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Kurzfassung:

Die Beschreibung der thermodynamischen Eigenschaften eines heißen Plasmas
stark wechselwirkender Materie ist von großer Bedeutung in verschiedenen Feldern
der Physik, wie der Astrophysik, der Kosmologie und der Physik der Schwerionen-
stöße. Das Quasiteilchenmodell, welches auf Quark- und Gluonfreiheitsgraden basiert,
wurde entwickelt, um die Thermodynamik eines solchen Plasmas zu beschreiben.

In dieser Diplomarbeit wird das Quasiteilchenmodell mit Hilfe des CJT-For-
malismus mit einem Zwei-Loop-Funktional Γ2 systematisch unter Einbeziehung
von Effekten endlicher Breiten, Dämpfungsmechanismen, insbesondere Landau-
Dämpfung, und kollektiver Moden abgeleitet. Die Resultate werden mit QCD-
Gitterrechnungen für das reine SU(3)- und das Quark-Gluon-Plasma mit 2 und
2+1 Quarkflavors bei endlichen Temperaturen und endlichem chemischen Potential
verglichen.

Abstract:

The description of the thermodynamic properties of a hot plasma of strongly
interacting matter is of importance in various fields of physics such as astrophysics,
cosmology and relativistic heavy-ion collisions. The quasiparticle model, which is
based on quark and gluon degrees of freedom, was developed in order to describe
the thermodynamics of such a plasma.

In the present thesis, the quasiparticle model is systematically derived from the
CJT formalism with a 2-loop functional Γ2 in order to take into account effects of
finite particle widths, damping mechanisms with emphasis on Landau damping and
collective excitations. The results are compared to QCD lattice calculations at finite
temperature and chemical potential for the pure SU(3) and the quark-gluon plasma
with 2 and 2 + 1 quark flavors.
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1 Introduction

1.1 Standard model of particle physics

According to the standard model of particle physics, the essential building blocks
of matter consist of two classes of fundamental particles: leptons and quarks (and
their corresponding antiparticles), see Figure 1.1. These spin-1/2 particles (fermions)
interact via four fundamental forces: gravity, weak, electromagnetic and strong
interaction - in order of rising strength.

Except for gravity, the interactions can be described by gauge field theories.
Within these theories an interaction is described through the exchange of gauge
bosons (particles with integer spin, here spin-1). The quantum field theoretical
treatment of gravity has not yet reached a satisfying level to be included into the
standard model - but quite a few proposals (M-theory, loop quantum gravity, etc.)
exist. Another area of large interest is the search for the still missing Higgs boson,
which is supposed to generate the masses of weak gauge bosons and also part of the
fermion masses.

The strength of an interaction is given by its coupling constant. It turns out, that
this quantity is not constant at all, but depends on the distance of the interacting
particles. This is due to the vacuum not being empty either, but instead consisting of
quantum fluctuations allowed by Heisenberg’s uncertainty principle [Hei27]. In the
case of Quantum Electrodynamics (QED) they mainly consist of electron-positron
pairs which depict virtual dipoles. They increasingly screen the charged particles
with growing distance (or, analogously, small momentum transfer) leading to a
decreasing coupling “constant” αem.

At very high energies (∼ 1015 GeV), the coupling constants of weak, strong and
electromagnetic interaction seem to merge. This gives rise to the hope that all
fundamental forces can be unified into one which was split during the first moments
after the Big Bang. With the exception of the electroweak interaction as unification
of electromagnetic and weak forces, this has yet to be achieved.
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Figure 1.1: Elementary particles according to the standard model (Higgs and antiparticles
omitted).
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Figure 1.2: Naive pictorial representation of a proton (p) and a neutron (n) as composites
of up (u) and down (d) quarks. Wiggly lines schematically indicate gluons as carriers of the
strong force. Derived from [KSS06].

The focus of the work is the description of properties of strongly interacting
matter. The corresponding gauge field theory is called Quantum Chromodynamics
(QCD).

1.2 Quantum Chromodynamics

In analogy to QED, which very accurately describes electromagnetic interactions as
exchange of photons between electrically charged particles, strong interactions arise
from an exchange of gluons between quarks that carry an additional “color charge”.
While the electrical charge can be described in terms of an elementary charge e, the
color charge of quarks has three possible values which are illustrated as colors (thus
the prefix chromo).

Quarks of different colors are attracted to each other just as particles of different
electrical charges are - which means that only “white” (neutral color charge) particles
are stable. Employing the notion of constituent1 quarks, this can be achieved either
by a quark-antiquark pair with opposite colors (called meson, e.g. composed of a
red and an anti-red quark) or three quarks of a different color each (called baryon,
e.g. composed of one red, one green and one blue quark). Our surrounding matter
is essentially made of protons, neutrons and electrons. While the electron is one
of the leptons and therefore fundamental, the proton and the neutron are baryons
composed of up and down constituent quarks (Figure 1.2).

While QED has a simple gauge group structure, namely U(1), leading to only
one gauge boson (the photon), the non-Abelian SU(3) gauge group of QCD contains
eight gluons, each carrying a unique color-anticolor combination (except white). In
this way, the gluons are color-charged particles themselves and consequently interact
not only among each other by exchanging further gluons - which in turn interact via
even more gluons - but also with the virtual quarks and gluons of the vacuum.

As a consequence, the strong coupling strength g small for short quark distances
(or high momentum transfers) and increases with growing distance (or decreasing
momentum transfer leading to gluon “inflation” and antiscreening of the quarks).
This effect is called asymptotic freedom.2

1The constituent quarks used to understand hadron spectra have to be distinguished from the
current quarks of the gauge theory. Although they carry the same quantum numbers such as isospin,
strangeness, etc., their masses may differ by several orders of magnitude.

2For the discovery of this phenomenon in 1973 - which led to the widespread acceptance of the
non-Abelian QCD in the following years - D. Gross, D. Politzer and F. Wilczek have been awarded
the Nobel prize in 2004. Asymptotic freedom has been verified, e.g. in deep inelastic scattering
experiments. It is due to this effect that, rather than coupling strength, the notion running coupling
is more accurately being employed for g.
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Even though a mathematical proof is still required, it is assumed that quarks
and gluons can never be observed as isolated particles. The energy spent for the
separation of two color-charged particles leads to another pair being created in
between, thus leaving the experimentalist with two pairs.

The mathematical description of QCD is based on the classical Lagrangian
(cf. [PDG06], p. 110 and p. 319)

LQCD =
∑

q

ψ̄i
q(iγ

µ(Dµ)ij − δijmq)ψj
q −

1
4
F a

µνF
µν
a + Lgauge + LFP, (1.1)

where µ, ν = 0 . . . 3 are Lorentz indices, i, j = 1 . . . 4 are Dirac spinor indices, and
a = 1 . . . 8 is the adjoint color index counting the gluon color states. The sum over
all quark flavors q ε {u, d, c, s, t, b} is given explicitly; for the remaining indices the
Einstein sum convention has to be followed.

The quark fields ψq (color triplets) refer to current quarks. They are coupled
minimally to the gauge sector by the covariant derivative

(Dµ)ij = δij∂µ + ig
(λa)ij

2
Aa

µ, (1.2)

where the Aa
µ represent the gauge fields (gluons) and the λa are the generators of

the local SU(3) gauge group in the fundamental representation.3

The pure Yang-Mills term LYM := −1
4F

a
µνF

µν
a describes the gluons just as any

other gauge boson. For the gluons the field strength tensor is given by

Fµν
a = ∂µAν

a − ∂νAµ
a︸ ︷︷ ︸

in analogy to QED

+ gfabcA
bµAcν︸ ︷︷ ︸

gluon-gluon interaction

. (1.3)

As a result of the additional terms, LYM contains expressions trilinear and quadri-
linear in the gluon fields Aµ

a leading to three- and four-gluon interactions.
The contribution Lgauge fixes the still remaining gauge degree of freedom and

LFP takes care of possibly occurring unphysical degrees of freedom by introducing
Fadeev-Popov ghost fields. A very insightful, deeper look at those phenomena is
given by [GTP11].

The current quark masses mq and the coupling strength g have to be adjusted
to physical observables. Due to renormalization within the quantized theory, the
quantities mq and g entering the classical Lagrangian (1.1) become subject to a
redefinition resulting in a scale dependence. The same holds for matter and gauge
sector fields.

By performing an expansion in terms of its small coupling constant (αem ≈ 1/137
at asymptotically small energy scales), the equations for QED scattering processes,
for instance, can be solved up to a certain energy scale, where it diverges [PS95].
Due to asymptotic freedom, the situation is reversed for the QCD running coupling g
which is smaller than unity only at very high energy or momentum scales. For larger
g, non-perturbative methods are needed in order to solve the QCD field equations.
One way is to discretize space and time and apply Monte Carlo sampling methods.
This approach is called lattice QCD. As an abbreviation, the results of such methods
are dubbed “lattice data”.

3The standard representation of λa are the Gell-Mann matrices. They are the three-dimensional
extension of the Pauli matrices. They form the Lie algebra of SU(3) with commutation relations
[λa, λb] = 2ifabcλ

c, where fabc are the fully antisymmetric structure constants.
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Figure 1.3: A part of the phase diagram of water, showing its three major phases and the
phase transitions. (source: www public domain)

For vanishing quark masses the QCD Lagrangian (1.1) is chirally symmetric,
meaning that both left and right handed world are fully decoupled. Lattice data
is often obtained using unphysically large quark masses and therefore needs to be
extrapolated towards the chiral limit, i.e. the physical mass scales.

Even for small values of g, perturbation theory for a strongly interacting system
can fail at nonzero temperature T despite the use of modern expansion methods
[CH98]. This is due to the energy scale introduced by the temperature which leads
to expansion terms ∼ gT/p [BP90a, BP90b]. These are no longer of order g, but
can be of order unity for a typical momentum scale p of particles in a heat bath of
temperature T . The usual relation of the order of the loop expansion and powers of
g is lost: effects of leading order in g arise from every order in the loop expansion
and one cannot arrange different contributions according to powers of g anymore.
Consequently, in order to still be able to apply perturbative methods, all these terms
need to be taken into account which can be done by resummation techniques.

1.3 The quark-gluon plasma

We experience matter in three different phases: solid, fluid and gaseous. But certain
materials have a much richer phase structure. For instance water can assume twelve
or more different ice phases [LFK98], the usual fluid form or become vapor. These
phases transform into each other with the change of exterior conditions such as
pressure and temperature as depicted in Figure 1.3. These phase transitions are
often combined with tremendous changes in material properties like compressibility,
transparency or electrical conductivity.

If water is brought to sufficiently high temperatures it turns into yet another state:
a plasma consisting of ions and quasifree electrons. Since the transition happens
slowly through ionization of single molecules by collisions it is not considered a phase
change. Still a plasma shows new collective effects such as screening and plasma
oscillations and is therefore often considered as fourth state of matter.
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Figure 1.4: Schematic plot of the phase diagram of strongly interacting matter for constant
volume V and variable net baryon density or baryo-chemical potential µB scaled by a typical
nucleon mass and temperature T scaled by the transition temperature at µB = 0. The
white region for low µB and T represents the hadronic regime, the red region the quark-
gluon plasma with the deconfinement and chiral transition in between. The arrows depict
areas accessible to current and future experiments and the evolutionary path of the universe.
Neutron star matter occupies the region of low temperature and large baryon density (source:
GSI)

The plasma phase can also be reached through compression, by which electrons
are released from their orbitals and form a degenerate quantum plasma. This
transition is a real phase change (an isolator-metal transition) and is observed
e.g. when a star collapses into a White Dwarf (which often cannot further collapse
because of the sufficiently large degeneracy pressure of the electrons).

The nuclei of water molecules consist of protons and neutrons which are again
formed by constituent quark triplets (Figure 1.2) interacting through an exchange of
gluons. Quarks and gluons are confined within the nucleons. Just as - after heating
and compressing it sufficiently - the constituents of water molecules form a plasma,
this strongly interacting matter is presumed to deconfine, i.e. transit into a phase
with much less correlation, often assuming quarks and gluons as freely roaming.
This phase is called the quark-gluon plasma (QGP). Note that although the question
about the nature of the transition (first/second order phase transition or just a
crossover) actually depends on the number of active quark flavors Nf as well as their
masses, the use of the terminology “transition” is widely accepted.

Figure 1.4 shows the presumed phase diagram of strongly interacting matter.
The red region is occupied by deconfined matter, where quarks and gluons are
thought to represent the relevant degrees of freedom. The white region represents
hadronic matter. At the common boundary, strongly interacting matter undergoes
the deconfinement transition.

For small chemical potential and Nf = 2, 2 + 1 the deconfinement transition
is a simple crossover. At the critical point it becomes a real phase transition of
second order turning into first order for larger values of µB. The critical temperature
at vanishing chemical potential is called Tc. The common starting point of the
experiments marks hadrons or nuclei in our environment. Not shown is a possible
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triple point with the color superconducting phase predicted by some authors [RW00].
The arrows indicate the scope of some present and future experiments outlined

within the following chapter.

1.4 Heavy ion collisions and quasiparticles

In order to investigate the properties of deconfined matter, enormous energy scales
are necessary. While they cannot be provided by current technology on a continuous
basis, it is possible to accelerate nuclei to relativistic velocities and let them collide.
Such experiments, aimed at producing deconfined matter, have been performed at
the Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratories (BNL) as well as the the Super Proton
Synchrotron (SPS) at CERN in Geneva. Two future experiments are indicated in
Figure 1.4. LHC means the Large Hadron Collider under construction at CERN in
Geneva; GSI SIS300 is related to the FAIR project proposed at GSI in Darmstadt.
The latter is aimed to investigate the region of high baryon densities at rather low
temperatures.

After the collision of the nuclei, the quarks and gluons of the emerging fireball
become deconfined and can be described as QGP, i.e. as a fluid or plasma or gas
with features to be specified. In order to predict the dynamics of the fireball during
this phase and assuming a thermally equilibrated system, hydrodynamics can be
employed. This means to solve the equations of energy-momentum and current
conservation [LL06]

Tµν
;µ = 0 and (nuµ);µ = 0 (1.4)

with the energy-momentum tensor Tµν = (e + p)uµuν − pgµν , energy density e,
pressure p and the metric tensor gµν = diag(1,−1,−1,−1); uµ is the 4-velocity and
n is the net density of baryons of the respective matter emerging from hadrons at
the deconfinement transition. The semicolon denotes the covariant derivative.

The problem is under-determined. Therefore, as one important input for the
hydrodynamic description, an interrelation among the state quantities e, p and n,
for instance of the form e = e(p, n), i.e. the equation of state (EOS) of strongly
interacting matter, in particular the quark-gluon plasma, is needed. As the ther-
modynamical potential contains all of the information of bulk properties of matter
in local equilibrium, our ultimate goal is to find an expression for, e.g., the grand
canonical potential Ω from the Lagrangian L and its associated Feynman rules
(i.e. propagators, self-energies, etc.). It can then provide us with the EOS of the
QGP.

Given the problems in solving the QCD equations of motion by perturbation
theory and lattice calculations especially in the region of high baryon densities as
mentioned in section 1.2, a different ansatz is needed. The interpretation of the QGP
constituents as noninteracting quasiparticles using effective masses is one approach
to a solution of the problem.

The concept of quasiparticles is one of the few known ways of simplifying the
quantum mechanical many-body problem. It has proven to be very successful within
the field of condensed matter physics but its scope of application is not limited
to it. This work makes use of quasiparticle excitations in order to describe the
thermodynamics of the quark-gluon plasma.

A quasiparticle is an elementary excitation of a system. If chosen in a sensible
way, other excitations of the system can be described by the presence of multiple
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quasiparticles. In certain limits the interaction between multiple quasiparticle species
can turn out to become negligible, giving the possibility to investigate properties of
the many-body system by examining properties of the individual species.

As for most many-body systems, the QGP is expected to possess two classes of
quasiparticles: the first one corresponds to actual, single particles, the motions of
which are modified by the interactions within the plasma. The other class represents
collective excitation modes of the system. For the QGP, the longitudinal gluon (or
plasmon) mode and the plasminos are such collective excitations.

1.5 Outline of the work

Up to now, damping and width effects of the QGP were usually neglected when
deriving an expression for the thermodynamic potential of the QGP. Nevertheless,
the treatment of these effects constitutes the key to the calculation of transport
coefficients of the QGP. Therefore, it is the goal of this work to include finite widths
and collective damping into the quasiparticle model (QPM) [Pes00, Pes02, Blu04].

In chapter 2 the thermodynamic potential of 2-loop QCD is systematically derived
using two (equivalent) formalisms. Assuming internal momenta of order T and a
parametrization of the QCD coupling an entropy density expression of strongly
interacting matter is found. Using certain approximations, the existing effective
quasiparticle model (eQP) is derived from this expression in chapter 3. The principles
of extending a QPM to nonzero chemical potential and below the pseudocritical
temperature are demonstrated and some problems of the model are pointed out. An
investigation of several alternative parametrizations of the strong coupling closes the
chapter.

In chapter 4 an ansatz including quasiparticle temperature dependent and in-
dependent widths into the eQP by allowing for statistically distributed masses is
presented. The resulting model is tested at vanishing chemical potential and ex-
tended to nonzero values. The procedure to retrieve the eQP expressions in the limit
of vanishing width is shown in detail.

Returning to the exact 1-loop entropy density expression of chapter 2 a reformu-
lation is presented in chapter 5 allowing for a description of quasiparticle widths in
a more systematic way than the ansatz of chapter 4. While applying the expression
to Lorentz widths in order to review a proposal from [Pes04], a verification for the
distributed mass ansatz is found. Additionally, the effects of Landau damping for
the QPM are investigated.

Chapter 6 concentrates on the formulation of a QPM based on the full entropy
density expression. The resulting model is investigated at vanishing and at nonzero
chemical potential. Details of the extension to nonzero µ are given in Appendix 6.3.

In chapter 7 gives a compact presentation of the results. The work is summarized
and ends with an outlook.





2 Derivation of the QCD plasma
entropy density

2.1 Self-consistent approximations of many-body systems

In current research essentially two formalisms are frequently used to determine the
thermodynamic potential of a relativistic many-body system from its excitation
spectrum (i.e. its dispersion relation) in a thermodynamically consistent way. As
demonstrated in the following both are equivalent given certain assumptions.

The first one is based on a proposal of Luttinger and Ward [LW60] to derive the
thermodynamic potential of non-relativistic, fermionic systems from Feynman graphs,
i.e. using propagator expressions. As such this formalism is only a translation of a
stationarity theorem by Lee and Yang [LY60b] - which expresses the thermodynamic
potential Ω in terms of mean occupation numbers - into propagator language.1 Since
then, the formalism has been extended to bosonic [GW65, FW71] and, important
for us, relativistic systems [NC75, VB98].

The expression for the thermodynamic potential reads [BIR01]

Ω[D,S] = T

{
1
2
Tr
[
lnD−1 −ΠD

]
− Tr

[
lnS−1 − ΣS

]}
+ TΦ[D,S] , (2.1)

where D and S are dressed bosonic and fermionic propagators with respective self-
energies Π and Σ, and −Φ is the sum of all two particle irreducible (2PI) skeleton
diagrams (i.e. diagrams without external lines which do not become disconnected
upon cutting two propagator lines) with full propagators. Tr denotes the trace in
configuration space, containing integrations over the four phase space dimensions
and sums over all discrete indices (color, flavor, spin, etc.) denoted by tr. Since this
work uses the Coulomb gauge, there is no contribution from Faddeev-Popov ghost
fields.

The self-energies are defined by Dyson’s equations

Π[D] := D−1 −D−1
0 and Σ[S] := S−1 − S−1

0 , (2.2)

where D0 and S0 are the bare propagators, so that

Ω[D,S] = T

{
1
2
Tr
[
lnD−1 +D−1

0 D − 1
]
− Tr

[
lnS−1 + S−1

0 S − 1
]}

+ TΦ[D,S].

(2.3)
In thermodynamic equilibrium the thermodynamic potential has to be stationary

with respect to functional variations of the physical propagators D and S

δΩ
δD

=
δΩ
δS

= 0 (2.4)

1In fact, it can even be reformulated to use any subset of n-point amplitudes with n ≤ 4
[dDM64, NC75, Kle82, Car04, Ber04].
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yielding

0 = −D−1 +D−1
0 + 2

δΦ
δD

and 0 = S−1 − S−1
0 +

δΦ
δS
. (2.5)

Comparison with the definitions in (2.2) leads to

Π = 2
δΦ
δD

and Σ = −δΦ
δS
, (2.6)

which are dubbed “gap equations”. Note that, on account of its stationarity, Ω is
formally gauge independent, even though the propagators may be not.

Since Φ is an infinite sum, these gap equations can presently only be solved
approximately by selecting a subset of the skeleton diagrams in Φ. The truncated
self-energies are then found from (2.6) in an elegant way: The functional derivative
with respect to the propagators is graphically represented by simply cutting one
propagator line in the skeleton diagrams, keeping in mind all the symmetry factors.
From the truncated self-energies, the corresponding truncated dressed propagators
follow self-consistently from Dyson’s equations

D =
1

D−1
0 + Π[D]

and S =
1

S−1
0 + Σ[S]

. (2.7)

Even though truncation introduces approximations, they were shown to obey
the fundamental physical laws such as number, energy and momentum conservation
[BK61, Bay62]. Therefore, this approach is often called conservation law preserving
or symmetry conserving self-consistent approximation scheme. Baym also introduced
the notion Φ-derivable approximations due to eq. (2.6).

Only a few years after Luttinger and Ward [LW60], it was Jona-Lasinio [Jon64],
who emphasized the importance of the effective action for discussions of sponta-
neous symmetry breaking in relativistic particle theory. Consequently, Jona-Lasinio,
Dahmen and Tarski [DJ67, DJ69, DJT72] presented a variational formulation of
relativistic quantum field theory based on combinatorial analysis.

It was reformulated using functional methods and presented with some example
applications in a review paper by Cornwall, Jackiw and Tomboulis [CJT74] which
was widely referenced, leading to the term CJT formalism.2 Essentially, the CJT
formalism is the result of the generalization of the LW formalism. In the following,
this relation is elaborated.

As opposed to the thermodynamic potential of the LW formalism, the starting
point of the CJT formalism is the effective action3 Γ [Ris03]

Γ[D,S] = I − 1
2
{
Tr
[
lnD−1

]
+ Tr

[
D−1

0 D − 1
]}

+
{
Tr
[
lnS−1

]
+ Tr

[
S−1

0 S − 1
]}

+ Γ2[D,S], (2.8)

where I is the classical action of the system and−Γ2 corresponds to the LW-functional
Φ, i.e. it represents the sum over all 2PI diagrams without external lines and internal
lines given by the full propagators.

2In that way, both the CJT and the LW formalism are named after the translators rather than
the inventors. They might as well be called DJT and LY formalism, respectively. In fact, the
CJT formalism could also be named after A. N. Vasil’ev and A. K. Kazanskii, who developed it
independently within the Soviet science community [VK72, VK73a, VK73b].

3For more on the concept of the effective action in the framework of symmetry breaking, the
interested reader is referred to [PS95] and [Riv88] .
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The effective action is subject to stationarity conditions

δΓ
δD

=
δΓ
δS

= 0 (2.9)

which, in a similar manner as in (2.6), yield

Π = −2
δΓ2

δD
and Σ =

δΓ2

δS
. (2.10)

For translationally invariant systems, where an arbitrary propagator fulfills ∆(0)(x, y) =
∆(0)(x− y), an overall factor of the four-dimensional space T/V can be extracted
from the trace integrals in (2.8) and it suffices to consider the effective potential

Veff[D,S] = −T
V

Γ[D,S] (2.11)

instead of the effective action [CJT74, Ris03, Bec05, Roe05]. At the stationary point
Veff is connected to the grand canonical potential via (see [Bro92], p. 104, or [Riv88])

Ω
V

= Veff. (2.12)

The classical action I can also be replaced by a classical potential U = −I T/V ,
which describes the broken symmetries of the system. If no broken symmetries are
considered, U can be set to zero and one obtains exactly the LW expression (2.3).

We can conclude that for translationally invariant systems without broken sym-
metries CJT and LW formalism describe the same stationarity principle. In the
following the CJT formalism is used assuming these premises.

2.2 Evaluation of the traces

In the expressions above, Tr contains a trace tr over the discrete indices as well as
an integration over the four-dimensional phase space. In order to take effects of
finite temperature into account, the energy integration has to be performed using
the imaginary time formalism (see [LeB96, Kap89, YHM95] for an introduction).
This is done by performing a sum over the discrete Matsubara frequencies

iωn =

{
2niπT for bosons,

(2n+ 1) iπT + µ for fermions,
(2.13)

where µ denotes the one independent chemical potential4 of the system. Since the ex-
pression for the thermodynamic potential depends on the three-momentum quadrat-
ically only, i.e. it is rotationally invariant, the momentum integral (2π)−3

∫
d3k

reduces to (2π2)−1
∫

dk k2. Translation invariance gives an overall factor of the
three-volume V of the system yielding

Tr −→ V

2π2
tr
∑

n

∫
dk k2. (2.14)

4Considering the case of Nf = 2 dynamical quark flavors and assuming zero net electric charge
and equal u and d quark masses, the isospin chemical potential µI = (µu−µd)/2 vanishes. Therefore,
there is only one independent chemical potential µ = µq = µu = µd = µB/3, where µB is the
baryo-chemical potential.
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The Matsubara sum can be performed using standard contour integration techniques.
This is shown explicitly in Appendix A. Applying the found result

T
+∞∑

n=−∞
f(p0 = iωn) = −

+∞∫
−∞

dω
π
nB(ω) Im(f(ω + iε)), (2.15)

where nB = (exp (βω) − 1)−1 with β = 1/T is the Bose-Einstein statistical distri-
bution function, and an analogous expression for fermions with the Fermi-Dirac
distribution nF = (exp(β(ω − µ)) + 1)−1 and opposite sign, yields the following
expression for the thermodynamic potential from eq. (2.3):

Ω
V

= tr
∫

d4k

(2π)4
nB(ω) Im

(
lnD−1 −ΠD

)
+ 2 tr

∫
d4k

(2π)4
nF(ω) Im

(
lnS−1 − ΣS

)
− T

V
Γ2, (2.16)

where the propagators D and S now represent the retarded bosonic and fermionic
propagators, respectively. Thus, in the following only retarded propagators and
corresponding self-energies are used.

2.3 Application to QCD

The presentation in this section is based on work done by Peshier [Pes01] and Blaizot,
Iancu and Rebhan [BIR01], who used the Luttinger-Ward formalism presented in
section 2.1.

Because Γ2 is an infinite sum, it is not (yet) possible to solve the problem
exactly and the sum has to be truncated. Since Γ2 contains two-particle irreducible
diagrams only, there are no 1-loop contributions and the first non-trivial contribution
is encountered at 2-loop order. The corresponding contributions to Γ2 are shown in
Figure 2.1.

Γ2 =
1
12�+

1
8� − 1

2� (2.17)

Figure 2.1: Contributions to Γ2 at 2-loop order; wiggly lines are gluons, solid lines represent
quarks. Due to the chosen gauge (Coulomb), ghost contributions are not needed.

Despite the truncation, a self-consistent approximate solution which conserves
particle number, energy and momentum can be obtained [Bay62]. This is achieved
by first calculating both quark and gluon self-energies using the gap equations,
i.e. performing a functional variation of Γ2 with respect to the propagators. In a
graphical sense this can be interpreted as cutting one propagator line within the
Feynman graphs. Taking the prefactors and symmetries into account, the 2-loop
contributions to Γ2 lead to the 1-loop self-energies shown in Figure 2.2.
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Π =
1
2� +

1
2� −� (2.18)

Σ =
�

(2.19)

Figure 2.2: The 1-loop QCD self-energies derived from Γ2 at 2-loop order.

Although, as a consequence of the truncation, gauge invariance is lost, it can be
restored by assuming soft external momenta or equivalently Hard Thermal Loops
(HTL) in the propagator and self-energy expressions. For 1-loop QCD in the chiral
limit5 the HTL approximation provides gauge invariant self-energies [BP90b]. We
follow the conventions of [BIR01] and use the HTL self-energies and propagators for
gluons and massless quarks given therein:

Πµν = ΠT(ω, k)
(
ΛT(~k)

)
µν
− ΠL(ω, k)

(
ΛL(~k)

)
µν
,

γ0Σ = Σ+(ω, k) Λ+(~k) − Σ−(ω, k) Λ−(~k) (2.20)

with the scalar self-energies

ΠT(ω, k) =
m2

D

2

(
1 +

ω2 − k2

k2
ΠL(ω, k)

)
,

ΠL(ω, k) = m2
D

(
1− ω

2k
ln
ω + k

ω − k

)
, (2.21)

Σ±(ω, k) =
M̂2

k

(
1− ω ∓ k

2k
ln
ω + k

ω − k

)
,

where M̂ = M̂(T, µ, g2) is the thermal fermion mass or plasma frequency and
mD = mD(T, µ, g2) is the Debye mass. They read

m2
D =

(
Cb

3
T 2 +

NcNf

6π2
µ2

)
︸ ︷︷ ︸

2C̃b

G2,

M̂2 =
Cf

8

(
T 2 +

µ2

π2

)
︸ ︷︷ ︸

C̃f

G2, (2.22)

where Cf = N2
c−1

2Nc
and Cb =

[
Nc + Nq+Nh

2

]
. In this work the number of colors Nc is

fixed at 3. Nq is the number of light quark flavors (up and down) while Nh is the
number of heavy quark flavors (e.g. strange) with Nf = Nq +Nh. Note that M̂2 is
sometimes denoted M̂2

q for the light quark flavors in order to contrast M̂2
s = M̂2|µ=0

of the heavy quark flavor. The explicit form of the projectors Λi can be found in
[BIR01]. In contrast to the vacuum case, the longitudinal gluon mode, which at zero
temperature is a static mode producing the familiar Coulomb interaction, propagates
for nonzero temperature and has to be taken into account.

5For nonzero quark masses, the quark self-energy is no longer gauge invariant (cf. [Sei07]).
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Since the additional HTL approximation impairs self-consistency, the term “ap-
proximately self-consistent approximation”has been established. It is worth mention-
ing that, since only undressed vertices are used, the Ward identities are obviously vi-
olated. According to [BIR01] vertex corrections can be implemented self-consistently
but are negligible at 2-loop order.

Finally Dyson’s equations (2.7) are used to self-consistently determine the dressed
propagators

D−1
T = −ω2 + k2 + ΠT,

D−1
L = − k2 −ΠL, (2.23)
S−1
± = −ω ± ( k + Σ±).

2.4 Properties of the HTL self-energies; Landau damping

This section deals with symmetries and other properties of the real and imaginary
parts of the retarded self-energies as knowledge about these proves useful further
below.

The real and the imaginary parts of the HTL self-energies (2.21) are found to
be6

ReΠT =
1
2
m2

D

(
ω2

k2
− ω2 − k2

k2

ω

2k
ln
∣∣∣∣ω + k

ω − k

∣∣∣∣) ,
ReΠL = m2

D

(
1− ω

2k
ln
∣∣∣∣ω + k

ω − k

∣∣∣∣) , (2.26)

ReΣ± =
M̂2

k

(
1− ω ∓ k

2k
ln
∣∣∣∣ω + k

ω − k

∣∣∣∣) ,
ImΠT =

1
2
m2

D

ω2 − k2

k2

ω

2k
πΘ
(
k2 − ω2

)
ε(k),

ImΠL = m2
D

ω

2k
πΘ
(
k2 − ω2

)
ε(k), (2.27)

ImΣ± =
M̂2

k

ω ∓ k
2k

πΘ
(
k2 − ω2

)
ε(k),

where ε(k) is the sign function. The gluon self-energies show the symmetries

ReΠi(−ω) = ReΠi(ω),
ImΠi(−ω) = − ImΠi(ω), (2.28)

i.e. the real parts are symmetric and the imaginary parts are antisymmetric with
respect to the energy ω. This can explicitly be seen for a momentum of k = 0.5T in

6The complexity of the self-energies is due to the logarithmic term. It therefore suffices to find
real and imaginary parts of the logarithm of z = (ω + k)/(ω − k). For the latter, retardation

z(ω + iε) =
ω + iε + k

ω + iε− k
=

ω + k

ω − k
− iε

2k

(ω − k)2
. (2.24)

plays the decisive role as applying the infinitesimally small imaginary part of z(ω + iε) to eq. (B.3)
gives

Im ln
ω + k

ω − k
= πε(−k)Θ(−ω + k

ω − k
) = −πΘ(k2 − ω2)ε(k) (2.25)

while it would be zero for non-retarded z.
The real part of the logarithm ln(z) is ln |z|.
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Figure 2.3: The real and imaginary parts of the retarded transverse (left) and longitudinal
(right) gluon self-energies scaled by the Debye mass squared are shown as functions of the
energy ω scaled by the momentum k which is fixed at k = 0.5T . The real parts are symmetric
with respect to ω, while the imaginary parts are antisymmetric and differ from zero only
below the light cone |ω| = k.
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Figure 2.4: The real and imaginary parts of the retarded quark self-energies for the normal
(left) and abnormal branch (right) scaled by the plasma frequency squared are shown as
functions of the energy ω scaled by the momentum k which is fixed at k = 0.5T . They fulfill
the parity relations ReΣ+(−ω) = ReΣ−(ω) and ImΣ+(−ω) = −ImΣ−(ω). The imaginary
parts of the self-energy are nonzero only below the light cone.

Figure 2.3. Analogously, the quark self-energies fulfill the parity relations

ReΣ+(−ω) = ReΣ−(ω),
ImΣ+(−ω) = −ImΣ−(ω) (2.29)

as shown for k = 0.5T in Figure 2.4.
The HTL self-energies do not account for quasiparticle widths, as there is no

imaginary part at the poles of the propagator. The nonzero imaginary parts of the
self-energies below the light cone are due to Landau damping (LD). LD is a collective
effect caused by energy transfer between the gauge field and plasma particles with
velocities close to the phase velocity (“resonant particles”). As this resonance would
be spoiled by collisions in a normal fluid, it is a unique feature of collisionless plasmas
[ONC99].

Consider particles whose velocity is slightly higher than ω/k prior to an energy
transfer. If they gain energy from the gauge field they leave the area of resonance,
while, if losing energy to the gauge field, they approach the resonant velocity even
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Figure 2.5: The real parts of the inverse gluon propagators D−1
T,L scaled by the Debye

mass squared are shown as functions of the energy ω scaled by the momentum k which is
fixed at k = 0.5T . Both are symmetric with respect to ω. The zero of ReD−1

T determines
the dispersion relation ωT,k for transverse gluons. The zero of ReD−1

L above the light cone
indicates the dispersion relation ωL,k of longitudinal gluons, while the tachyonic dispersion
relation ωt

L,k (below the light cone) is due to Landau damping.

closer and can again interact with the gauge field. These particles would effectively
lose energy to the gauge field.

In the opposite case, particles with velocity slightly below ω/k effectively gain
energy from the gauge field. Since physical distributions favor states of lower energy,
the states of energy loss are usually less populated than the ones which gain energy.
Therefore, a net energy transfer to the particles takes place, damping the gauge
field.7

Even though the imaginary parts are formally nonzero only below the light cone,
retardation leads to an infinitely small contribution even above the light cone, giving
a definite sign to the self-energies for all ω:

ε(ImΠT(ω)) = −ε(ω),
ε(ImΠL(ω)) = +ε(ω), (2.30)
ε(ImΣ±(ω)) ≡ ∓1.

Note that the sign of the imaginary parts above the light cone is solely due to
retardation and not related to Landau damping which is found below the light cone
only.

2.5 Investigation of the dispersion relations

On-shell (quasi)particles satisfy a dispersion relation determined by ReD−1 = 0,
where D denotes the propagator of the particles. It is therefore useful to first
investigate the real part of the inverse retarded HTL propagators.

Both inverse gluon propagators D−1
T,L are symmetric in the energy domain and

have just one positive energy dispersion relation above the light cone: ωT,k and ωL,k,
respectively. This means that - up to the sign - transverse and longitudinal gluons
have the same dispersion relations as their anti(quasi)particle counterparts. The

7Thus, Landau damping prevents the collisionless plasma from becoming unstable. In contrast,
Cherenkov instabilities, i.e. the gauge field gaining energy from the particles, may occur in some
non-Maxwellian plasmas where states of higher energy are more populated than states of lower
energy, e.g. a beam-plasma system. [TL97]
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Figure 2.6: The real parts of the inverse quark propagators S−1
± scaled by the fermionic

mass parameter squared are shown as functions of the energy ω scaled by the momentum
k which is fixed at k = 0.5T . The real part of neither inverse quark propagator shows any
symmetry with respect to ω. However, there a parity relation ReS−1

+ (−ω) = −ReS−1
− (ω)

between the two holds. The tachyonic dispersion relation ωt
Pl,k is due to Landau damping.

additional tachyonic dispersion relation for longitudinal gluons is related to Landau
damping. Figure 2.5 explicitly shows the real parts for fixed momentum k = 0.5T .

The inverse quark propagators are not symmetric for themselves but, as a
consequence of (2.29), satisfy the parity property (cf. Figure 2.6)

ReS−1
+ (−ω) = −ReS−1

− (ω). (2.31)

This is a sign of the intricate nature of both propagators: quarks are described
by the positive energy dispersion relation of S−1

+ , while the dispersion relation of
antiquarks is found from the negative energy solution of ReS−1

− = 0. The remaining
two dispersion relations represent collective quark excitations: the positive energy
dispersion relation of S−1

− describes the plasminos, while the negative energy solution
of ReS−1

+ = 0 represents antiplasminos. Again, a tachyonic solution appears within
the regime of Landau damping.

The evolution of the zeros of the real part of the inverse retarded propagators as
a function of the momentum k gives the dispersion relations ωi,k. It is one of the
difficulties of the subject at hand that these dispersion relations cannot be expressed
as analytic functions ω(k): ReD−1

i (ω, k, Πi(ω, k)) = 0 and ReS−1
i (ω, k, Σi(ω, k)) =

0 lead to transcendental equations since the self-energies cannot analytically be
resolved for ω. Instead, they have to be solved numerically.

The results are shown in Figures 2.7 and 2.8. Due to the parity property (2.31)
quarks and antiquarks obey identical dispersion relations up to the sign as do
plasminos and antiplasminos.

Asymptotic dispersion relations and quark restmasses

It turns out useful to have explicit dispersion relations ωi(k) in order to acquire
simple analytic expressions for the thermodynamic variables by using asymptotic
dispersion relations near the light cone instead of the full HTL dispersion relations.
For transverse gluons, where ReD−1

T = −ω2
T,k + k2 + ReΠT(ωT,k, k)

!= 0, this is done
by a first order iterative approximation

ω2
T,k = k2 + ReΠT(ωT,k, k) ≈ k2 + ReΠT(k, k) (2.32)
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Figure 2.7: The dispersion relations ωT,k of transverse and ωL,k of longitudinal gluon
modes scaled by the Debye mass are shown as functions of the momentum k scaled by the
Debye mass in linear (left) and quadratic (right) scales.

��� ��� ��� �����

��

�

�

�

�

�

�

���

� ���
��

������
������
�������
�������

��� ��� ��� ��� ����

�

�

�

�

���
����

����������

���
	���

����	�����
�� ���

��
��

������


�

Figure 2.8: The dispersion relations ωi,k of quarks (solid black), antiquarks (dashed grey),
plasminos (black dashes) and antiplasminos (black points) scaled by the fermionic mass
parameter are shown as functions of the momentum k scaled by the fermionic mass parameter
in linear (left) and quadratic (right) scales. The dispersion relations of quarks and antiquarks
as well as of plasminos and antiplasminos are equal up to the sign.

which gives a simple dispersion relation of the form

ω2
T(k) = k2 +m2

g,∞ (2.33)

with the asymptotic gluon mass m2
g,∞ := ReΠT(k, k) = m2

D/2, which is independent
of both energy and momentum.

In order to derive the asymptotic dispersion relation for quarks from ReS−1
+ =

−ω + k + ReΣ+(ω, k) != 0 a factor k and some zeros are introduced:

0 = −ωk + k2 + ReΣ+k + ω2 − ω2 + ωk − ωk

which leads to

ω2 = (ω − k)2 + ReΣ+k + (k + ReΣ+)k.

The difference (ω− k)2 can be neglected near the light cone and ReΣ+(ω, k) is again
approximated by its first order iteration ReΣ+(k, k). If ω is positive, the result

ω2
TL(k) = k2 +m2

q,∞ (2.34)
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is the asymptotic dispersion relation for quarks with the asymptotic quark mass
m2

q,∞ := 2ReΣ+(k, k)k = 2M̂2. Even more, due to the fact that the squared
dispersion relations of quarks and antiquarks are identical, this is also the asymptotic
dispersion relation of antiquarks for negative ω.

The quality of the approximations is best estimated by a direct comparison of full
and asymptotic dispersion relations, as done in Figure 2.9. For k > mD or 2M̂ both
dispersion relations are virtually indistinguishable. Since the main contributions to
thermodynamic integrals are found at momenta k of order T , while mD and M are
of order gT (eq. (2.22)), the asymptotic dispersion relations are good approximations
of the full dispersion relations.
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Figure 2.9: The full (solid lines) and asymptotic (dash dotted lines) dispersion relations
for transverse gluons (left) and quarks (right) scaled by their respective mass parameters
are shown as functions of the momentum k also scaled by the respective mass parameter.
For large momenta (near the light cone) the asymptotic expressions prove to be good
approximations of the full dispersion relations ωi,k.

These results are obtained and valid for the chiral limit. In order to compare
with lattice calculations of quarks with nonzero quark rest masses they need to be
modified. Assuming a current quark rest mass mq in the order of the thermal quark
mass ∼ gT or lower, this can be done by introducing additional terms related to the
rest mass into the asymptotic mass [Pes98, Pis89b, Blu04]8

m̃2
i,∞ = m2

i + 2mimi,∞ + 2m2
i,∞. (2.35)

The index i denotes either light quarks q with m2
q,∞ = 2M̂2

q = 2M̂2, strange
quarks s with m2

s,∞ = 2M̂2
s = 2M̂2|µ=0 or gluons g, where mg = 0 and therefore

m̃2
g,∞ := m2

g,∞ = m2
D/2.

2.6 The HTL grand canonical potential

Given the explicit form of the HTL self-energies and the respective propagators, the
remaining traces tr in eq. (2.16) can be evaluated. Taking the trace in Minkowski
space, the gluonic part decomposes into three contributions for one longitudinal and
two (equivalent) transverse polarizations, while the quark contribution becomes the
sum of the normal and the abnormal quark branch (positive and negative chirality

8It has recently been pointed out [Sei07] that this treatment might be valid at zero momentum
only and that the term linear in the rest mass should be omitted. Since this still remains to be
confirmed and only minimal deviations are expected, this work continues to use the established
procedure also used in [KBS06, BKS06, BKS07a, BKS07b].
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over helicity ratio, respectively) when taking the Dirac trace. The remaining traces
are simple, as they only give overall factors: the color trace (N2

c − 1) for the gluons
and Nc for the quarks, and the flavor and spin traces for quarks an additional 2Nf .
Therefore, we define the prefactors dg = N2

c − 1 and dq = 2NcNf .
For brevity we introduce the abbreviation

∫
d4k =

∫
d4k/(2π)4. The HTL grand

canonical potential then reads (cf. [BIR01])

Ω
V

= dg

∫
d4k
nB

{
2Im

(
lnD−1

T −DTΠT

)
+ Im

(
ln
(
−D−1

L

)
+DLΠL

)}
+ 2dq

∫
d4k
nF

{
Im
(
lnS−1

+ − S+Σ+

)
+ Im

(
ln
(
−S−1

−
)

+ S−Σ−
)}
− T

V
Γ2.

(2.36)

2.7 Effective coupling

Obviously, 2-loop QCD is only a crude approximation of the full theory. In order
to accommodate further non-perturbative effects within the quasiparticle model, we
introduce some flexibility by parameterizing the QCD coupling constant g2 in a
physically motivated way.

In doing so we utilize the renormalized coupling [PDG06] at truncated (i.e. ne-
glecting a term involving ln−2(µ̄2/Λ2) which is only a small correction for µ̄2 ≈ Λ2)
2-loop order:

g2(µ̄) =
16π2

β0 ln(µ̄2/Λ2)

(
1− 2β1

β2
0

ln[ln(µ̄2/Λ2)]
ln(µ̄2/Λ2)

)
, (2.37)

where β0 = 11/3 − 2Nf/3 and β1 = 51 − 19Nf/3. It depends on the ratio of the
renormalization scale µ̄ and the QCD scale parameter Λ. The first one is usually
taken to be the first Matsubara frequency 2πT , while the latter one is just a parameter
to be adjusted using experimental data. Introducing the pseudocritical temperature
of QCD matter at vanishing net baryon density Tc and substituting Λ → 2πTc/λ,
we arrive at another valid parametrization, where the ratio µ̄/Λ becomes λT/Tc.

In order to avoid the Landau pole of g2(T/Tc) at Tc, the QCD coupling is
substituted by an effective coupling G2(T ) which is shifted by a temperature Ts

G2(T ≥ Tc, µ = 0) =
16π2

β0 ln
(

T−Ts
Tc/λ

)2

1− 4β1

β2
0

ln
[
ln
(

T−Ts
Tc/λ

)2
]

ln
(

T−Ts
Tc/λ

)2

 . (2.38)

While G2 behaves well within the plasma phase, it is still infrared (IR) divergent
within the hadronic phase. This is remedied by introducing a phenomenological IR
regulator (cf. section 3.2).

2.8 The entropy density

Differentiating the thermodynamic potential with respect to the temperature at
constant chemical potential gives the entropy as one of the state variables of the
QGP. In contrast to the pressure, which is influenced by vacuum fluctuations, the
entropy is sensitive to thermal excitations only and therefore manifestly ultraviolet
(UV) finite. As such, it is ideally suited to investigate the properties of the QGP.
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Due to the stationarity of the thermodynamic potential with respect to the full
propagators, only the statistical distribution functions that explicitly depend on the
temperature need to be differentiated, i.e.

∂Ω
∂T

=
∂Ω
∂T

∣∣∣∣
expl.

+
δΩ
δDi︸︷︷︸

0

∂Di

∂T
+

δΩ
δD0,i

∂D0,i

∂T︸ ︷︷ ︸
0

. (2.39)

Using Im(DTΠT) = ReDTImΠT + ImDTReΠT, the entropy density can be writ-
ten as

s := − 1
V

∂Ω
∂T

∣∣∣∣
µ

= sg,T + sg,L + sq,+ + sq,− + s′ (2.40)

with

sg,T = −2dg

∫
d4k

(2π)4
∂nB(ω)
∂T

{
Im ln

(
+D−1

T

)
− ReDTImΠT

}
,

sg,L = − dg

∫
d4k

(2π)4
∂nB(ω)
∂T

{
Im ln

(
−D−1

L

)
+ ReDLImΠL

}
, (2.41)

sq,± = −2dq

∫
d4k

(2π)4
∂nF(ω)
∂T

{
Im ln

(
±S−1

±
)
∓ ReS±ImΣ±

}
and a residual entropy density s′. While each of the first four terms in (2.40) describes
the entropy density of one particle species in the absence of the others, s′ can be
interpreted as the interaction entropy density between the different contributions. It
contains the terms of the form ImDTReΠT and the derivative of Γ2T with respect
to the temperature. At 2-loop order, these terms exactly cancel each other and thus
s′ = 0 [BIR01]. In fact, this seems to be a topological feature [CP75] which has
explicitly been proven for QED [VB98] and Φ4 theory [Pes01] too. The conclusion is
that there is no interaction between the four constituents of the quark-gluon plasma
at 2-loop order, and it is justified to speak of quasiparticles.

We now focus on the terms Im ln(±D−1
T,L) and Im ln(±S−1

± ), which equal the
argument of the respective inverse propagators (Appendix B.1), and proceed by
substituting the argument by the arc tangent (Appendix B.1), giving rise to an
additional term compensating for its periodicity:

Im
(
lnD−1

T

)
= arctan

(
ImD−1

T

ReD−1
T

)
+ πε(ImD−1

T )Θ
(
−ReD−1

T

)
, (2.42)

Im
(
ln
(
−D−1

L

))
= arctan

(
ImD−1

L

ReD−1
L

)
− πε(ImD−1

L )Θ
(
+ReD−1

L

)
. (2.43)

Similar expressions apply for the two quark propagators: one has to substitute S−1
+

for D−1
T in (2.42) and S−1

− for D−1
L in (2.43).

From the properties of the imaginary parts of the self-energies (2.30), we find
ε(ImD−1

i (ω)) = −ε(ω) for the gluons and ε(ImS±(ω)) ≡ −1 for the normal and
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abnormal quark branches. We end up with

sg,T = +2dg

∫
d4k

∂nB

∂T

{
πε(ω)Θ

(
−ReD−1

T

)
− arctan

ImΠT

ReD-1
T

+ ReDTImΠT

}
,

sg,L = − dg

∫
d4k

∂nB

∂T

{
πε(ω)Θ

(
+ReD−1

L

)
− arctan

ImΠL

ReD-1
L

+ ReDLImΠL

}
,

sq,± = ±2dq

∫
d4k

∂nF

∂T

{
πΘ
(
∓ReS−1

±
)
− arctan

ImΣ±
ReS-1

±
+ ReS±ImΣ±

}
.

(2.44)

The partial entropy densities (2.44) and therefore the whole entropy density expres-
sion are independent of possible renormalization factors. As required, the expression
is also explicitly UV finite, as the derivatives of the distribution functions soften the
UV behavior.

The quark entropy density sq = sq,+ + sq,− can be simplified by utilizing the
parity properties for quark propagators (2.31) and self-energies (2.29). Introducing
the distribution function of antiparticles

nA
F =

1
eβ(ω+µ) + 1

(2.45)

with
∂nF(−ω)

∂ω
= −∂n

A
F (ω)
∂ω

(2.46)

and substituting ω → −ω within sq,−, we find

sq = 2dq

∫
d4k

(
∂nF

∂T
+
∂nA

F

∂T

){
πΘ
(
-ReS−1

+

)
− arctan

(
ImΣ+

ReS-1
+

)
+ ReS+ImΣ+

}
.

(2.47)
Regarding the quasiparticle pole term πΘ(-ReS−1

+ ), the energy integration from
−∞ to 0 gives the (anti)plasmino contribution, the integration from 0 to +∞ the
contributions of the (anti)particles to the entropy density. Isolating both parts of the
spectrum by applying the parity properties once more gives the explicit expressions

sq,TL = 2dq

∫
d3k

∞∫
0

dω
2π

()
{
πΘ
(
-ReS−1

+

)
− arctan

(
ImΣ+

ReS-1
+

)
+ ReS+ImΣ+

}
,

sq,Pl = −2dq

∫
d3k

∞∫
0

dω
2π

()
{
πΘ
(

ReS−1
−
)
− arctan

(
ImΣ−
ReS-1

−

)
+ ReS−ImΣ−

}
,

(2.48)

where the sum of the derivatives of the distribution functions is abbreviated by the
parentheses (). While this separation seems straightforward, it has to be handled
with care as the Landau damping term within the quark self-energies Σ± (see the
imaginary parts in Figure 2.4) can in general not be separated into quark and
plasmino contributions in this simple way.

2.9 Lattice QCD

Lattice rest masses and critical temperature

Most of the past work on the QPM has been tested against lattice data from
[Pei00, KLP00] that used rather large and temperature dependent lattice restmasses
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of mq = 0.4T and ms = 1.0T (∼ 0.5 . . . 1 GeV). These have to be compared to the
physical quark masses mu,d ∼ 10 MeV and ms ∼ 90− 150 MeV [PDG06]. Recently,
new lattice data has become available [Kar07], which relies on lattice restmasses
much closer to the physical quark masses:

mi =

{
0.024T for q
0.24T for s.

(2.49)

By using eq. (2.35) they are accommodated in the quasiparticle model. As it turns
out, the restmasses are small enough to have negligible influence on the results
compared to the influence of the asymptotic approximation of the dispersion relation.
Therefore, chapter 6 explores a model using full HTL dispersion relations.

While the lattice data from [Pei00, KLP00] used a critical temperature Tc of
170 MeV, the results within [Kar07] were computed using Tc = 192 MeV. Within
this work we use lattice data of dimensionless quantities e.g. s/T 3 as a function of
dimensionless quantities, e.g. T/Tc. Therefore the uncertainty of the pseudocritical
temperature has no effect on the results.

To adjust the QPM to the lattice results, we minimize the expression χ2
y/N :=∑N

i=1(yi−ylat
i )/N , where y is a dimensionless quantity being compared to the lattice

result ylat at N (not necessarily equidistant) points indexed by i.

Continuum extrapolation

Lattice calculations are performed on a finite lattice, while our quasiparticle model
is formulated in the thermodynamic limit, i.e. aimed at describing a spatially infinite
plasma. In order to compare our model with lattice data, the proper continuum
extrapolation of the latter one is required.

A safe continuum extrapolation is a fairly demanding work. Therefore, various
estimates have been applied, e.g. simply scaling the lattice results by a factor being
strictly valid only for asymptotically high temperatures or for the non-interacting
limit. To account for some deficit of such rough continuum estimates of the lattice
data we introduce an ad hoc scaling factor dlat.





3 The effective quasiparticle model

3.1 Necessary approximations

In order to derive the effective (or simple) quasiparticle model, several assumptions
are made:

1. the quasiparticle widths as well as damping effects (i.e. the imaginary parts of
the self-energies) are small and can be ignored,

2. the collective excitations, i.e. plasmons and (anti)plasminos, are exponentially
suppressed1 and can therefore be neglected,

3. the asymptotic dispersion relations ω2
i = k2 + m̃2

i,∞ are good approximations
of the full HTL dispersion relations for thermallike momenta as relevant in
thermodynamic integrals.

Neglecting collective modes and damping effects can be justified phenomenologically.
Both are bound to the medium frame of reference and thus show only minimal effects
on particles at high momenta.

Starting with the first and second approximation, the quark entropy density
becomes

seQP
q = 2dq

∫
d3k

(2π)3

∞∫
0

dω
2π

(
∂nF(ω)
∂T

+
∂nA

F (ω)
∂T

)
πΘ
(
−ReS−1

+

)
, (3.1)

where (anti)plasminos have been neglected by changing the lower integration limit
from −∞ to 0. We use the label eQP as abbreviation for the effective QPM. For
gluons we find

seQP
g = 2dg

∫
d3k

(2π)3

+∞∫
−∞

dω

2π
∂nB(ω)
∂T

πε(ω)Θ
(
−ReD−1

T

)
, (3.2)

where the collective longitudinal excitations have been ignored in line with the second
assumption.

In order to arrive at an explicit expression for the quasiparticle entropy density,
first the transverse gluon dispersion relation is replaced by its asymptotic equivalent.
Using the symmetry of the integrand and defining σB(ω) := βω nB(ω)−ln

(
1− e−βω

)
with

∂σB

∂ω
= −∂nB(ω)

∂T
(3.3)

1That is after calculating the propagators using Dyson’s relation from the HTL self-energies, the
residues of the poles in the spectral density of both plasmon and (anti)plasmino propagators vanish
exponentially for momenta k ∼ T, µ, which give the dominant main contributions to thermodynamic
integrals.
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integrations by parts are performed. We start from

seQP
g = 2dg

∫
d3k

(2π)3

∞∫
0

dω
∂nB(ω)
∂T︸ ︷︷ ︸

− ∂σB
∂ω

=u′

Θ
(
−ReD−1

T

)︸ ︷︷ ︸
Θ(ω2−ω2

T(k))=v

,

seQP
g = 2dg

∫
d3k

(2π)3

(
−
[
σB(ω) Θ

(
ω2 − ω2

T(k)
) ]∞

0
(3.4)

+

∞∫
0

dω σB(ω)
[
δ
(
ω − ωT(k)

)
− δ
(
ω + ωT(k)

)])
.

The first term does not contribute since σB(ω → ∞) = Θ
(
0− ω2

T(k)
)

= 0 as does
δ(ω+ωT(k)) due to the energy integration limits. The final result for the eQP gluon
entropy is

seQP
g = 2dg

∫
d3k

(2π)3
σB|ωT(k)

=
dg

π2

∞∫
0

dk k2
{
βωT(k)nB(ω)− ln

(
1− e−βωT(k)

)}
(3.5)

which formally looks like the ideal gas entropy density of particles with mass m̃g,∞.
Equivalently, using σ(A)

F (ω) = β(ω ± µ)n(A)
F (ω) + ln (1 + exp (−β(ω ± µ))) and

the asymptotic quark dispersion relation ωTL(k) instead of the full dispersion relation
ωTL,k, the quark entropy density contribution is found to be

seQP
q = 2dq

∫
d3k

(2π)3
{
σF|ωTL(k) + σA

F

∣∣
ωTL(k)

}
=

dq

π2

∞∫
0

dk k2
{
β (ωTL(k)− µ)nF(ωTL(k)) + ln

(
1 + e−β(ωTL(k)−µ)

)
+β (ωTL(k) + µ)nA

F (ωTL(k)) + ln
(
1 + e−β(ωTL(k)+µ)

)}
.

(3.6)

In order to allow the simultaneous treatment of quark and gluon entropy densities,
a short-hand notation of the statistical distribution functions is introduced:

f± :=
1

e∓ + Si
,

e∓ := eβ(ωi∓µi), (3.7)

where the spin factor Si is +1 for quarks and -1 for gluons. The dependence of f±
and e∓ on the quasiparticle species i = g, q is implied. In the limit µ = 0, e+ = e−

is abbreviated as e and f+ = f− as f . Integrating the logarithmic terms in (3.5) and
(3.6) by parts gives the common expression

seQP
i =

di

2πT

∞∫
0

dk k2

{
4
3k

2 + m̃2
i,∞

ωi(k)
[f+ + f−]− µi [f+ − f−]

}
. (3.8)
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For comparison with Nf = 2 + 1 lattice data an extension of the QPM to include a
third, heavier quark flavor (strange) with µs = 02 is necessary. Equation (3.8), using
fermionic spin factor Ss = +1, asymptotic mass m̃2

s,∞ and degeneracy prefactor
ds = 2NcNh, provides the heavy quark entropy density. The number of heavy quarks
Nh is set to 1 if strange quarks represent a relevant degree of freedom.

3.2 Outline of the model

Since the entropy density of the quark-gluon plasma in 2-loop QCD is the sum
of the single quasiparticle entropy density contributions, it can be considered as
mixture of non-interacting ideal quasiparticle gases. It is natural to assume that the
pressure, which follows from the entropy density by integration, consists of single
partial pressures, too. Therefore, we use the following expression for the pressure

peQP (T, µ) =
∑

g,q,(s)

peQP
i (T, µ)−BeQP (m̃j,∞(µ, T )), (3.9)

where BeQP is the pressure difference to the vacuum. Since QCD is asymptotically
free, BeQP is minimal if the plasma is located within the smallest volume possible -
a bag within the vacuum. This is why B is sometimes referred to as bag pressure.

The ansatz has to satisfy

seQP
i =

∂peQP
i

∂T

∣∣∣
µ

(3.10)

which leads to

peQP
i (T, µ) =

di

6π2

∞∫
0

dk
k4

ωi
[f+ + f−] , (3.11)

where the integrability condition

∂BeQP

∂m̃2
j,∞

=
∂peQP

∂m̃2
j,∞

(3.12)

has to be fulfilled. It also ensures the stationarity of the thermodynamic potential
under functional variation with respect to the asymptotic masses [GY95].

The pressure completely defines the model. All thermodynamic quantities can
be derived from it, e.g. the net particle density neQP = ∂peQP /∂µ|T =

∑
g,q,(s) n

eQP
i

with

neQP
i =

di

2π2

∞∫
0

dk k2 [f+ − f−] (3.13)

2Generally, the strange quark chemical potential µs also has to be included in the description of
the considered plasma. However, if the net strangeness given by a certain initial condition is zero
and there is no overall change of net strange quark number (e.g. due to strangeness conservation in
strong interaction processes) µs vanishes. This constellation with µs = 0 is referred to by a flavor
number Nf = 2 + 1. It is a good approximation e.g. for heavy ion collisions, as proton and neutron
are both comprised of u and d quarks only. While ss̄-pairs may appear, strangeness conservation
could only be violated by weak interactions for which strong interaction time-scales are too short.

We just mention the case Nf = 3, where µs = µq is assumed. Within this thesis µs is always
zero. Therefore µq is the only nonzero chemical potential and is referred to as the quark chemical
potential µ.
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is found (an additional integration by parts has been performed). As a consequence
of the definition of f±, the net particle densities vanish for gluons and strange quarks
as both should do due to µg = µs = 0.

Using the entropy density (3.8) and lattice data from [Kar07] the model param-
eters are adjusted to Ts = −0.738Tc, λ = 5.93, α = 0.941 with dlat = 0.954 (see
Figures 4.1 and 4.2 in chapter 4).

3.3 Extension of the model to µ > 0

In section 2.7 the effective coupling G2 was parametrized for µ = 0 only. In order
to apply the eQP for nonzero chemical potential one has to map the coupling to
finite µ by using the thermodynamic self-consistency of the model [Pes00]. More
specifically this means one has to utilize the Maxwell relation

∂s

∂µ

∣∣∣∣
T

=
∂n

∂T

∣∣∣∣
µ

. (3.14)

The explicit derivatives of the distribution functions do not contribute due to
Schwartz’s theorem so that only the T and µ dependencies of the asymptotic masses
have to be considered:

∂neQP
q

∂m̃2
q,∞

∂m̃2
q,∞

∂T

∣∣∣∣∣
µ

=
∑

g,q,(s)

∂seQP
i

∂m̃2
i,∞

∂m̃2
i,∞

∂µ

∣∣∣∣∣
T

. (3.15)

The derivatives of the asymptotic masses with respect to T and µ can be found in
Appendix C.1. They contain derivatives of the effective coupling G2 according to
which the result is ordered. This leads to the flow equation

aeQP
T

∂G2

∂T
+ aeQP

µ

∂G2

∂µ
= beQP (3.16)

with the coefficients aeQP
T (M̂2(G2)), aeQP

µ (M̂2(G2),m2
D(G2)) and beQP (G2, M̂2(G2),

m2
D(G2)) - which all depend on T and µ explicitely and via the masses - given in

Appendix D.
The flow equation is an elliptic quasilinear partial differential equation which is

solved by the method of characteristics. A curve parameter x is introduced, assuming
that T = T (x), µ = µ(x) and G2 = G2(x). Then

dG2

dx
= G2

,T

dT

dx
+G2

,µ

dµ

dx
, (3.17)

and the comparison with the flow equation gives a system of three linear, coupled
ordinary differential equations: G2

,x = −beQP , T,x = −aeQP
T and µ,x = −aeQP

µ . This
system can be solved using standard numerical methods. The initial condition for
the flow equation is the effective coupling at µ = 0, with model parameters fixed by
comparison of the eQP entropy density with lattice results.

From the explicit expressions of the coefficients a set of general properties of the
solutions follows

• aeQP
T (T, µ → 0) = 0 and aeQP

µ (µ, T → 0) = 0 cause the characteristics to
approach the T and µ axis perpendicularly,
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• aeQP
µ < 0 and aeQP

T > 0 indicate that characteristics move in the direction of
decreasing temperature and increasing chemical potential and

• beQP < 0 for µ & 0 causes an increasing coupling at the beginning of a
characteristic, which together with

• beQP (T, µ→ 0) = 0 implies that the coupling has a local minimum at µ = 0.

To state this more explicitly

∂G2

∂µ

∣∣∣∣
µ=0

=

(
beQP

aeQP
µ

−
aeQP

T

aeQP
µ

∂G2

∂T

)∣∣∣∣∣
µ=0

= 0. (3.18)

Previous studies of the flow equation [Pes02, Blu04] have shown that the charac-
teristic curves emerging at T ≈ Tc cross each other in some region of finite values
of µ for parameters adjusted to lattice QCD results (cf. Figure 4.5 in chapter 4).
This unfortunate feature prevents an unambiguous extrapolation of thermodynamic
quantities in the full T -µ-plane. In work done by Romatschke [Rom04] it is claimed
that these crossings can be avoided by taking into account collective modes and
Landau damping.

Using the hint from [Blu04] that the crossings are due to the effective coupling
G2 being too large at the pseudocritical temperature, this can be explained. Since
the eQP entropy density increases with decreasing mass parameters m2

D and M̂2

which are proportional to G2T 2 at µ = 0, the crossings would therefore disappear
for a larger eQP entropy density. One way to allow for a larger eQP entropy density
is to take into account collective modes. As medium effects indicate correlations
between the gas-like constituents of the eQP plasma, taking them into account
causes a decrease of overall entropy density. Consequently, the eQP parameters have
to change in order to still describe the lattice data causing the entropy density to
increase. With the resulting decrease of the effective coupling G2 the crossings then
disappear (cf. chapter 6).

Another degree of freedom which is possibly suitable to decrease overall entropy
density is a finite quasiparticle width. Depending on how the widths are introduced
into the QPM, the crossings can thus be removed (cf. chapter 4 and section 5.2,
respectively).

3.4 The pressure correction Taylor expansion coefficients

For the extension of the pressure to nonzero chemical potential, lattice calculations
often use the coefficients of the Taylor series for the pressure correction ∆p(T, µ) =
p(T, µ)− p(T, µ = 0) with respect to µ/T

∆p(T, µ)
T 4

=
∞∑

n=1

cn(T )
(µ
T

)n
,

cn(T ) =
Tn−4

n!

(
∂np

∂µn

)∣∣∣∣
µ=0

. (3.19)

In addition to the comparison with lattice data at µ = 0 we are going to investi-
gate whether alternative parametrizations of the effective coupling can improve the
description of c4, maintaining the quality of c2.3

3As a general feature of the theory, all odd-numbered coefficients vanish in the limit µ → 0 due
to sign changes of the respective derivatives of statistical distribution functions.
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For the eQP the coefficients read as follows

ceQP
2 =

dq

2π2T 3

∞∫
0

dk k2 ef2,

ceQP
4 =

dq

24π2T 3

∞∫
0

dk k2 ef4

[
3T (1− e2) ∂

2ωTL

∂µ2
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µ=0

+ e2 − 4e+ 1

]
(3.20)

with

∂2ωTL
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3ωTL
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6
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(
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2
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∂µ2

∣∣∣∣
µ=0

]
, (3.21)

where ∂2G2/∂µ2 can be found by differentiating the flow equation with respect to µ.
In the limit of vanishing chemical potential this leads to

∂2G2

∂µ2

∣∣∣∣
µ=0

=
(

1
aµ

∂b

∂µ
− 1
aµ

∂aT

∂µ

∂G2

∂T

)∣∣∣∣
µ=0

(3.22)

with the derivatives of the flow equation coefficients given in Appendix D. The
first term within ceQP

4 featuring the second derivative of the dispersion relation with
respect to the chemical potential is responsible for a peak structure of this coefficient.

3.5 Extension of the model below the critical temperature

To prevent the divergence of the coupling G2 below Tc, a phenomenological infrared
cutoff for G2 has to be applied. There are several possible ways, the most simple
being a continuous linearization below the transition temperature [Blu04]

G2
IR,lin(T < Tc, µ = 0) =

1− α T
Tc

1− α
G2
∣∣
T=Tc,µ=0

, (3.23)

where α is the slope parameter.
The eQP model has been successfully tested using lattice data for the entropy

density from [Pei00, KLP00] in [Blu04]. For µ & 0 the eQP pressure correction
coefficients have been calculated and compared to lattice data from [All03] in [Blu04].
While the evolution of the second4 Taylor coefficient c2 could be reproduced using
the eQP, only approximate agreement with c4 was achieved with the same set of
parameters (see eQP in Figure 3.1).

3.6 Alternative parametrizations of the effective coupling

Introducing additional parameters into the effective coupling G2 promises to pro-
vide us with a more flexible model. Two alternative parametrizations have been
investigated.

Using a quadratic parametrization of the effective coupling

G2
IR,quad(T < Tc, µ = 0) = a

(
T 2

T 2
c

− 1
)

+ b

(
T

Tc
− 1
)

+ G2
∣∣
T=Tc,µ=0

(3.24)
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Figure 3.1: Comparison of the pressure correction coefficients c2 and c4 according to
eq. (3.20) with lattice data from [All03]. The light grey curves exhibit the effective coupling
G2 (right scale). It can be seen that substituting the linear IR regulator (Ts = −0.87Tc,
λ = 11.9 and α = 0.95 resulting in χ2(c2)/N = 1.77× 10−4) by a quadratic parametrization
(Ts = −.87Tc, λ = 12.1, a = 571 and b = −1451 giving χ2(c2)/N = 1.71 × 10−4) results
in only minor improvement of the simultaneous description of both coefficients within the
hadronic regime. The change in λ above Tc is necessary due to the correlation of the
parametrizations by requiring a continuous connection at Tc.

with two parameters a and b below Tc did not significantly improve the quality of
the concurrent description within the hadronic regime. As Figure 3.1 shows, the
quadratic term does not contribute notably to the coupling.

Substituting (
T − Ts

Tc/λ

)2

→
(
T − Ts − κ

T

Tc/λ

)2

(3.25)

within (2.38) and thus introducing an additional parameter κ in the plasma regime
did also not considerably improve the situation above Tc. κ is not the degree of
freedom needed to allow for a simultaneously good description of both c2 and c4 (see
Figure 3.2).

4The coefficients c1 and c3 are generally zero.
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Figure 3.2: As Figure 3.1, but for the alternative parametrization of G2 given by eq. (3.25).
Introducing the additional degree of freedom within the plasma regime does not yield a
noticeable improvement for the concurrent description of c2 and c4. Shown are the best
adjustments of the model for various ratios χ2(c2)/χ2(c4). The region below Tc remains
unchanged.



4 The distributed quasiparticle model

4.1 Outline of the model

One phenomenological method [And06, BB04, Bir06, Bra03] to include finite widths
into a model is to convolute appropriate quantities describing the quasiparticles
with a probability distribution function. Since the thermal masses of quasiparticles
contain the information about the interaction, it is straightforward to choose these
to be distributed. As for the eQP they are approximated by the asymptotic masses
m̃i,∞ which for brevity are denoted by mi. Also, since damping effects in many
areas of physics can be described using Breit-Wigner distributions,1 we choose the
following ansatz:

pdQP (T, µ) =
∑

i=q,s,g

∞∫
0

dM peQP
i (T, µ)

∣∣∣
mi→M

BW
(
mi,M,Γ

)
−B(mj)

=
∑

i=q,s,g

di

6π2

∞∫
0

dM

∞∫
0

dk
k4

ω
[f+ + f−] BW

(
mi,M,Γ

)
−B

(
mj

)
,

(4.1)

where
BWi(mi,M,Γ) = Ni B̃Wi(mi,M,Γ) (4.2)

with
B̃Wi(mi,M,Γ) =

Γ
[mi(G2)−M ]2 + Γ2

4

(4.3)

is the Breit-Wigner distribution of the quasiparticle species i. Its shape is governed
by the width parameter2 Γ, which is assumed to be temperature and particle species
independent. As there is only one common width for all particles, this phenomeno-
logical extension of the eQP is rather minimalistic. In section 4.6 a possible particle
specific temperature dependence of Γ is considered.

The dispersion relation encoded in f± is now given by ω2 = k2 +M2, allowing
for off-shell quasiparticles. Since the integrands are continuous with respect to both
M and k, the integration order can be interchanged. The normalization Ni of the
mass distribution is

1
Ni

=

Mmax∫
0

B̃Wi dM

= 2 arctan
(

2(Mmax −mi)
Γ

)
+ π, (4.4)

1Section 5.1 gives a more formal justification for the ansatz.
2This identification of Γ as the width has to be made with some caution. Due to the distribution

function being cut off at M = 0, its FWHM (the second moment, its width) differs to some degree
from the distribution parameter Γ. However, for reasonably small Γ the difference is minimal at
best and it can safely be called width.
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Figure 4.1: Scaled entropy densities s/T 3 of eQP and dQP are shown as functions of the
temperature T scaled by the pseudocritical temperature Tc for fixed quasiparticle parameters
Ts = −0.738Tc, λ = 5.93, α = 0.941 and variable width parameter Γ. For reference, entropy
density data from lattice calculations [Kar07] scaled with dlat = 0.954 is indicated by the
symbols. For small Γ dQP and eQP results are virtually indistinguishable; with increasing
Γ, the dQP entropy density decreases for T > Tc and increases for T < Tc.

where Mmax is the upper limit used in the numeric integration. The normalization
Ni explicitly depends on both Γ and the quasiparticle masses mi and therefore also
on the temperature.

Entropy density and particle density follow by differentiating the pressure with
respect to the intrinsic quantities (cf. section 3.2). As for the eQP (cf. eq. 3.12), an
integrability condition takes care of the derivative of the pressure with respect to
the masses mi(T, µ). Since the Breit-Wigner distribution does not explicitly depend
on T and µ, it is unaffected by the differentiation. Therefore, the expressions of
the distributed QPM (dQP) mirror the eQP formulas up to the additional mass
distribution integral:

ndQP
i (T, µ) =

di

2π2

∞∫
0

dk dM k2
[
f+ − f−

]
BWi(M) (4.5)

and

sdQP
i (T, µ) =

di

2π2T

∞∫
0

dk dM k2

{
4
3k

2 +M2

ωi

[
f++f−

]
− µ

[
f+−f−

]}
BWi(M).

(4.6)

4.2 Test of the model at µ = 0

Taking the limit Γ→ 0 leads to BW(m,M,Γ)→ δ(m−M) and thus pdQP → peQP ,
sdQP → seQP and ndQP → neQP . The dQP exactly gives the eQP in the limit of
vanishing width.3

3For further derivatives of the state variables, additional integrations by parts with respect to M
may be necessary. As a representative, this is shown for c2 in section 4.5.
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Figure 4.2: As Figure 4.1 but comparing the eQP (Ts = −0.738Tc, λ = 5.93, α = 0.941
with dlat = 0.954 resulting in χ2

s/T 3/N = 0.0171) and dQP (Ts = −0.742Tc, λ = 6.01,
α = 0.942 and Γ = 0.010GeV with dlat = 0.952 giving χ2

s/T 3/N = 0.0160) adjustments to
lattice data for the entropy density from [Kar07].

Figure 4.1 displays the evolution of the entropy density for increasing values of
Γ. Starting from small widths, where the eQP is reproduced, the entropy density
steadily decreases for T > Tc and slightly increases for T < Tc. The cause of this
effect is discussed below in detail.

The adjustment of the dQP at µ = 0 using lattice data (Figure 4.2) shows only
a tiny improvement, which comes as no surprise since the data is already described
in a close-to-perfect manner by the eQP. The minor decrease of χ2

s/T 3 is due to
better agreement of the dQP entropy density with the lattice data at and close to
Tc. However, due to the steep incline in this area this is visually hardly noticeable.

Note that the continuum extrapolation factor dlat for both models is basically
equal. As the same is found for several other models too, dlat ∼ 0.95 may be
interpreted as a rough estimate of the actual continuum extrapolation factor.

4.3 General discussion of the ansatz

In order to become more acquainted with the dQP, the relation between temperature-
independent particle width and particle mass (represented by the coupling G2 to
which the masses are closely related, see eqs. (2.22)) is investigated. In doing so, we
require a perfect match with lattice data ([Pei00], Nf = 2).4 The results are shown
in Figure 4.3. In order to understand the behavior we have to inspect the ansatz.

The procedure to introduce widths by convolution with a distribution function
can be investigated on very general grounds. Leaving aside any explicit expression for
the entropy density s(M,T ) and even allowing a possible temperature dependence
of the width Γ, some intrinsic features of the ansatz

s(m,T )⇒
∫

dM s(M,T )BW(M,m,Γ) (4.7)

4As the temperature dependent widths under investigation in section 4.6 depend on G2

(cf. eq. (4.16)) this can be done for the temperature independent case only.
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Figure 4.3: Dependence of G2 on the width Γ of quasiparticles at various temperatures if
entropy density data for Nf = 2 [Pei00] is to be accurately matched. The right Figure is
a zoom into the region below G2 = 10 of the left Figure; the solid grey curves in the left
Figure are the curves shown in the right Figure.

can be found.

The entropy density s(M,T ) here is a monotonically decreasing but non-negative
function of M with its maximum at M = 0 (since the phase space continuously
grows for decreasing particle masses with zero being the lowest physically possible
mass and s being non-negative per definitionem) for arbitrary T . BW(M,m,Γ) is
symmetric around m and normalized. Let Γ be reasonably smaller than m.

We first consider the case where s is simply inversely proportional to M . The
convolution of s and BW is then governed by an increase of the entropy density
for M < mi and an equivalent decrease for M > mi. Since both changes are of the
same order, BW keeps its normalization and the integration

∫ +∞
−∞ s(M)BW(M,m)dM

simply gives s(m).

Generally, s(M,T ) is of a more involved nature, i.e. ∂2s(M)/∂M2 6= 0. For those
cases the changes of the entropy density above and below mi do not compensate
each other, and the integral

∫ +∞
−∞ s(M)BW (M,m)dM does not coincide with s(m).

If the second derivative is negative at m the entropy density is smaller than s(m)
since the entropy density decreases faster for M < mi than it increases for M > mi.
Analogously, the new entropy density is larger than s(m) if the derivative is positive.

Both cases occur in our model due to the specific form of the entropy density
(see Figure 4.4) which has a negative second derivative for rather small masses and
a positive one for larger masses. The inflection point that separates both regimes is
influenced by the temperature T from the statistical distribution function. It moves
towards higher masses for increasing temperature.

Looking at Figure 4.3 while keeping in mind that G2 is strongly related to our
masses we can easily distinguish both cases. For large masses (close to Tc, where
they account for the strongly decreasing entropy density, and at large temperatures
T , where the effect is subdued by the mentioned increase of the inflection point) the
increasing entropy density is compensated by increasing coupling G2 (i.e. mass). The
increase diminishes and is finally stopped because the Breit-Wigner peak stretches
more and more into regions with negative second derivative. The opposite happens
for small masses.
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Figure 4.4: The two functions seQP (M) (left ordinate) and BW(m,M,Γ) (right ordinate)
as functions of the mass parameter M . All quantities are scaled appropriately.

4.4 Extension to non-vanishing chemical potential

4.4.1 The flow equation

As outlined in section 3.3, a partial differential equation for the effective coupling G2

can be found by imposing one of Maxwell’s relations (cf. eq. (3.14)) on the model.
For the dQP again the explicit derivatives cancel due to Schwarz’s theorem and the
general form of the resulting flow equation

adQP
T

∂G2

∂T
+ adQP

µ

∂G2

∂µ
= bdQP (4.8)

remains unchanged. The new coefficients adQP
T , adQP

µ and bdQP can be found in
Appendix D. They retain the properties of the eQP flow equation coefficients, so that
the characteristics show the same behavior and the effective coupling G2 evolves in
a similar way. The derivative of G2 with respect to the chemical potential vanishes
at µ = 0 as for the dQP.

Solving the flow equation gives the remarkable result that the crossings (cf. section
3.3) disappear with increasing width if the remaining parameters remain fixed (see
Figure 4.5).

Unfortunately, the width has to be of the order of 1 GeV to avoid all crossings
near to Tc (see Figure 4.6). While widths of this order may be allowed in the
transition region, even for extreme values of the remaining dQP parameters, lattice
data cannot be described for higher temperatures. This is visualized in Figure 4.7
which shows the best possible adjustment of the dQP for Γ = 1 GeV.

4.4.2 Taylor coefficients of the pressure expansion

The pressure correction coefficients introduced in section 3.4 constitute another
test of the dQP for nonzero quark chemical potential. Applying eq. (3.19) to the
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Figure 4.5: Characteristic curves in the T -µ plane. Thick solid curves are characteristics
emerging from T = Tc which can be interpreted as an estimate of the phase borderline.
Increasing the width parameter Γ, while keeping the other QPM parameters fixed at the
values from the adjustment of the eQP (Ts = −0.738Tc, λ = 5.93, α = 0.941), removes the
ambiguities near the phase transition. Thin solid lines indicate characteristics governed by
the parameters Ts and λ, while the dashed characteristics are governed by α.
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Figure 4.6: As Figure 4.5 (bottom right panel) but depicting a few more characteristic
curves emerging from T ≈ Tc. The crossings have entirely disappeared.
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Figure 4.7: The best possible adjustment of the scaled dQP entropy density s/T 3, using a
large width of Γ = 1 GeV, to lattice data from [Kar07] is shown. The other model parameters
are Ts = −0.91Tc, λ = 16.6 and dlat = 0.67. While the region T ≈ Tc can be described, the
slope introduced by the large width makes an accurate adjustment of lattice data above Tc

impossible.

distributed model gives

cdQP
2 =

dq

2π2T 3

∞∫
0

dkdM k2ef2BW,

cdQP
4 =

dq

24π2T 3

∞∫
0

dkdM k2

{[
ef2 − 6e2f3 + 6e3f4

]
BW + 3T 2ef2 ∂

2BW
∂µ2

∣∣∣∣
µ=0

}
,

(4.9)

where the second derivative of the Breit-Wigner distribution with respect to the
chemical potential is given in Appendix C.2.

As for the entropy density and in line with the argument given in section 4.3,
the Breit-Wigner distribution within the thermodynamic integral for cdQP

2 causes a
decrease of the pressure correction coefficient above Tc and an increase below Tc with
growing width parameter Γ (see Figure 4.8). The effect on c4 is similar but subdued.
It is only the additional term containing the second derivative of the Breit-Wigner
distribution with respect to the chemical potential, being responsible for the peak
structure (cf. section 3.4), which shows some width dependence: the peak vanishes
for increasing values of Γ.

This is the reason, why the dQP is not able to describe lattice data for the
pressure correction coefficients better than the eQP. Both the absolute value of c2
outside the region around Tc and the peak structure of c4 at Tc are actually described
in a less favorable way if the new degree of freedom - the width - starts to contribute
significantly. Therefore, the adjustment of the dQP proves virtually similar to the
eQP with almost vanishing width parameter Γ. Details are shown in Figure 4.9.
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Figure 4.8: The effect of the width parameter Γ on the pressure correction coefficients
c2,4 as functions of T/Tc is shown. While c2 is largely affected, c4 seems to be rather stable
with only the peak structure showing some Γ-dependence. Parameters used: Ts = −0.87Tc,
λ = 12, α = 0.95 as proposed for the eQP in [Blu04].
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Figure 4.9: The adjustments of both eQP and dQP using lattice data [All03] are all but
similar as are the parameters for both models: Ts = −0.87Tc, λ = 12 and α = 0.95 with
Γ = 0.001 for the dQP. Only a minor improvement in quality (χ2

c2
/N = 1.77 × 10−4 vs.

χ2
c2
/N = 1.53× 10−4) is measurable.
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4.5 The effective QPM as limit of the dQP

By going to the limit of vanishing width, where BW(m,M,Γ)→ δ(m−M), the dQP
turns into the eQP. Due to the integrability condition the state variables contain
no derivatives of the distribution function BW and the mass integral containing a
delta function can directly be evaluated. This is not the case for further derivatives
of the pressure, since BW → δ in the limit Γ → 0 and the derivative of the Dirac
delta distribution (see footnote 1 in Appendix B.2) proves problematic, so that
e.g. ∂BW/∂µ is not clearly defined. As long as the remaining integrand is sufficiently
differentiable, we can solve the dilemma through an integration by parts, throwing
the derivation for BW onto the other part of the integrand.5

As an example, the pressure correction coefficient c4 contains the second derivative
of BW with respect to the chemical potential. For brevity assuming N = (2π)−1 and
setting m2 = m̃2

q,∞ the concerned part of cdQP
4 from eq. (4.9) reads

∞∫
0

dM ef2∂
2BW
∂µ2

=

∞∫
0

dM ef2

{
∂2m2

∂µ2

∂BW
∂m2

+
(
∂m2

∂µ

)
∂2BW
∂m2

}
. (4.10)

It has to be taken at µ = 0, where ∂G2/∂µ = 0 and thus ∂m/∂µ (cf. eq. (C.10))
vanishes. The integral

∫∞
0 dM of the derivative of BW with respect to the squared

asymptotic quark mass is given by

∞∫
0

dM
∂BW
∂m2

=
1

2m

∞∫
0

dM
∂BW
∂m

= − 1
2m

∞∫
−m

d(M −m)
∂BW

∂(M −m)
= −BW

2m
. (4.11)

The derivative of the remaining part is

∂

∂M
ef2∂

2m2

∂µ2
=
(

1
T
ef2 − 2

T
e2f3

)
∂2m2

∂µ2

∂ω

∂M
, (4.12)

where here ω2 = k2 +M2.
Performing the partial integration

∫
dM u′v = [uv] −

∫
dM uv′ and taking the

limit BW → δ, [uv] vanishes at the limits as it is directly proportional to BW and
the derivative ∂ω/∂M becomes ∂ω/∂m. Since

∂2ω

∂µ2
=
∂2m2

∂µ2

1
2m

∂ω

∂m
(4.13)

due to ∂m/∂µ vanishing at µ = 0 as above, we find

∞∫
0

dM ef2 ∂
2BW
∂µ2

∣∣∣∣
µ=0

=
1
T

(
ef2 − 2e2f3

) ∂2ω

∂µ2

∣∣∣∣
µ=0

. (4.14)

5This is actually one of the essences of distribution theory. Here, however, it would have to be
applied cum grano salis. It is tempting to interpret {BW}(φ) :=

∫
dMφ(M)BW(M, m, Γ) as regular

distribution converging to the irregular distribution δ for Γ → 0, where the remaining integrand
φ is a test function, and to rely on the framework of distribution theory. While the integrands of
thermodynamic integrals usually are ε C∞ with respect to the mass parameter M , they do not have
compact support. Nevertheless, main contributions are found at k ∼ T and vanish exponentially
for k →∞, so that the general technique still proves fruitful.
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Inserting the result into (4.9) finally gives the eQP expression (3.20)

cdQP
4

∣∣∣
Γ=0

=
dq

24π2T 3

∞∫
0

dk k2

{
ef2 − 6e2f3 + 6e3f4 + 3T (ef2 − 2e2f3)

∂2ω

∂µ2

∣∣∣∣
µ=0

}

=
dq

24π2T 3

∞∫
0

dk k2ef4

{
(e+ 1)2 − 6e(e+ 1) + 6e2

+3T
(
(e+ 1)2 − 2e(e+ 1)

) ∂2ω

∂µ2

∣∣∣∣
µ=0

}

=
dq

24π2T 3

∞∫
0

dk k2ef4

{
e2 − 4e+ 1 + 3T (1− e2) ∂

2ω

∂µ2

∣∣∣∣
µ=0

}
= ceQP

4 . (4.15)

This accomplishes our proof that the first Taylor expansion coefficients of the dQP
turn into the ones of the eQP for vanishing widths. Using the same procedure, this
can be shown for all other thermodynamic quantities of the dQP.

4.6 Temperature dependent widths

One possible way to model the temperature and particle species dependence of the
width is to utilize the gluon and quark damping rates from [Pis93], which were also
used in [Pes04, Pes05]:

Γi(T ) = Ci
G2T

8π
ln

c

G2
(4.16)

where Ci is the Casimir constant of the respective symmetry groups (Cg = Nc and
Cq = (N2

c − 1)/2Nc) and c is the parameter of the temperature dependent width. In
contrast to the width parameter Γ from the preceding sections, c is dimensionless.

Due to the logarithm, there exists a temperature (close to Tc), below which the
width becomes negative. That imposes a limit of validity for this ansatz. Conse-
quently, the model can only be compared to lattice data for T & Tc.

Due to the T−dependence of the width, the Breit-Wigner distribution is also
temperature dependent and the expression for the entropy density becomes more
involved:

s
dQP (T )
i (T, µ) =

∂pi

∂T

∣∣∣
µ

=
∂pi

∂T

∣∣∣
µ,BWi,B

+
∂pi

∂BWi

∂BWi

∂T

∣∣∣
µ
− ∂B

∂T

∣∣∣
µ
.

As for the eQP, terms arising from the derivative of mi with respect to T vanish due
to the integrability condition. For µ = 0 we are left with

s
dQP (T )
i (T, 0) =

di

π2T

∞∫
0

dk dM k2f

{
4
3k

2 +M2

ω
BWi +

T

3
k2

ω

∂BWi

∂T

∣∣∣∣
mi

}
,

where
∂BWi

∂T

∣∣∣∣
mi

=

{
Ni
∂B̃Wi

∂Γi
+
∂Ni

∂Γi
B̃Wi

}
∂Γi

∂T
(4.17)
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Figure 4.10: At µ = 0 the dQP with temperature dependent widths according to eq. (4.16)
(Ts = −0.833Tc, λ = 9.259 and c = 340.5 with dlat = 0.900 resulting in χ2

s/T 3 = 0.0104)
shows slightly better agreement with lattice data from [Kar07] than the eQP (Ts = −0.738Tc

and λ = 5.93 with dlat = 0.954 giving χ2
s/T 3/N = 0.0171).

with

∂BWi

∂Γi
=

(mi −M)2 − Γ2
i
4(

(mi −M)2 + Γ2
i
4

)2 ,

∂Ni

∂Γi
=

∂Ni

∂N−1
i

∂N−1
i

∂Γi
= −N2

i

[
−mi

m2
i + Γ2

i
4

− Mmax −mi

(Mmax −mi)2 + Γ2
i
4

]

and
∂Γi

∂T
=
Ci

8π

{
G2 ln

c

G2
+ T

[
ln

c

G2
− 1
] ∂G2

∂T

}
. (4.18)

Adjusting the dQP entropy density for temperature dependent widths at µ = 0
using the same lattice data as for the analysis of temperature independent widths
and eQP above some improvement is noticeable (see Figure 4.10). The adjustment
quality parameter χ2 divided by the number of lattice data points N decreases by
almost two thirds.

Unfortunately, this temperature dependent width vanishes close to Tc and can
therefore not help in resolving the crossings of the characteristic curves near the
“phase transition”.





5 Improved quasiparticle models

5.1 An universal expression for the QPM entropy density

The entropy density contributions in eq. (2.44) are intrinsically linked with each
other. While the Θ-terms describe the quasiparticles with infinite lifetime and mean
free path, the arctan- and ReIm-terms give the damping and width corrections.
Consequently, eq. (2.44) can be reformulated to give an universal expression for the
entropy density. For the sake of brevity this is shown here for transverse gluons as
symmetries allow for a compact presentation of the formulas. Nevertheless, these
symmetries are not necessary: the calculation can be performed as well without
using them.

We start from the transverse gluon entropy density (2.44) and use the symmetries
of propagator (see Figure 2.5) and self-energy (eq. 2.28, see Figure 2.3) to simplify
the energy integration. For convenience, the integrals, the sign function ε(ImΠT) =
−ε(ω) and ReDT are exhibited explicitly:

sg,T =
dg

π2

∞∫
0

dk k2

∞∫
0

dω
π

∂nB

∂T

{
− πε(ImΠT)Θ(−ReD−1

T ) (5.1)

− arctan
ImΠT

ReD−1
T

+
ReD−1

T ImΠT

Re2D−1
T + Im2ΠT

}
.

The derivative of the bosonic distribution function is now substituted by the
derivative of σB from section 3.1 with respect to ω (cf. eq. (3.3)). In order to perform
an integration by parts we need the derivative of the curly bracket. Using the
derivatives of the arc tangent and the Heaviside and sign functions from Appendix
B.2 we find

∂{}
∂ω

=

(
πε(ω)δ(ReD−1

T )− πε(ω)δ(ReD−1
T ) +

2Im3ΠT

(Re2D−1
T + Im2ΠT)2

)
∂ReD−1

T

∂ω

+

(
−2πδ(ImΠT)Θ(−ReD−1

T )−
2ReD−1

T Im2ΠT

(Re2D−1
T + Im2ΠT)2

)
∂ImΠT

∂ω
.

The Dirac delta distributions arising from the Θ-function and the arc tangent exactly
cancel. The term −2πδ(ImΠT)Θ(−ReD−1

T ) does not contribute, as the sign change
of ImΠT is at ω = 0, where ReD−1

T is positive (see Figure 2.5). Introducing a new
variable ξg,T := ImΠT/ReD−1

T allows to further compactify the expression and define
the distribution function Fg,T:

∂{}
∂ω

= −2
ξ2g,T

(1 + ξ2g,T)2
∂ξg,T

∂ω
=: πFg,T(ξ). (5.2)

Now, performing the integration by parts gives

sg,T =
dg

π2

∞∫
0

dω

∞∫
0

dk k2σB(ω)Fg,T(ξ(ω)) +
[
C(ω)

]∞
0

(5.3)
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with

C(ω) =
dg

π2

∞∫
0

dk k2σB(ω)
{}

, (5.4)

where C(0) vanishes for the transverse gluons since the expression within the curly
bracket is antisymmetric. Due to σ(ω →∞) = 0 and the curly bracket being finite
at positive infinity, C(∞) is zero, too.

This derivation can also be done by integrating eq. (2.41) by parts. Use of
Im ln z = Arg z and eq. (B.10) gives (5.3) in a straightforward way without the
need to use the delta distribution at all. This can be interpreted as a hint for some
ambiguity in the decomposition into quasiparticle pole and damping contributions.

Expression (5.3) is not limited to transverse gluons or the HTL self-energies
themselves. Performing the derivation for particles with nonzero chemical potential
(e.g. quarks) without the use of special symmetries and taking into account the
antiparticle contributions we find the general form of the entropy density si for
particle species i

si =
di

2π2

∞∫
0

dω

∞∫
0

dk k2
(
σF + σA

F

)
F (ξi)−

[
C(ξi(ω))

]∞
0

(5.5)

with

F (ξi) := − 1
π

(
ξ2i (ω)

(1 + ξ2i (ω))2
∂ξi(ω)
∂ω

− ξ2i (-ω)
(1 + ξ2i (-ω))2

∂ξi(-ω)
∂ω

)
. (5.6)

The ξi for longitudinal gluons and the normal and abnormal quark (or (anti)quark and
plasmino) branches are, analogously to ξg,T, defined as quotients of the imaginary
part of the corresponding self-energy and the real part of the respective inverse
propagator. The expressions for σF and σA

F can be found in section 3.1.
If ξi is symmetric, its derivatives are equal up to the sign and F (ξi) simplifies as

for the transverse gluons. The analogously extended expression for C(ω) vanishes at
zero and infinity as long as the real part of the propagator and the imaginary part
of the self-energy are (and therefore ξi is) continuous at ω = 0 and do not diverge
for ω →∞.

Using this general expression, two ways of including widths and damping effects
into the QPM are investigated.

5.2 Lorentz widths improved quasiparticle model

The eQP can heuristically be extended to include Lorentz widths [Pes04, Pes05].
We are going to verify these results using eq. (5.5), e.g. for transverse gluons, by
using the ansatz ImΠT = 2γω and ReΠT = m2

g,∞ instead of the more involved HTL
expression. The resulting spectral function % = 2ImD(ω + iε) (see Appendix A) is

%Ltz =
γ

ωk

(
1

(ω − ωk)2 + γ2
− 1

(ω + ωk)2 + γ2

)
(5.7)

as opposed to quasiparticle poles %D(ω) = 2π
2ωk

[δ(ω + ωk)− δ(ω − ωk)] (see footnote 3
in Appendix A), where ωk is the dispersion relation of particle family k. Consequently,
the parameter γ of the Lorentz widths improved QPM (iQP) is a width measure.

Starting from

ξLtz
g,T =

2γω
−ω2 + k2 +m2

g,∞
(5.8)
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Figure 5.1: The ansatz of uniform Lorentz widths at truncated 2-loop order of the effective
coupling G2 visibly improves the possibility to adjust the QPM. Shown are the best possible
adjustments of Lorentz iQP (Ts = −0.273Tc, λ = 2.164 and γ = 4.27T with dlat = 0.945 -
χ2

s/T 3/N = 0.47× 10−3) and eQP (Ts = −0.543Tc, λ = 3.08 with dlat = 0.946 - χ2
s/T 3/N =

7.10× 10−3) to lattice data from [CPP99] for the pure SU(3) plasma.

we arrive at

FLtz
g,T =

16γ3ω2
(
ω2 + ω2

T(k)
)

π
((
ω2 − ω2

T(k)
)2 + 4γ2ω2

)2 . (5.9)

Performing an integration by parts in reverse order of the previous chapter, we recover
the entropy density expression given in [Pes04]. While FLtz is not normalized, the
integral

∫
dωFLtz → 1 and

∫
dωf(ω)FLtz → f(ωT) for γ → 0, so that FLtz →

δ(ω − ωT) for vanishing γ. Consequently the eQP is found in the limit γ → 0.
Figure 5.1 shows the adjustment of the Lorentz width iQP in comparison with

the adjustment of the eQP to lattice data for the pure gluon plasma entropy density
from [CPP99]. Clearly the model improves the adjustment quality. This is due to a
steeper incline close to the transition temperature.

Peshier has shown [Pes04] that the direct inclusion of quasiparticle widths in this
way strictly increases the overall entropy density. Therefore, it is not suitable to
remove the crossings of the characteristics of the flow equation (cf. section 3.3). How-
ever the Lorentz iQP provides us with strong support for the ansatz for quasiparticle
widths used in chapter 4.

To this avail the distributed energies from the universal entropy density expression
can be translated into distributed masses, giving the possibility to compare the
Lorentz ansatz with the dQP

sLtz
i =

di

2π2

∞∫
−k2

dM

∞∫
0

dk k2
(
σ(k2 +M2) + σA(k2 +M2)

)
FLtz,M (5.10)

with

FLtz,M =
16γ3M

√
k2 +M2(M2 + 2k2 +m2

i,∞)

π

((
M2 −m2

i,∞

)2
+ 4γ2 (k2 +M2)

)2 . (5.11)
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Figure 5.2: The two mass distribution functions of eqs. (5.11) and (4.2) as functions of
M/mi,∞ for several values of the quasiparticle momentum and fixed width Γ = γ = 0.2mi,∞.
For small momenta k, both are equal. For larger values of k, Lorentz widths lead to broader
mass distributions.

This new entropy density expression exactly matches the dQP entropy density
(4.6) up to a partial integration as performed for (3.8) and the substitution BW→
FLtz,M . The comparison of both mass distribution functions (see Figure 5.2) can
therefore provide us with valuable information on the differences of both models.

While FLtz,M is a function of k, there is no momentum dependence of the
Breit-Wigner distribution. This leads a scale-dependence of the mass distribution
functions. While both functions are virtually identical for small momenta k < mi,∞,
the Lorentz mass distribution shows an increased peak width at full width half
maximum (FWHM) at higher momentum scales. Yet, it is exactly at k ∼ mi,∞ where
thermodynamic momentum integrals have their main contributions. Consequently,
both models show significant differences. For increasing widths, the dQP entropy
density decreases, while the Lorentz entropy density grows. I therefore propose the
study of the dQP with a momentum dependent width of the form

Γ(M,k) = γ
√
k2 +M2 (5.12)

modeling the momentum scale dependence of the Lorentz iQP in a straightforward
way (see Figure 5.3).

Nevertheless, it is the special Lorentz width ansatz which leads to the momentum
dependent mass widths. The general formulation of the quasiparticle entropy density
of eq. (5.5) for itself provides a strong justification of the dQP treated in chapter 4.

5.3 Landau damping improved quasiparticle model

While the treatment of quasiparticle widths is essential, the damping contributions
of the HTL self-energies are not connected to the poles of the spectral function. To
be specific, the imaginary parts of the HTL self-energies are nonzero below the light
cone only. As outlined in section 2.4 they are related to Landau damping.

While Landau damping contributions for transverse and collective longitudinal
modes are separated, the collective quark modes and quark Landau damping con-
tribution are interrelated in a complex way (see sections 2.4 and 2.5 as well as the
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Figure 5.3: As Figure 5.2 but with the width parameter of the Breit-Wigner distribution Γ
parametrized according to eq. (5.12). Using this parametrization the momentum dependence
of the Lorentz mass distribution function can be modeled so that the dQP is a good
approximation of the Lorentz iQP.

comment related to eq. (2.48)). It is therefore not straightforward how Landau
damping can be implemented while neglecting plasminos.

One possibility is a correction term aimed at refining the eQP approximation
(section 3.1). The LD iQP entropy density is then given by sLD = seQP + ∆sLD,
where seQP is the sum of eqs. (3.1) and (3.2) while the contributions to ∆sLD =∑

∆sLD
i with i = {g,T; q} follow from eqs. (2.44) and (2.47). The entropy density

correction terms read

∆sLD
g,T = 2dg

∫
d4k

∂nB

∂T

{
ReDTImΠT − arctan

ImΠT

ReD−1
T

}
,

∆sLD
q/s = 2dq

∫
d4k

(
∂nF

∂T
+
∂nA

F

∂T

){
ReS+ImΣ+ − arctan

ImΣ+

ReS−1
+

}
. (5.13)

Note that the quantities ∆sLD
q/s contain the full Landau damping contributions of

both quarks and plasminos (and their respective antiparticles), while for the eQP
quark entropy density sq plasminos were neglected (eq. (3.1)). This is due to the
fact that the Landau damping term within the quark self-energies Σ± cannot be
separated into quark and plasmino contributions in a straightforward manner.

Using the abbreviation ξi introduced in section 5.1 we can rewrite the terms
within the curly brackets above. Since the resulting terms ξi/(1 + ξ2i ) and arctan ξi,
vanish at ξi = 0, the Heaviside function contained within the imaginary parts of the
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Figure 5.4: The eQP (light grey dashed) and LD iQP (solid black) scaled entropy densities
s/T 3 are shown as function of the scaled temperature T/Tc for equal parameter values
(specifically Ts = −0.738Tc, λ = 5.93 and α = 0.941 with dlat = 0.954 from the adjustment
of the eQP to the given lattice data [Kar07]). The grey dotted line is the difference of both
models, i.e. it gives the LD iQP entropy density correction. It is most notable in the region
T < Tc with vanishing impact for temperatures clearly above Tc and seems to correlate with
the effective coupling G2.

HTL self-energies can be applied to the integral limits.1 We have

∆sLD
g,T = 2dg

∫
d3k

k∫
−k

dω
2π

∂nB

∂T

{
ξg,T

1 + ξ2g,T

− arctan ξg,T

}
,

∆sLD
q/s = 2dq

∫
d3k

k∫
−k

dω
2π

(
∂nF

∂T
+
∂nA

F

∂T

){
ξq,+

1 + ξ2q,+

− arctan ξq,+

}
. (5.14)

The effect of the correction terms can be seen in Figure 5.4. It is extremely
large in the area below and at the pseudocritical temperature while vanishing for
temperatures clearly above Tc, seemingly correlating with the effective coupling
G2. Therefore, the linear IR cutoff of G2 for temperatures below the pseudocritical
temperature (cf. section 3.5) is not successful for the LD iQP: it causes a substantial
increase of the entropy density below Tc. Even using a quadratic cutoff of the
effective coupling below Tc (eq. 3.24) at quite extreme parameters (a = −950 and
b = 1479) cannot significantly reduce the entropy density.

The LD iQP is therefore adjusted to lattice data above Tc only (see Figure 5.5).
We find that for T > Tc the inclusion of the Landau damping contributions to the
entropy density does not improve the quality of the adjustment, however it does not
worsen either. It seems the eQP can absorb the effects of Landau damping into a
small change of the parameters Ts and λ. This is a strong argument for the neglect
of Landau damping as done in the derivation of the eQP (section 3.1).

Extending the LD iQP to nonzero chemical potential does not promise improve-
ment in the issue of crossing characteristics. This is due to the fact, that the positive

1Consider functions f(x), g(x) and h(x) with f(0) = 0, g(x) 6= 0 and h(x)εR.

Then f (g(x)Θ(h(x))) =

{
h(x) ≥ 0 : f (g(x) · 1) = f(g(x)) = f(g(x)) · 1
h(x) < 0 : f (g(x) · 0) = f(0) = 0 = f(g(x)) · 0

= f(g(x)) ·Θ(h(x)).
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Figure 5.5: The Figure shows the scaled entropy density of the LD iQP adjustment
(Ts = −0.737 and λ = 5.66 with dlat = 0.957 resulting in χ2

s/T 3/N = 0.0195) compared
to the scaled entropy density of the eQP adjustment (Ts = −0.738Tc and λ = 5.93 with
dlat = 0.954 giving χ2

s/T 3/N = 0.0171) to lattice data from [Kar07] as functions of the scaled
temperature T/Tc. There is no improvement by taking into account Landau damping.

LD entropy density correction leads to an increased effective coupling G2 in the ad-
justment of the LD iQP to lattice data and thus adversely effects the characteristics
(cf. section 3.3).2

2Due to the inclusion of the complete Landau damping contribution of quarks and plasminos
while neglecting the quasiparticle contribution of the latter as well as the use of the asymptotic
dispersion relation for the quasiparticle contribution of quarks and gluons as opposed to the damping
contributions with exact propagators and self-energies, the extension to nonzero chemical potential
even proves problematic. The characteristics do not display the usual behavior of perpendicular
incidence to the T and µ axes as the coefficients of the resulting LD iQP flow equation have different
limits than the ones given in section 3.3.





6 Full HTL quasiparticle model

6.1 Outline of the model

After investigating several approximations we now return to the full HTL entropy
density expression derived in chapter 2. While the previous model ansätze made use
of the asymptotic dispersion relations, the exact dispersion relations are employed
within the full HTL QP model. As a consequence, quark rest masses are not included.
This is not a major obstacle, as the lattice data used here to adjust the model features
rather small lattice rest masses.

As in the eQP and dQP case, we use an ansatz for the pressure which gives the
full HTL entropy density expression (eqs. (2.40), (2.44) and (2.47)) after partial
differentiation with respect to the temperature at constant µ:

p = pg,T + pg,L +
∑
i=q,s

pi −B(ΠT,ΠL,Σ±), (6.1)

pg,T = +2dg

∫
d4k

nB

{
πε(ω)Θ

(
−ReD−1

T

)
− arctan

ImΠT

ReD-1
T

+ ReDTImΠT

}
,

pg,L = − dg

∫
d4k

nB

{
πε(ω)Θ

(
+ReD−1

L

)
− arctan

ImΠL

ReD-1
L

+ ReDLImΠL

}
,

pq/s = 2dq/s

∫
d4k

(
nF+nA

F

){
πΘ
(
−ReS−1

+

)
− arctan

ImΣ+

ReS-1
+

+ ReS+ImΣ+

}
.

(6.2)

The quantity B again ensures self-consistent thermodynamics by fulfilling the inte-
grability conditions

∂B

∂Πi
=

∂p

∂Πi
and

∂B

∂Σ±
=

∂p

∂Σ±
. (6.3)

This is entirely analogous to eq. (3.12). Note that the plasma frequency within the
s-quark pressure differs from the plasma frequency within pq as µs = 0.

The particle density follows by differentiation with respect to the chemical
potential at constant temperature. The Bose-Einstein distribution function nB does
not depend on µ and strange quarks are included into the model with manifest
zero net particle density, therefore ng,T = ng,L = ns = 0 . Due to the integrability
condition, the terms containing the derivatives of the self-energies with respect to µ
vanish, so that

n=nq=2dq

∫
d4k

(
∂nF

∂µ
+
∂nA

F

∂µ

){
πΘ
(
-ReS−1

+

)
−arctan

ImΣ+

ReS-1
+

+ReS+ImΣ+

}
. (6.4)

As required, the density goes to zero for µ→ 0 as the sum of the partial derivatives of
the statistical distribution functions with respect to the chemical potential vanishes.
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Figure 6.1: The scaled entropy densities s/T 3 of the full HTL QPM (solid black; Ts =
−0.749Tc and λ = 6.53 with dlat = 0.967) and the eQP (dashed grey; Ts = −0.738Tc and
λ = 5.93 with dlat = 0.954) adjusted to lattice data for Nf = 2 + 1 from [Kar07] are shown
as functions of the scaled temperature T/Tc. The single parts of sHTL (including their
respective LD contributions) are given by the dashed black, dash-dotted and dotted grey
lines as indicated in the legend.

6.2 Comparison with lattice data at µ = 0

When evaluating the entropy density contributions of the full HTL QPM we find
the longitudinal gluon entropy density sg,L (eq. (2.44)) and the (anti)plasmino
entropy density sq,Pl (eq. (2.48)) to be negative. This is due to fact that both
represent collective phenomena of the QGP resulting in correlations not present in
a noninteracting medium. As a consequence, the transverse gluon and (anti)quark
entropy density contributions have to increase compared to the eQP in order for
the entropy density to describe the same lattice data as the eQP (see Figure 6.1).
This proves to have a positive impact on the extension to nonzero chemical potential
(cf. Appendix 6.3). Note that as another consequence of the negative collective
contributions the pure quasiparticle entropy density is closer to the Stefan-Boltzmann
limit than for the eQP.

For T > Tc and Nf = 2 the full HTL model has been shown to give adjustments
to lattice data equal to the eQP ([Rom04] for data from [CPP01]). This can be
reproduced. Using the given extension to include a heavy quark flavor this can also
be shown for Nf = 2 + 1 (see figs. 6.1 and 6.3).

The extension to T < Tc, on the other hand, is not straightforward. Using the
usual linear IR regulator of the effective coupling, problems arise from the additional
contributions. In order to compensate for the negative terms, the linear slope
parameter α can be chosen much smaller. However, the contributions also cause a
different overall behavior of the entropy density below Tc so that an adjustment using
this simple parametrization is not possible (see Figure 6.2). Using the quadratic IR
regulator introduced in section 3.6 this can in fact be remedied, as Figure 6.3 shows.
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Figure 6.2: The scaled entropy densities s/T 3 of the full HTL QPM with linear (Ts =
−0.806Tc, λ = 8.34 and α = 0.789 with dlat = 0.981) IR regulator and the eQP (Ts =
−0.738Tc, λ = 5.93, α = 0.941 with dlat = 0.954) adjusted to lattice data from [Kar07]
are shown as functions of the scaled temperature T/Tc. The dotted line indicates the
coupling of the full HTL QPM at a scale of 4 to the left ordinate. The adjustment below
the pseudocritical temperature is not satisfactory while the adjustment above is also subpar
due to the connection of the parametrizations above and below Tc through G2(Tc).
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Figure 6.3: As Figure 6.2 but using a quadratic (bottom; Ts = −0.749Tc, λ = 6.53,
a = −245 and b = 361 with dlat = 0.967) IR regulator for the full HTL QPM. The
adjustment quality to lattice data is comparable to the eQP.
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Figure 6.4: The solid curves in both graphs show several characteristics of the eQP flow
equation (3.16) using parameters found from the adjustment of the full HTL QPM to lattice
data shown in Figure 6.3 (Ts = −0.749Tc, λ = 6.53, a = −245 and b = 361). While not all
crossings can be avoided (left panel), the situation improves significantly in comparison to
the characteristics of the eQP (Figure 4.5, top left panel, here shown as dashed grey curves
in the right panel). Note that characteristics above the immediate transition region are
barely affected by the change in parameters.

6.3 Extension of the full HTL QPM to nonzero chemical
potential

Approximate solution

We can find an approximate extension of the full HTL QPM to µ 6= 0 by applying
its adjusted parameters to the eQP flow equation (3.16). As might be expected from
the discussion in section 3.3 the increased entropy density does indeed remove some
of the crossing of the characteristics (Figure 6.4).

While not all crossings vanish, this is a first sign that plasmons and plasminos are
the relevant degrees of freedom necessary to remove the ambiguities in the solutions
of the flow equation.

Exact solution

In his Ph.D. thesis [Rom04], Romatschke claims to have solved the flow equation
for the full HTL quasiparticle model at Nf = 2 as outlined in [BIR01]. His solution
suggests that, as a consequence of the inclusion of all medium effects (plasmons
and plasminos additionally to Landau damping), the ambiguities caused by crossing
characteristic curves near the phase transition vanish for two massless quark flavors.
However, it is not entirely obvious how this result was obtained. Additionally, the
only equation given by him exhibits obvious mistakes (see footnote 2 in Appendix
D).

In order to verify the results from [Rom04], the full HTL flow equation was
rederived. As this is quite extensive, the details are - in a very condensed way -
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Figure 6.5: The solid curves in both graphs are several characteristics of the full HTL flow
equation (D.34) for 2 + 1 quark flavors using parameters from the adjustment of the full
HTL QPM to lattice data shown in Figure 6.3 (Ts = −0.749Tc, λ = 6.53, a = −245 and
b = 361). All crossings have disappeared (left panel). For comparison the right panel shows
the characteristics of the eQP (Figure 4.5, top left panel) as dashed curves.

given in Appendix D. The inaccurate terms within the results of Romatschke are
pointed out.

In addition to his work, the obtained flow equation is then also extended to
Nf = 2+1 as well as to temperatures below the pseudocritical temperature Tc. This
allows a comparison to the results obtained for the other models investigated within
this thesis.

The flow equation (D.34) is then solved for Nf = 2 + 1 using the method of char-
acteristics as in the preceding chapters. Indeed, the crossings of the characteristics
vanish above and also below the pseudocritical temperature as can be seen in Figure
6.5. Also a more pronounced change of direction of the full HTL characteristics
compared to the eQP characteristics (shown as dashed lines in the right panel) is
observable.

Interestingly, in the flow equation, it is not the plasmon or plasmino term which
accounts for the vanishing of the crossings still present in the approximate solution.
This can be shown by neglecting both contributions in the coefficients aT , aµ and b,
i.e. disregarding the second term in the square bracket of the energy integration in
eq. (D.24) and the respective last term in the round parentheses of the momentum
integrations in eqs. (D.24), (D.30) and (D.32).1

While this causes the characteristics to deform and meet with the µ axis at
smaller µ, no crossings appear. However, neglecting the Landau damping terms, i.e.
the energy integrals, immediately leads to crossing characteristics (cf. Figure 6.6).

Therefore both, collective excitations (in order to obtain a reasonably small
coupling G2, cf. section 3.3) and Landau damping (in order to ultimately remove
the crossings), are necessary to obtain a flow equation with unique solutions. Using
this flow equation, it is possible to find an EOS for cold and dense matter.

1As for the LD iQP, the quark Landau damping is in its entirety attributed to the (anti)particles.
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Figure 6.6: As Figure 6.5, but here neglecting the contributions of collective excitations
(dotted lines) and the Landau damping contributions (dashed lines) to the coefficients of
the flow equation (eq. (D.35) in Appendix D). For reference, the characteristics of the full
HTL model (Figure 6.5) are shown as solid grey lines. It is in fact the Landau damping
contribution which removes the crossings.



7 Conclusion and Outlook

Conclusion

The goal of this work was to find a quasiparticle description of the EOS of strongly
interacting matter taking into account particle widths and damping effects. This
goal was successfully achieved. Several methods in doing so were investigated. In
addition, collective modes such as plasmons and plasminos could be implemented.
As common starting point the full Hard Thermal Loop (HTL) quasiparticle model
was derived from 2-loop QCD using the Cornwall-Jackiw-Tomboulis formalism and
an effective coupling G2.

Applying several additional approximations to the full HTL quasiparticle model
yields the existing effective quasiparticle model (eQP) which was investigated in
detail in chapter 3. The problem of crossing characteristics which lead to ambiguities
in the solutions of the extension to nonzero chemical potential µ and its reason
(an increased effective coupling G2 due to the severe approximations) were pointed
out. In addition, some alternative parametrizations of the effective coupling were
considered but did not provide significant improvement for the eQP. Propagators
and self-energies rely consequently on 1-loop QCD expressions.

As one possibility to allow for quasiparticle widths, a model with Breit-Wigner
distributed masses was proposed in chapter 4. The model was tested thoroughly
with all its quantities giving their eQP equivalents in the limit of vanishing width.
While the extension of the model to finite µ is able to remove the crossings due to
an overall decrease of entropy and thus G2 when adjusting the model to lattice data,
this is only the case for rather large quasiparticle widths which are not consistent
with data for µ = 0. As a slight modification of the ansatz, temperature and
particle dependent widths were then examined, providing excellent agreement with
lattice data but showing vanishing widths for the region T ≈ Tc, where the crossings
appear. Consequently, these width parametrizations cannot remove the ambiguities
introduced by the crossings.

Therefore, it proved necessary to return to the exact 1-loop entropy density
expression. In chapter 5 the expression was transformed in order to allow for
arbitrary imaginary parts of the self-energies, i.e. widths and damping effects. Using
the obtained expression, a proposal by Peshier to include Lorentz widths could be
verified and reformulated in a new concise way. While Lorentz widths increase the
overall entropy and are therefore not suited to remove the crossings, a comparison
of the Lorentz widths improved quasiparticle model to the distributed quasiparticle
model from chapter 4 did provide us with a strong foundation for the latter.

As a second application of the new entropy expression, it was applied to the
imaginary parts of the HTL self-energies which contain Landau damping but no
particle widths. By including the damping effect the agreement with lattice data at
µ = 0 improved only slightly. The overall effect of the inclusion of Landau damping
turned out to be an increase in entropy density which again meant that the damping
effect (alone) cannot contribute in removing the crossings of characteristics and in
obtaining unique solutions.
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As it turns out in chapter 6, it is the combination of Landau damping and
collective modes, i.e. plasmons and plasminos, which leads to unique solutions in
the extension to µ > 0. In other words, only the complete HTL quasiparticle model
is fully consistent in contrast to some of the approximations considered within this
thesis. This confirms a statement by Romatschke whose work was still restricted
to T > Tc and Nf = 2 only. While several inaccuracies within his work were found,
they could be corrected and his findings still hold. They were even extended to
Nf = 2 + 1 quark flavors and below the pseudocritical temperature. Finding that
the linear IR cutoff of the effective coupling G2 cannot be used when extending the
model below Tc, one of the alternative parametrizations - a quadratic cutoff - from
chapter 3 was successfully applied.

Outlook

With the crossings removed, the ambiguities in the solution of the flow equation
vanish, i.e. the solutions of the flow equation are now unique. Therefore, the
calculation of an EOS for regions in the T − µ plane which are of interest for future
Heavy Ion Collision experiments is now possible. For instance providing the EOS in
a tabulated form based on this thesis is subject of future investigations. Using the
EOS in turn within hydrodynamic calculations, predictions e.g. for the elliptic flow
can be made. The treatment of quasiparticle widths and damping effects within this
work provides the key to the calculation of transport coefficients.

Another interesting field of application for the EOS, moving further along the
characteristics to even lower temperatures and towards very dense matter into
the field of astrophysics, are neutron stars or, even further, possible quark stars.
Notably, the extension of the model to include strange quarks is especially important
for astrophysics, as there is still much debate about possible strange stars (for a
review see [Web05]).



Appendix A Evaluation of Matsubara
sums

Considering an arbitrary function f(p0 = iωn) which is to be summed over all
bosonic Matsubara frequencies iωn = 2niπT one defines a quantity

M := T

+∞∑
n=−∞

f(p0 = iωn). (A.1)

The factor T in front of the sum will turn out to be very helpful in performing the
sum.

We start by examining the bosonic distribution function for imaginary frequencies
nB(p0 = iω) = (eiβω − 1)−1. It has poles at the bosonic Matsubara frequencies with
residuum1 T

ResiωnnB = Resiωn

1
eβpo − 1

=
T

eβiωn
= T, (A.3)

so M can be written as

M =
∑

n

f(iωn) Res [nB(p0 = iωn)] . (A.4)

We now require f(iω) to be analytic at the poles of the bosonic distribution function
nB and nB to be analytic at the poles of f(iω). Thus the set of poles of the product
f(iω)nB(iω) is equal to the union of the two sets of poles of f(iω) and nB(iω):

{iωm} = {iωn}+ {iωl}. (A.5)

Here m counts the poles of the product and l and n those of f(iω) and nB(iω),
respectively. This implies the relation

∑
m

Res [nB(iωm)f(iωm)] =
∑

l

Res [f(iωl)] nB(iωl) +
∑

n

f(iωn) Res [nB(iωn)]︸ ︷︷ ︸
=M

.

(A.6)
Each of these terms can be translated back into a contour integral encircling the
respective poles. In particular, the first integral then represents the contour integral
containing all poles. Its contour can be moved to infinity, where the integral vanishes
as long as f(iω) is a monotonically decreasing function going to zero for ω → ±∞.2

This leaves us with
1For functions f(z) with a pole of first order at z = a we find

Resa
1

f(z)
= lim

z→a
(z − a)

1

f(z)

f(a)=0
= lim

z→a

z − a

f(z)− f(a)
=:

1

f ′(a)
. (A.2)

2While the expression is Boltzmann suppressed by nB(iω) for ω → ±i∞, since nB(iω)
iω→±∞−→

e∓βω, it is purely oscillatory for ω → ±∞ and does not interfere with the asymptotics of f(iω).
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M = −
∑

l

Res [f(iωl)] nB(ω = iωl). (A.7)

We reintroduce an energy integration, thus constructively complicating the expression
by using the definition of the Dirac delta distribution

∫
dx′ f(x′) δ(x− x′) = f(x):

M = − 1
2π

+i∞∫
−i∞

d(iω′)
∑

l

2πδ(iω′ − iωl) Res
[
f(iω′)

]
nB(iω′). (A.8)

After substituting iω′ → ω we find the well-known structure of a spectral density
%f (ω) :=

∑
l 2πδ(ω − ωl) Resωl

f(ω)

M = − 1
2π

+∞∫
−∞

dω
∑

l

2πδ(ω − ωl) Res [f(ω)]︸ ︷︷ ︸
=:%f (ω)=2Im f(ω+iε)

nB(ω) (A.9)

which can be replaced by the imaginary part of the retarded expression3 for f , finally
yielding

M = −
+∞∫
−∞

dω
π
nB(ω) Im(f(ω + iε)). (A.10)

For a sum over all fermionic Matsubara frequencies, one replaces nB by the
Fermi-Dirac distribution function nF with poles at iωn = (2n + 1)iπT + µ and
ResiωnnF = T in eq. (A.4). Since the remaining steps are independent of the explicit
form of the distribution function, the result is found in an analogous way.

3As an example, this is shown for a bosonic propagator f(ω) = D(ω) = −(ω2 − ω2
k)−1. The

expression

Res±ωkD(ω) = lim
ω→±ωk

−(ω ∓ ωk)

(ω + ωk)(ω − ωk)
= lim

ω→±ωk

−1

ω ± ωk
= ∓ 1

2ωk

leads to %D(ω) = 2π
2ωk

[δ(ω + ωk)− δ(ω − ωk)]. Using (A+ iε)−1 = PA−1− iπδ(A), where P denotes
the principle value, we obtain the same result for

2Im D(ω + iε) = −2Im
1

ω2 + 2iεω − ω2
k

= 2πδ
(
ω2 − ω2

k

)
=

2π

2ωk
[δ(ω + ωk)− δ(ω − ωk)]

In fact, this simple example can be expanded to a rigorous proof by treating an arbitrary spectral
function as infinite sum of delta distributions (convolution integral) and calculating its propagator
using the Lehmann representation.



Appendix B Mathematical relations

B.1 Imaginary part of the logarithm

The imaginary part of the logarithm of a complex quantity z (e.g. an inverse propa-
gator) equals the argument of z:

Im ln(z) = Im ln
(
|z|eiArg(z)

)
= Im

(
ln |z|︸︷︷︸

εR

+iArg(z)
)

= Arg(z). (B.1)

Therefore, z is allowed to have a dimension, e.g. in the inverse of z = D−1
T an squared

energy dimension, even though the logarithm itself is defined for dimensionless
numbers only. For explicit calculations, the dimension has to be removed:

Im lnD−1
T = Im

(
ln
D−1

T

T 2
+ 2 lnT︸ ︷︷ ︸

εR

)
= Im ln

D−1
T

T 2
. (B.2)

This is not an ambiguity since, as long as the dimension is well-behaved, it has no
influence on the argument of D−1

T .
The argument can be calculated using the arc tangent. Compensating for quad-

rant relations it is given by

Im ln(z) = Arg(z) = arctan
Imz
Rez

+ πε(Imz)Θ(−Re z) (B.3)

and, if the argument is −z,

Im ln(−z) = Arg(−z) = arctan
Imz
Rez

− πε(Imz)Θ(Re z). (B.4)

Note that the step function Θ is defined for dimensionless quantities only too, so
implicitly it is always to be divided by a reference quantity (e.g. again a power of
the temperature if z is an inverse propagator).

B.2 Derivative of Arg and arctan

As a prerequisite, we need the derivative of the Heaviside function1

∂

∂x
Θ
(x
a

)
=

1
a
δ
(x
a

)
=
|a|
a
δ (x) = ε(a)δ(x) (B.5)

1At several points of this thesis we use the Dirac delta distribution δ(x). Even though it is a
(singular) distribution, the integral sign is used for simplicity reasons. It has to be understood as
a symbol for the bilinear form associated to the dual pair 〈E , E ′〉 where E = C∞(Ω) with Ω ⊂ Rn

chosen appropriately and E ′ is the space of distributions with compact support.
In some situations we use the Delta distribution without even the integral sign, knowing that it

is always part of a thermodynamic integral.
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and as a consequence the derivative of the sign function ε(x) := Θ(x)−Θ(−x)

∂

∂x
ε(
x

a
) = 2ε(a)δ(x). (B.6)

Using a symmetry relation and the derivative of the arc tangent (cf. [TBM01])

arctan
(a
x

)
= − arctan

(x
a

)
+ πΘ

(x
a

)
− π

2
, (B.7)

∂

∂x
arctan

(x
a

)
=

a

a2 + x2
(B.8)

we find
∂

∂x
arctan

(a
x

)
= − a

a2 + x2
+ πε(a)δ(x). (B.9)

Applying this relation to the argument Arg z = arctan Im z
Re z + πε(Im z)Θ(−Re z)

of a complex quantity z (e.g. an inverse propagator) we find

∂

∂Re z
Arg z =

−Im z

Im2z + Re2z
, (B.10)

∂

∂Im z
Arg z =

Re z
Im2z + Re2z

+ 2πδ(Im z)Θ(−Re z). (B.11)

The two emerging Dirac delta distributions of the derivative with respect to the real
part of z exactly cancel.



Appendix C List of derivatives

C.1 Derivatives of the HTL thermal masses

Effective and distributed quasiparticle models

The derivatives of the asymptotic masses m̃i,∞ with temperature dependent rest-
masses mq,s = aq,sT as defined in eq. (2.35) are given here. The derivatives of the
asymptotic masses mi,∞ without restmasses can be found by taking the limit a→ 0.
For gluons m̃g = mg, as defined in section 2.5, µq = µ and µs = 0. We obtain

∂m̃2
g,∞

∂T
=

Cb

3
TG2 + C̃b

∂G2

∂T
, (C.1)

∂2m̃2
g,∞

∂T 2
=

Cb

3
G2 + 2

Cb

3
T
∂G2

∂T
+ C̃b

∂2G2

∂T 2
, (C.2)

C̃b :=
1
6

{
CbT

2 +
NcNq

2π2
µ2

}
(C.3)

∂M̂2
q,s

∂T
=

Cf

4
TG2 +

Cf

8

(
T 2 +

µ2
q,s

π2

)
∂G2

∂T
(C.4)

∂m̃2
q/s,∞

∂T
=

(
2aq,sT + 2M̂q,s

)
aq,s +

(
aq,sT

M̂q,s

+ 2

)
∂M̂2

q,s

∂T
(C.5)

=
(
2aq,sT + 2M̂q,s

)
aq,s +

(
aq,sT

M̂q,s

+ 2

)
Cf

4
TG2

︸ ︷︷ ︸
(I)

+

(
aq,sT

M̂q,s

+ 2

)
Cf

8

(
T 2 +

µ2
q,s

π2

)
︸ ︷︷ ︸

(1)

∂G2

∂T
, (C.6)

∂2m̃2
q/s,∞

∂T 2
=

(
2aq,s +

1
M̂q,s

∂M̂2
q,s

∂T

)
aq,s +

(
aq,s

M̂q,s

− aq,sT

2M̂3
q,s

∂M̂2
q,s

∂T

)
∂M̂2

q,s

∂T

+

(
aq,sT

M̂q,s

+ 2

)
∂2M̂2

q,s

∂T 2
, (C.7)

∂2M̂2
q,s

∂T 2
=

Cf

8

(
2G2 + 4T

∂G2

∂T
+

(
T 2 +

µ2
q,s

π2

)
∂2G2

∂T 2

)
, (C.8)
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∂m̃2
g,∞
∂µ

=
Nqµ

2π2
G2︸ ︷︷ ︸

(III)

+
C̃b

6︸︷︷︸
(C)

∂G2

∂µ
, (C.9)

∂m̃2
q,∞
∂µ

=

(
mq

M̂q

+ 2

)
Cfµ

4π2
G2

︸ ︷︷ ︸
(II)

+

(
mq

M̂q

+ 2

)
Cf

8

(
T 2 +

µ2

π2

)
︸ ︷︷ ︸

(A)

∂G2

∂µ
, (C.10)

∂m̃2
s,∞
∂µ

=
(
ms

M̂s

+ 2
)
CfT

2

8︸ ︷︷ ︸
(B)

∂G2

∂µ
, (C.11)

∂2m̃2
q,∞

∂µ2
= − mq

2M̂3
q

∂M̂2
q

∂µ
+

(
mq

M̂q

+ 2

)
∂2M̂2

q

∂µ2
, (C.12)

∂M̂2
q

∂µ
=

Cfµ

4π2
G2 +

Cf

8

(
T 2 +

µ2

π2

)
∂G2

∂µ
, (C.13)

∂2M̂2
q

∂µ2
=

Cf

8

(
2
π
G2 +

4µ
π2

∂G2

∂µ
+
(
T 2 +

µ2

π2

)
∂2G2

∂µ2

)
. (C.14)

C.2 Derivatives of the Breit-Wigner distribution

This appendix lists the derivatives of the Breit-Wigner distribution BW(mi,M,Γ)
as defined in section 4.1 with respect to the chemical potential µ. They are given by

∂BWi

∂µ
= Ni

∂B̃Wi

∂m2
i

∂m2
i

∂µ
− B̃Wi

∂Ni

∂µ
, (C.15)

∂2BWi

∂µ2
= 2

∂Ni

∂µ

∂B̃Wi

∂m2
i

∂m2
i

∂µ
+Ni

∂2B̃Wi

(∂m2
i )2

(
∂m2

i

∂µ

)2

+Ni
∂B̃Wi

∂m2
i

∂2m2
i

∂µ2
+ B̃Wi

∂2Ni

∂µ2
,

(C.16)
where

∂Ni

∂µ
= − Ni

2mi

∂N−1

∂mi

∂m2
i

∂µ
, (C.17)

∂2Ni

∂µ2
=

2
Ni

(
∂N2

i

∂µ

)2

− N2
i

2mi

∂2N−1
i

(∂mi)2

(
∂m2

i

∂µ

)2

+
N2

i

4m3
i

∂N−1
i

∂mi

(
∂m2

i

∂µ

)2

− N2
i

2mi

∂N−1
i

∂mi

∂2m2
i

∂µ2

(C.18)
and

∂B̃Wi

∂m2
i

=
(M −mi)

Γmi
B̃W

2

i , (C.19)

∂2B̃Wi

(∂mi)2
= − M

2Γm3
i

B̃W
2

i +
(M −mi)2

Γm2
i

2B̃W
3

i , (C.20)

∂N−1

∂mi
=

4
Γ

(
1

1 + 4m2
i /Γ2

− 1
1 + 4(Mmax −mi)2/Γ2

)
, (C.21)

∂2N−1
i

(∂mi)2
= −16

Γ3

(
mi

(1 + 4m2
i /Γ2)2

+
Mmax −mi

(1 + (2(Mmax −mi)/Γ)2)2

)
. (C.22)



Appendix D Coefficients of the flow
equations

D.1 Effective and distributed quasiparticle models

Using the abbreviations from Appendix C.1 and denoting the asymptotic masses
m̂i,∞ by mi, the coefficients of the eQP and dQP flow equation are found to be

aT = −(1)
∂nq

∂m2
q

,

aµ = (A)
∂sq

∂m2
q

+ (B)
∂ss

∂m2
s

+ (C)
∂sg

∂m2
g

, (D.1)

b = (I)
∂nq

∂m2
q

− (II)
∂sq

∂m2
q

− (III)
∂sg

∂m2
g

,

where for the eQP

∂neQP
q

∂m2
q

=
dq

4π2T

∞∫
0

dk
k2

ωTL(k)
[
e+f2

− − e−f2
+

]
, (D.2)

∂seQP
i

∂m2
i

=
di

4π2T 2

∞∫
0

dk k2

{
−
[
e−f2

+ + e+f2
−
]
+

µ

ωTL(k)
[
e−f2

+ + e+f2
−
]}
, (D.3)

while for the dQP the derivative with respect to the asymptotic mass solely acts on
the Breit-Wigner distribution

∂ndQP
q

∂m2
q

=
dq

2π2

∞∫
0

dM dk k2 [f+ − f−]
∂BW
∂m2

q

, (D.4)

∂sdQP
i

∂m2
i

=
di

2π2T

∞∫
0

dM dk k2

{
4
3k

2+M2

ωi(k)
[f++f−]− µi [f+−f−]

}
∂BW
∂m2

i

(D.5)

with

∂BWi

∂m2
i

=
( M

mi
− 1)

Γ
NiB̃W

2

i −
N2

i

2mi
B̃Wi

(
B̃Wi

∣∣∣
M=0

− B̃Wi

∣∣∣
M=Mmax

)
. (D.6)

The derivatives of the coefficients at vanishing chemical potential are

∂b

∂µ

∣∣∣∣
µ=0

= (I)
∂2nq

∂µ ∂m2
q

∣∣∣∣
µ=0

− ∂(II)
∂µ

∂sq

∂m2
q

∣∣∣∣
µ=0

− ∂(III)
∂µ

∂sg

∂m2
g

∣∣∣∣
µ=0

, (D.7)

∂aT

∂µ

∣∣∣∣
µ=0

= −(1)
∂2nq

∂µ ∂m2
q

∣∣∣∣
µ=0

(D.8)
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with

∂(II)
∂µ

∣∣∣∣
µ=0

=
(
mq

ωTL
+ 2
)
Cf

4π2
G2
∣∣
µ=0

, (D.9)

∂(III)
∂µ

∣∣∣∣
µ=0

=
3Nq

6π2
G2
∣∣
µ=0

(D.10)

and

∂2neQP
q

∂µ ∂m2
q

∣∣∣∣∣
µ=0

=
dq

2π2T

∞∫
0

dk
k2

ωTL(k)
[
ef2 − 2e2f3

]
, (D.11)

∂2ndQP
q

∂µ ∂m2
q

∣∣∣∣∣
µ=0

=
dq

2π2T

∞∫
0

dM

∞∫
0

dk k2 2ef2 ∂BW
∂m2

q

∣∣∣∣
µ=0

. (D.12)

D.2 Full HTL model

Note that in the following the abbreviations (1), (I), (A), etc. are defined differently
than for the eQP/dQP. This is due to a different structure of the derivatives of
entropy density and particle density with respect to µ and T , respectively, since
the full HTL QPM uses the full dispersion relations as opposed to the asymptotic
dispersion relations of eQP and dQP.

As in the chapters above we start from the Maxwell relation (3.14) and have in
turn to calculate the derivatives of the entropy density with respect to µ and the
particle density with respect to T .

Gluons

As first part of the Maxwell relation, the derivative of the full HTL gluon entropy
density sg = sg,T + sg,L with partial gluon entropy densities (2.44) with respect to
µ at constant T has to be calculated. For gluons there is no explicit dependence
of the entropy density on the chemical potential, so that only the self-energies and
propagators depend on µ due to the contained Debye mass. Consequently, there are
four contributions to the derivative

∂sg

∂µ
=
(
∂sg

∂µ

)
ReD−1

T

+
(
∂sg

∂µ

)
ImΠT

+
(
∂sg

∂µ

)
ReD−1

L

+
(
∂sg

∂µ

)
ImΠL

, (D.13)

where the index on the bracket indicates the considered dependence.
For the first term we find(
∂sg

∂µ

)
ReD−1

T

= − 2dg

πm2
D

∂m2
D

∂µ

∫
d3k

∞∫
0

dω
∂nB

∂T
(D.14)

×

{
− ReΠT ImΠT

Re2D−1
T + Im2ΠT

+ ReΠTImΠT
Re2D−1

T − Im2ΠT

(Re2D−1
T + Im2ΠT)2

}
,

where the derivative of the quasiparticle pole term πΘ() is canceled by the term
πδ() arising from the derivative of the arc tangent quite similar to the cancellation
in section 5.1. We split the energy integration at the light cone. For ω > k the
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imaginary part of the transverse gluon self-energy is equal to ηε(ImΠT), where
η → 0 due to retardation (cf. eqs. 2.30). Leaving aside the prefactor −ReΠT and
after multiplication by ε(ImΠT)/π to assure a positive width Γ := 2|ImΠT| and
normalization, the first term of the curly bracket corresponds to a Breit-Wigner
distribution of a quantity x = ReD−1

T :

1
π

|ImΠT|
Re2D−1

T + Im2ΠT

←→ 1
2π

Γ
x2 + Γ2/4

. (D.15)

The normalization of the distribution to 2π instead of the exact expression (4.4)
is justified in the limit of vanishing width considered here. The Breit-Wigner
distribution is a representation of the Dirac delta distribution, therefore

ε(ImΠT)
π

ImΠT

Re2D−1
T + Im2ΠT

ImΠT→0
−−−−−−−→ δ(ReD−1

T ) (D.16)

in the region ω > k. Consequently, for ω > k, the first term in the curly bracket
equals −πε(ImΠT)δ(ReD−1

T )ReΠT. The dispersion relation is valid for ωT,k so that

δ(ReD−1
T ) =

∑
zeroes i of ReD−1

T

δ(ω − ωi)/

∣∣∣∣∣∂ReD−1
T

∂ω

∣∣∣∣∣
∣∣∣∣∣
ωi

= δ(ω − ωT,k)/

∣∣∣∣∣∂ReD−1
T

∂ω

∣∣∣∣∣
∣∣∣∣∣
ωT,k

. (D.17)

The derivative of the real part of the inverse transverse gluon propagator with respect
to ω is found to be

∂ReD−1
T

∂ω
= −2ω +

m2
D

2

(
3ω
k
− 3ω − k

2k3
ln
∣∣∣∣ω + k

ω − k

∣∣∣∣) . (D.18)

After substitution of the logarithmic term with ReΠT and evaluation at the dispersion
relation (ReΠT(ωT,k) = ω2

T,k − k2) the energy integration of the first term of the
curly bracket can be executed:

−π
∞∫

k

dω
∂nB

∂T
ε(ImΠT)ReΠTδ(ω − ωT,k)/

∣∣∣∣∣∂ReD−1
T

∂ω

∣∣∣∣∣
∣∣∣∣∣
ωT,k

=

+ π
∂nB

∂T

∣∣∣∣
ωT,k

ωT,k

(ω2
T,k − k2)2

|(ω2
T,k − k2)2 −m2

Dω
2
T,k|

. (D.19)

The energy integral of the second term in the curly bracket vanishes for ImΠT → 0.
Consequently, it does not contribute for ω > k.

For ω < k the imaginary part of the self-energy ΠT is nonzero except for ω = 0.
However, at ω = 0 the real part of the inverse transverse gluon propagator D−1

T is
generally nonzero so that no special treatment is necessary. The terms of the curly
bracket can be simplified and the final expression for the derivative of the entropy
density with respect to µ within ReD−1

T becomes(
∂sg

∂µ

)
ReD−1

T

= +
dg

π3m2
D

∂m2
D

∂µ

∞∫
0

dk k2 (D.20)

×

 k∫
0

dω

[
∂nB

∂T

2ReΠTIm3ΠT

(Re2D−1
T +Im2ΠT)2

]
− π ∂nB

∂T

∣∣∣∣
ωT,k

ωT,k(ω2
T,k − k2)2

|(ω2
T,k−k2)2−m2

Dω
2
T,k|

.
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Analogously we find(
∂sg

∂µ

)
ReD−1

L

= +
dg

2π3m2
D

∂m2
D

∂µ

∞∫
0

dk k2 (D.21)

×

 k∫
0

dω

[
∂nB

∂T

2ReΠLIm3ΠL

(Re2D−1
L +Im2ΠL)2

]
− π ∂nB

∂T

∣∣∣∣
ωL,k

ωL,k(ω2
L,k − k2)

|ω2
L,k−k2−m2

D|

.
The derivatives of the gluon entropy density with respect to µ within the imagi-
nary parts of the self-energies are straightforward. The Dirac delta distributions
arising from the the sign functions within the quasiparticle pole contributions
πε(ImΠi)Θ(∓ReD−1

i ) vanish due to the prefactor ImΠi/m
2
D from the chain rule.

We are left with(
∂sg

∂µ

)
ImΠT

= − dg

π3m2
D

∂m2
D

∂µ

∞∫
0

dk k2

∞∫
0

dω
∂nB

∂T

2ReD−1
T Im3ΠT

(Re2D−1
T + Im2ΠT)2

, (D.22)

(
∂sg

∂µ

)
ImΠL

= +
dg

2π3m2
D

∂m2
D

∂µ

∞∫
0

dk k2

∞∫
0

dω
∂nB

∂T

2ReD−1
L Im3ΠL

(Re2D−1
L + Im2ΠL)2

. (D.23)

Putting things together and substituting ReΠT −ReD−1
T = ω2 − k2 and ReΠL +

ReD−1
L = −k2 we have

∂sg

∂µ
=

∂m2
D

∂µ

{
dg

2π3m2
D

∞∫
0

dk k2 (D.24)

×

( k∫
0

dω

[
∂nB

∂T

4(ω2 − k2)Im3ΠT

(Re2D−1
T +Im2ΠT)2

− ∂nB

∂T

2k2Im3ΠL

(Re2D−1
L +Im2ΠL)2

]

−π
ωT,k(ω2

T,k − k2)2

|(ω2
T,k−k2)2−m2

Dω
2
T,k|

∂nB

∂T

∣∣∣∣
ωT,k

− π
ωL,k(ω2

L,k − k2)

|ω2
L,k−k2−m2

D|
∂nB

∂T

∣∣∣∣
ωL,k

)}
(1)

as final expression for the gluons with the derivative of the Debye mass with respect
the µ given in Appendix C.1. The numbered curly bracket is used as abbreviation
below.

Quarks

The derivative of the quark entropy density with respect to µ is done in a similar
fashion. Due to the dependence of the Fermi-Dirac distribution function nF on the
chemical potential explicit derivatives emerge, however, in the Maxwell relation these
are canceled by explicit derivatives from the derivative of the particle density with
respect to the temperature due to Schwarz’s theorem, as for the models above. For
convenience starting from eq. (2.47) only the dependencies of ReS−1

+ and ImΣ+ on
µ have to be taken into account:

∂sq

∂µ
=
(
∂sq

∂µ

)
ReS−1

+

+
(
∂sq

∂µ

)
ImΣ+

+
(
∂sq

∂µ

)
n

(A)
F

. (D.25)

The third term is the explicit term which is given by eq. (2.47) with the substitution
∂n

(A)
F /∂T → ∂2n

(A)
F /∂µ∂T . While the derivative of sq with respect to µ within
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ImΣ+ is entirely equivalent to the transverse gluon case, the derivative of sq with
respect to µ within ReS−1

+ differs due to the two dispersion relations ωTL,k and ωPl,k

and the different derivative of the real part of the inverse propagator with respect
to ω.

For the case1 |ω| > k we have

δ(ReS−1
+ ) = δ(ω − ωTL,k)/

∣∣∣∣∣∂ReS−1
+

∂ω

∣∣∣∣∣
∣∣∣∣∣
ωTL,k

+ δ(ω − ωPl,k)/

∣∣∣∣∣∂ReS−1
+

∂ω

∣∣∣∣∣
∣∣∣∣∣
ωPl,k

, (D.26)

where
∂ReS−1

+

∂ω
= −1 +

ReΣ+

ω − k
− 2M̂2

ω2 − k2
. (D.27)

The integral over the first term of the curly bracket times πε(ImΣ+) which, up to
the different propagators/self-energies, is analogous to the transverse gluon case
(cf. eqs. (D.14) and (D.19)) then reads

π
ω2

TL,k − k2

2M̂2
(ωTL,k − k) (+)|ωTL,k

− π
ω2

Pl,k − k2

2M̂2
(ωPl,k + k) (+)|ωPl,k

, (D.28)

where

(+) :=
(
∂nF

∂T
+
∂nA

F

∂T

)
. (D.29)

The energy integral of second term of the curly bracket again vanishes for ImΣ+ → 0
and thus does not contribute for |ω| > k.

For |ω| < k there is no difference to the transverse gluon expression except for
the different propagators and self-energies so that the final quark expression reads

∂sq

∂µ
=

∂M̂2

∂µ

{
dq

2π3M̂2

∞∫
0

dk k2

( k∫
−k

dω

[
(+)

2(ω − k)Im3Σ+

(Re2S−1
+ +Im2Σ+)2

]
(D.30)

−π
ω2

TL,k − k2

2M̂2
(ωTL,k − k) (+)|ωTL,k

− π
ω2

Pl,k − k2

2M̂2
(ωPl,k + k) (+)|ωPl,k

)}
(I)

with (I) indicating the brackets for quarks. The derivative of M̂2 with respect to µ
is also found in Appendix C.1, eq. (C.13).

The strange quark contribution to the Maxwell relation equals the quark expres-
sion at vanishing chemical potential

∂ss

∂µ
=
∂sq

∂µ

∣∣∣∣
µ=0

(D.31)

with curly brackets {}(II) := {}(I)|µ=0 and ∂M̂2/∂µ→ ∂M̂2
s /∂µ = (∂M̂2/∂µ)|µ=0.

1Note that the energy integral limits for both quark contributions are (−∞ . . .∞) as opposed to
the gluons with (0 . . .∞).
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Particle density

The last step towards the flow equation is the derivative of the particle density
with respect to the temperature. The calculation mirrors the calculation for ∂sq/∂µ

with the derivatives ∂/∂µ and ∂/∂T being exchanged. Due to ∂2n
(A)
F /∂µ∂T =

∂2n
(A)
F /∂T∂µ it is clear that the explicit derivatives of both cases are equal and

cancel within the flow equation. They are, therefore, again omitted. We find

∂nq

∂T
=

∂M̂2

∂T

{
dq

2π3M̂2

∞∫
0

dk k2

( k∫
−k

dω

[
(+̃)

2(ω − k)Im3Σ+

(Re2S−1
+ +Im2Σ+)2

]
(D.32)

−π
ω2

TL,k − k2

2M̂2
(ωTL,k − k) (+̃)

∣∣
ωTL,k

− π
ω2

Pl,k − k2

2M̂2
(ωPl,k + k) (+̃)

∣∣
ωPl,k

)}
(A)

with

(+̃) :=
(
∂nF

∂µ
+
∂nA

F

∂µ

)
(D.33)

and ∂M̂2/∂T given by eq. (C.4). For the heavy quark flavor and gluons (+̃) and
thus ∂ng,s/∂T vanishes as a consequence of µg,s = 0.

The flow equation

Using the results above and the derivatives of the gluon/fermion mass parameters
from Appendix C.1 the Maxwell relation becomes a flow equation of the form

aT
∂G2

∂T
+ aµ

∂G2

∂µ
= b (D.34)

as partial differential equation for the effective coupling G2 with the coefficients2

aT = −C̃f{}(A),

aµ = 2C̃b{}(1) + C̃f{}(I) +
Cf

8
T 2{}(II), (D.35)

b =
Cf

4
TG2{}(A) −

NcNl

3π2
µG2{}(1) −

Cf

4π2
µG2{}(I).

2Comparing these coefficients to the results from [Rom04] (eqs. (B.1) to (B.5)) several differences
are noticeable:

1. The expression (ω2
T,k − k2) in the numerator of

ωT,k(ω2
T,k−k2)2

|(ω2
T,k
−k2)2−m2

D
ω2
T,k

| within bracket {}(1)

(eq. D.24) is not squared. This is incorrect, as the dimension of the term thus differs from
the terms it is being added to.

2. The terms
ω2

i,k−k2

2M̂2 within −π
ω2

i,k−k2

2M̂2 (ωi,k−k) (+̃)
∣∣
ωi,k

in bracket {}(A) (eq. D.32) are missing.

This is most probably a typographical error, as the neglect of the term leads to an increased
aT and thus to characteristics reaching T = 0 at very small values of the chemical potential.

3. The coefficient b from eq. (D.35) and the same coefficient found by Romatschke are related
by bRom = −b/G2. As a consequence the coupling G2 from [Rom04] would decrease for µ & 0
as opposed to any of the other models. Therefore, we believe this to be incorrect, too.

As a consequence, the results obtained for Nf = 2 within [Rom04] are not reproducible.



Glossary of abbreviations

BW Breit-Wigner

CJT Cornwall-Jackiw-Tomboulis

dQP distributed QPM

EOS equation of state

eQP effective (simple) QPM

FWHM full width at half maximum

HIC Heavy Ion Collisions

HTL Hard Thermal Loops

iQP improved QPM

IR infrared

LD Landau damping

LW Luttinger-Ward

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QGP quark-gluon plasma

QPM quasiparticle model

UV ultraviolet
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