Using statistical γ-ray spectra to measure astrophysical (n,γ) at NIF

L.A. Bernstein LLNL

Workshop on Gamma Strength and Level Density in Nuclear Physics and Nuclear Technology Forschungszentrum Dresden-Rossendorf August 30 to September 3, 2010

LLNL-PRES-432251

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

NIF Laser System: 192 laser beams produce 1.8 MJ, IR-UV→ 3ω=352nm, 2+ ns, 5x10¹⁴ Watt in 1mm² spot)

Diagnostics (≈\$90 M in FY11)

•<u>X-ray diagnostics</u>: ≈20 spectral, imaging and time-resolved diagnostics are planned/operational (developed over 25 years at NOVA, Omega etc.)

Very mature field

•<u>Nuclear Diagnostics</u>: 10 types of diagnostics are planned/operational

• nToF, Neutron imaging, Activation, Charged-particle spectrometry, Radchem, <u>Gamma Reaction History</u>

First proposal call has gone out (reviews in progress)

("Ride along" experiments often allowed)

NIF open new avenues of research in nuclear physics

Common theme: Reactions on excited states

Nearly half of the elements are made via neutron capture *in a stellar plasma*

Required information: (n,γ) cross sections on a thermal population of excited nuclear states *These experiments require an ICF environment*

Busso, Gallino and Wasserburg, Annu. Rev. Astron. Astrophys. 1999. 37:239–309 - 3 -

Many important^{*} s-process branch point nuclei have HEDP-populated low-lying excited states

Branch	Gnd	1 st Exc.	1 <u>st</u>
Point	State	State E _x	Exc.
	\mathbf{J}^{π}	(keV)	State J^{π}
⁷⁹ Se	7/2+	95.77	1/2-
⁸⁵ Kr	9/2+	304.871	1/2-
¹⁴⁷ Pm	7/2+	91.1	5/2+
¹⁵¹ Sm	5/2-	4.821	3/2-
¹⁶³ Ho	7/2-	100.03	<mark>9/2</mark> -
¹⁷⁰ Tm	1-	38.7139	2-
¹⁷¹ Tm	1/2+	5.0361	3/2+
¹⁷⁹ Ta	7/2+	30.7	9/2+
²⁰⁴ Tl	2-	414.1	4-
²⁰⁵ Pb	5/2-	703.3	7/2-
185W	3/2-	23.547	1/2-

NIF (or LMJ) are the *only* places where (n,γ) might be measured on ground+excited states

How do you measure an astrophysical (n,γ) cross section at NIF?

- 1. Create the correct environment (neutrons, T, ρ)
 - Fuel load and moderation environment
- 2. Get the material into the capsule
 - Ion-implantation
- 3. Measure target areal density
 - Energy resolved X-ray imaging
- 4. Measure the number of reactions and the neutron spectrum
 - Prompt γ -ray detection using Gas Cerenkov Detectors

All of this is from a diagnostician's standpoint

Step 1: Varying the fuel loaded creates wide range of neutron spectra

Step 1: Nuclear-plasma interactions in the HEDP can cause thermal population of low-lying nuclear states

Thermalization time scales for ¹⁶⁹Tm

<u>Step 2</u>: D-loaded capsules can be made using a Carbon using a Carbon nanofoam "scaffold" into which ions are implanted*

*courtesy of S. Kucheyev/A. Hamza

<u>Step 3</u>: The areal density (ρR) of the seeded nuclei can be determined using established X-ray imaging techniques^{*}

*S.P. Regan *et al.*, High Energy Density Physics 5 (2009) 234–243

<u>Step 4</u>: Prompt γ -rays can be measured with the Gas Cerenkov detector-based Gamma Reaction History (GRH) system

Step 4: Late-time γ -rays (>250 ps) seen in GRH can also be used to measure $E_n > 100$ keV via Au(n, γ)

What γ -ray production rate does GRH see for a D-fuel capsule loaded with a (n, γ) "seed" nucleus

The main uncertainty in GRH's ability to "tag" (n,γ) is the production of statistical γ -rays from the CN

We would like to measure S_{γ} for $E \geq 3$ MeV at the 10% level

- 14 -

The statistical γ -ray spectrum for a (n,γ) product could be measured as part of a surrogate reaction experiment

"Killing two birds with one stone"

*R. Hatarik. et al., Phys. Rev. **C81** 011602(R) (2010) **B.F. Lyles, *et al.*, Phys.Rev. **C78**, 064606 (2008)

- 15 -

Topics #2: In a DT-capsule the huge 14 MeV neutron flux means that highly-excited states could become targets

• The probability that a nucleus *A* will be converted via (n,2n) to a nucleus *A*-1 is given by:

 $P_A = \sigma_{(n,2n)} \rho R_A \Phi_n \approx 10^{-1} - 10^{-4} \text{ for NIF DT capsules}$

- Only long-lived isomers need to be considered as "targets"
 - Isomers generally have low $E_x \rightarrow$ reaction Q-value only slightly affected

Reactions on highly excited states need to be considered if $P \leq exp(-\tau/t_{burn})$

A survey of (n,γ) resonance widths^{*} shows that $E_x \approx 4-5$ MeV quasi-continuum lifetime are on the order of $\tau_{DT-burn}/P$

Conclusions

- NIF is a totally novel laboratory for studying nuclear physics in a stellar-like environment
 - A large suite of diagnostics are operational at NIF now and more are planned for the next 2+years
- (n,γ) reactions can be studied at NIF using prompt γ-ray detection using the GRH detector system
 - Statistical γ -ray spectra are required to interpret this data.
- (n,x) on quasi-continuum states can occur in DT capsules
 - These reactions are highly dependent on quasi-continuum lifetimes (which are in turn dependent on photon strength and level densities for $E_x < S_n$)
- Statistical nuclear properties are critical for interpreting these results

Early "calibration" experiments (using Ge in the capsule) are planned for 2011

A collaboration is being established to explore nuclear physics @ NIF & statistical γ-ray spectra

Plus any of you that are interested