QCD quasi-particle model with widths and Landau damping

R. Schulze

collaborators: M. Bluhm, D. Seipt, B. Kämpfer

13.03.2007

Motivation

Lagrangian \mathcal{L}_{QCD}

- \rightarrow Feynman rules
- \rightarrow propagators
- \rightarrow self energies

 \Leftrightarrow

thermodyn. potential Ω \rightarrow state variables: p, s, n_q , etc. \rightarrow EOS e = e(p) $\rightarrow T^{\mu\nu}$, hydrodynamics

CJT formalism

CJT formalism

• require stationarity of the *effective action*

$$\begin{split} \Gamma[D,S] &= I - \frac{1}{2} \left\{ \mathsf{Tr} \left[\ln D^{-1} \right] + \mathsf{Tr} \left[D_0^{-1} D - 1 \right] \right\} \\ &+ \left\{ \mathsf{Tr} \left[\ln S^{-1} \right] + \mathsf{Tr} \left[S_0^{-1} S - 1 \right] \right\} + \Gamma_2[D,S] \end{split}$$

• For translation invariant systems without broken symmetries at the stationary point

$$\begin{aligned} \frac{\Omega}{V} &= \operatorname{tr} \int \frac{d^4k}{(2\pi)^4} n_B(\omega) \cdot \operatorname{Im} \left(\ln D^{-1} - \Pi D \right) \\ &+ 2 \cdot \operatorname{tr} \int \frac{d^4k}{(2\pi)^4} n_F(\omega) \cdot \operatorname{Im} \left(\ln S^{-1} - \Sigma S \right) - \frac{T}{V} \Gamma_2 \end{aligned}$$

2-loop QCD thermodynamics

• truncate Γ_2 at 2-loop order

$$\Gamma_2 = \frac{1}{12} + \frac{1}{8} \left(- \frac{1}{2} \right)$$

 \rightarrow self-energies of *1-loop* order

• to ensure gauge invariance: additional HTL $(p \sim gT)$ approximation (\rightarrow Mr. Seipt, HK 20.2 @ 5.15pm)

2-loop QCD thermodynamics

• truncate Γ_2 at 2-loop order

$$\Gamma_2 = \frac{1}{12} + \frac{1}{8} - \frac{1}{2} + \frac{1}{8} + \frac{1}{8}$$

ightarrow self-energies of *1-loop* order

• to ensure gauge invariance: additional HTL ($p \sim gT$) approximation (\rightarrow Mr. Seipt, HK 20.2 @ 5.15pm)

Effective coupling

- severe approximation \rightarrow introduce flexibility to accomodate further non-perturbative effects
- parametrize running coupling g^2

•
$$g^2(\bar{\mu}) = \frac{16\pi^2}{\beta_0 \ln(\bar{\mu}^2/\Lambda^2)} \left(1 - \frac{4\beta_1}{\beta_0^2} \frac{\ln[\ln(\bar{\mu}^2/\Lambda^2)]}{\ln(\bar{\mu}^2/\Lambda^2)}\right)$$
 at 2-loop order

 \downarrow substitute by effective coupling \downarrow

•
$$G^2(T,\mu=0) = \frac{16\pi^2}{\beta_0 \ln\left(\frac{T-T_s}{T_0/\lambda}\right)^2} \left(1 - \frac{4\beta_1}{\beta_0^2} \frac{\ln\left[\ln\left(\frac{T-T_s}{T_0/\lambda}\right)^2\right]}{\ln\left(\frac{T-T_s}{T_0/\lambda}\right)^2}\right)$$

Model outline

• entropy
$$s:=-rac{1}{V} \left. rac{\partial \Omega}{\partial T} \right|_{\mu} = s_g + s_q + s'$$
 with $s'=0$ [Van.+Baym '98]

$$s_{g,T} \sim \int_{\overline{(2\pi)^4}}^{\underline{d^4\!k}} \frac{\partial n_B}{\partial T} \Big\{ \underbrace{\pi \varepsilon(\omega) \Theta\big(-\operatorname{Re}D_T^{-1}\big)}_{s_{g,qp}} + \underbrace{\operatorname{Re}D_T \operatorname{Im}\Pi_T - \operatorname{atan}\!\left(\frac{\operatorname{Im}\Pi_T}{\operatorname{Re}D_T^{-1}}\right)}_{s_{g,damp}} \Big\}$$

• lattice data available for vanishing and small chemical potential only \rightarrow self-consist. extrapolation to $\mu > 0$ using Maxwell eq. [Peshier '00]

QCD QP model with widths

Motivation + Outline

$$\begin{split} \text{investigation: } s &= s_{qp} + s_{damp} = s_{qp} + (\tilde{s} - s_{qp}) \\ \tilde{s} &= \int d\omega \underbrace{\int dk \, \sigma(\omega, k)}_{=s_{qp}(\omega)} \cdot F(\text{Im}\Pi(\omega, k)) \\ F &:= -\frac{1}{\pi} \left(\frac{\xi^2(\omega)}{(1 + \xi^2(\omega))^2} + \frac{\xi^2(-\omega)}{(1 + \xi^2(-\omega))^2} \right) \frac{\partial \xi}{\partial \omega} \\ \xi &:= \frac{\text{Im}\Pi}{\text{Re}\,D^{-1}} \end{split}$$

1 limit lm
$$\Pi \to 0$$
: $F \to \delta(\omega - \omega_{k,T})$
 $\tilde{s} \to s_{qp}$

2 Im
$$\Pi_{Ltz} = 2\gamma\omega$$
 reproduces [Peshier '04]

🚯 our ansatz:

$$s^{BW}(T) = \int dM \, s_{qp}(T,M) \cdot BW(m,M,\Gamma)$$

[Blaschke, Bugaev '03] [Andronic, Braun-M., Stachel '06] [Biro, Levai, Van, Zimanyi '06]

R. Schulze (TU Dresden)

QCD QP model with widths

13.03.2007 10 / 19

Results

QCD QP model with widths

Damping contributions

- consider exact expression $\tilde{s}=\int\!d\omega\!\int\!dk\,\sigma(\omega,k)\cdot F({\rm Im}\Pi(\omega,k))$
- use HTL self-energies

 \rightarrow complex below the light-cone only \rightarrow "Landau damping"

Results for $N_f = 2 + 1$

characteristics ugly → not all degrees of freedom incorporated
→ future: evaluation of full HTL expression ↔ [Romatschke '04]

QCD QP model with widths

2+1 EOS ready?

R. Schulze (TU Dresden)

A family of EOS's $\mu_B \ll T$

R. Schulze (TU Dresden)

QCD QP model with widths

13.03.2007 17 / 19

Elliptic flow from relativistic hydrodynamics

- calculate elliptic flow using relativistic hydro code
- compare with experimental data
 - low p_T : bag model description a little more accurate
 - high p_T: bag model fails, QPM in good agreement

Summary

- derived a handy expression for 2-loop QCD entropy within the CJT formalism
- damping effects and quasi-particle widths included in both
 - an physical ansatz which can be well justified and
 - a systematic approach using the HTL self-energies
- simple QPM takes into account all relevant degrees of freedom
- EOS $(T, \mu > 0)$ in agreement with experimental data