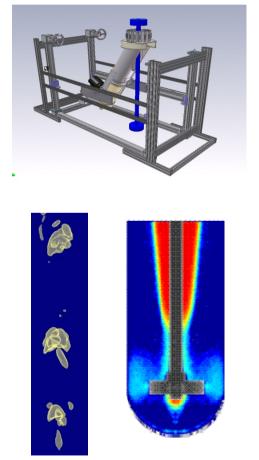
Functional Principle

- Transmitted light images of particles using endoscopic imaging systems
- Developed for high pressure and temperature
- Image resolution up to 30 Hz (increase is possible)
- Resolution approx. 3 µm

Fields of Application

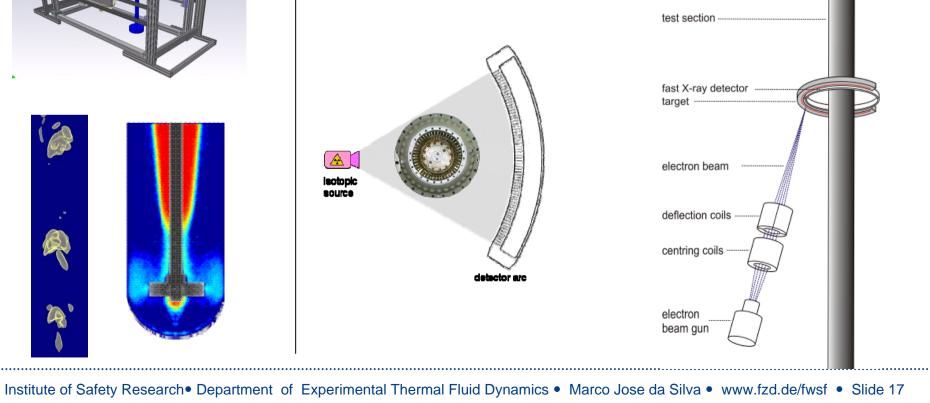
- Power plants
- Process engineering
- Particle technology

Operational Conditions

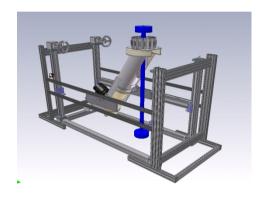

- Pressure up to 8 MPa
- Temperature up to 200°C

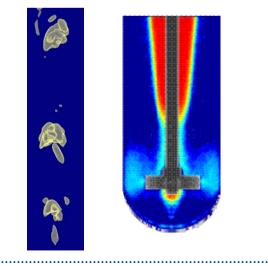
Status Costs

approx. 50 kEUR / system


prototype

Radiation-based techniques




Functional Principle

- Non-invasive density measurement or cross-section imaging of processes using x-rays or gamma-rays
- densitometry single-beam density measurement
- γ -ray tomography cross-sectional imaging with rotating scanner
- <u>x-ray tomography</u> fast imaging with electron beam scanner

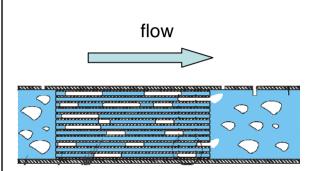
Radiation-based techniques

Functional Principle

- Non-invasive density measurement or cross-section imaging of processes using x-rays or gamma-rays
- <u>densitometry</u> single-beam density measurement
- <u>γ-ray tomography</u> cross-sectional imaging with rotating scanner
- <u>x-ray tomography</u> fast imaging with electron beam scanner

Fields of Application

- Phase measurement in laboratory, pilot plants or real industrial facilities
- Non-destructive testing


Status

- Devices for services are available
- Construction of scanners is possible

Sensors and Measurement Systems in Development

74

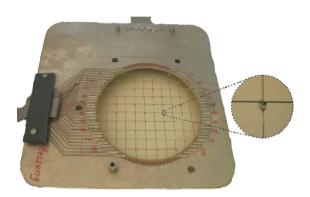
Multiphase Flow Meter

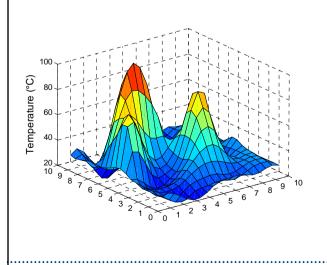
Functional Principle

- Separated measurement of phase volume fractions and phase velocities in flow of mixtures based on the principle of wire-mesh sensors
- Calculation of partial volume flows based on acquired data

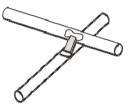
Fields of Application

- Process Engineering
- Power Plants
- Oil Industry



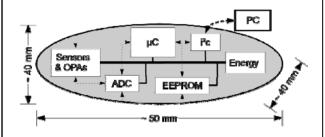


Sensors and Measurement Systems in Development


Temperature field and velocity field measurement

Functional Principle

- Two-dimensional, fast measurement of temperature or flow velocity (anemometry)
- use of advanced wire-mesh sensor technology (intelligent crossing points)



Fields of Application

- Power plants
- Process engineering
- Drying plants
- Agriculture
- Monitoring of industrial facilities

Sensors and Measurement Systems in Development

Autonomous process sensors

Functional Principle

- Battery-operated particles at the size of table tennis balls for continuous acquisition of process data
- For processes that are of difficult access

Fields of Application

- Biogas fermenter
- Cleaning stations
- Monitoring systems for food and animal feed
- Food technology
- Process engineering in general

Questions for you

7

- 1. Are you interested in the presented sensor systems?
- 2. Where do you need....
 - imaging
 - fast
 - robust

measurement systems in your processes, equipments or facilities?

- 3. Which fields of application can you identify?
- 4. What are the technical requirements?
- 5. To what extend would you apply the new measurement systems?
- 6. Are there any other interested parties?