Role of Complex Configurations in Nuclear Spectroscopy

N. Lo Iudice Università di Napoli Federico II

Dresden2010

A QPM study of low-lying spectra in

- Spherical heavy nuclei

in collaboration with Ch. Stoyanov (Sofia) -- **Deformed heavy nuclei**

in collaboration with A.V. Sushkov (Dubna)

Multiphonon excitations: Exp. evidence

* High-energy

(N. Frascaria, NP A482, 245c(1988);
T. Auman, P.F. Bortignon, H.
Hemling, Ann. Rev. Nucl. Part.
Sc. 48, 351 (1998))

Double

 $D \times D | 0 >$

and

triple

 $D \times D \times D |0>$ dipole giant resonances

Multiphonon excitations: Exp. evidence

** Low-energy

- M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 439 (1996); M. Kneissl. N. Pietralla, and A. Zilges, J.Phys. G, 32, R217 (2006):
- Two- and three-phonon multiplets

 $\mathbf{Q}_2 \times \mathbf{Q}_3 |0\rangle, \qquad \mathbf{Q}_2 \times \mathbf{Q}_2 \times \mathbf{Q}_3 |0\rangle$

• In particular: Proton-neutron (F-spin) mixedsymmetry states (N. Pietralla et al. PRL 83, 1303 (1999))

QPM (Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons, Bristol, (1992)): **A brief outline**

$$H = H_{sp} + V_{pair} + V_{pp} + V_{ff}$$

$$V_{pp} = \Sigma_{\lambda} G_{\lambda} P_{\lambda}^{\dagger} P_{\lambda} \qquad P_{\lambda}^{\dagger} = \Sigma_{\lambda} f_{ij}^{\lambda} (a_{i}^{\dagger} \times a_{j}^{\dagger})^{\lambda}$$

$$V_{\rm ff} = \Sigma_{\lambda} \kappa_{\lambda} F_{\lambda}^{\dagger} F_{\lambda} \qquad F_{\lambda}^{\dagger} = \Sigma_{\lambda} f^{\lambda}{}_{ij} (a_{i}^{\dagger} \times a_{j})^{\lambda}$$

1° step: From particle to quasiparticle $\{a^{\dagger}a\} \implies \{\alpha^{\dagger}\alpha\}$

$$\begin{array}{ll} H[(a^{\dagger}a), (a^{\dagger}a^{\dagger}), (aa)] \implies & H[(\alpha^{\dagger}\alpha), (\alpha^{\dagger}\alpha^{\dagger}), (\alpha \alpha)] \\ (ph) & (qp) \end{array}$$

A brief outline of QPM (Soloviev, Theory of Atomic Nuclei: Quasiparticles and

Phonons, Bristol, (1992))

3° step: From particle to phonon Hamiltonian

Spherical Nuclei: π -v Symmetric and MS states

Symmetric

$$|n, v\rangle_{s} = Q_{S}^{n} |0\rangle = (Q_{p} + Q_{n})^{n} |0\rangle$$

MS

$$|n, v\rangle_{MS} = (Q_p - Q_n) (Q_p + Q_n)^{(n-1)} |0\rangle$$

Signature: Transitions

 $\mathcal{M}(E2) \propto Q_{S} \quad n \to n-1 \quad (\Delta n=1))$

symmetry preserving ($\Delta F=0$)

 $\mathcal{M}(M1) \propto \mathbf{J}_n - \mathbf{J}_p \quad n \to n \text{ ($\Delta n=0$)}$

symmetry changing ($\Delta F=1$)

A QPM analysis (N.L. and Ch. Stoyanov PRC (00) ... (08)

Preliminaries: Testing the isospin nature of the QRPA 2⁺ states through the ratio

$$B(2^{+})_{RPA} = \frac{\langle 2^{+}|(Q_{p}-Q_{n})|0\rangle}{\langle 2^{+}|(Q_{p}+Q_{n})|0\rangle}$$

1. $B(2^+) < 1 \rightarrow |2^+> \text{ isoscalar } (\Delta T=0)$ 2. $B(2^+) > 1 \rightarrow |2^+> \text{ isovector } (\Delta T=1)$

B(2⁺) is very sensitive to the ratio G_2/κ_2 In ¹³⁶Ba

	$B(E2)_{RPA}$	$B(M1)_{RPA}$	$oldsymbol{B}\left(2^+_{iv} ight)$
$rac{G^{(2)}}{\kappa_0^2}$	$g.s. \rightarrow 2_{iv}^+$	$2^+_{iv} \rightarrow 2^+_{is}$	
0	$\left[e^2b^2\right]$	$\left[\mu_{_{ m N}}^{_2} ight]$	
0	0.0032	0.042	0.58
0.85	0.011	0.24	22.6

Low-lying states in ⁹⁴Mo: Energies and phonon structure

St	ate	${ m E}~({ m keV})$		$\mathbf{Structure}, \%$	
\mathbf{T}	\mathbf{J}^{π}	\mathbf{EXP}	\mathbf{QPM}		
	$\mathbf{2^+_{1,is}}$	871	860	$93\%[2^+_{ m is}]_{ m RPA}$	
IS	$\mathbf{2^+_{2,is}}$	1864	1750	$\mathbf{82\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{is}}]_{\mathbf{RPA}}$	
	$\mathbf{4^+_{1,is}}$	1573	1733	$\mathbf{82\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{is}}]_{\mathbf{RPA}}$	
	$\mathbf{1_{1,iv}^+}$	3129	2880	$90\%[2^+_{ m is}\otimes2^+_{ m iv}]_{ m RPA}$	
	$\mathbf{2^+_{1,iv}}$	2067	1940	$\mathbf{95\%}[\mathbf{2^+_{iv}}]_{\mathbf{RPA}}$	
	$\mathbf{2^+_{2,iv}}$	2393	2730	$\mathbf{27\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{iv}}]_{\mathbf{RPA}}$	
	$\mathbf{2^+_{3,iv}}$	2740	3014	$\mathbf{59\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{iv}}]_{\mathbf{RPA}}$	
\mathbf{IV}	$\mathbf{4^+_{1,iv}}$		3120	$\mathbf{64\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{iv}}]_{\mathbf{RPA}}$	
	$\mathbf{3^+_{1,iv}}$	2965	2940	$\mathbf{87\%}[\mathbf{2^+_{is}}\otimes\mathbf{2^+_{iv}}]_{\mathbf{RPA}}$	
	$\mathbf{1_2^+}$		3550	$40\% [1^+_1]_{ m RPA}$	

⁹⁴Mo level scheme.

4.

Deformed Nuclei: From one to many 0^+

The issue:

Large abundance of 0⁺ levels populated in (p,t) experiments on

¹⁵⁸Gd n=13 0^+ (E< 3.2 MeV) (Lesher *et al.* PRC 66, 051305(R) (2002))

²²⁸Th, ²³⁰Th and ²³²U
n~10 (E< 3.0 MeV)
(Wirth et al. PRC 69, 044310 (2004))

¹⁶⁸Er $n \sim 25$!! (E < 4 MeV) D. Bucurescu et al., PRC 73, 064309 (2006)

Systematic D. A. Meyer et al., PRC 74, 044309 (2006) and references therein

QPM accounts for all 0⁺ levels and even more!! N.L. A.V. Sushkov, N. Yu. Shirikova PRC 70 (04); PRC 72 (05)

Nature of the 0^+ :Quadrupole collective (β -band)?

$ \mathbf{K}^{\pi}=0^{+}> \sim \mathbf{Q}_{0} 0>$	No !!
$\mathbf{B}(\mathbf{E2}, 0^+ \rightarrow \mathbf{2_g}^+) << \mathbf{B_{vib}}(\mathbf{E2})$	B(E0) << B _{vib} (E0) ~
$\sim <0 Q_0^2 0> \sim 33 \text{ w.u.}$	$<0 (r^2)^2 0>/<0 r^2 0>^2$
(P. E. Garrett J. P. G 27 (2001) R1)	~ 85 ÷ 230 (10-3) J. L. Wood et al. NPA651 (1999) 323

But we need more experimental information

Nature of the **0**⁺: Pairing vibration?

$$<0 | P_0^2 | 0 > ~ ~ |< n | P_0 | 0 > |^2$$

$$\mathbf{P}_{\mathbf{0}} = \boldsymbol{\Sigma}_{\mathbf{q}} \ \mathbf{a}_{\mathbf{q}} \mathbf{a}_{\mathbf{-q}}$$

Normalized (p,t) spectroscopic factors

 $S_n(p,t) = [<n|P_0|0> / <0|P_0|0>]^2$

S(p,t) and pairing collectivity

RPA w.f.

 $\begin{array}{l} | \mathbf{0}^{+} \rangle_{\text{RPA}} \sim 0.46 \left[(521\uparrow)(521\uparrow) \right] \\ + 0.44 \left[(505\uparrow)(505\uparrow) \right] \\ + 0.39 \left[(523\downarrow)(523\downarrow) \right] \\ + 0.37 \left[(411\uparrow)(411\uparrow) \right] \\ + .. \end{array}$

Pairing acts **coherently** only in the **lowest RPA 0+** !!!

Fragmentation due to i) s.p. decay (Landau damping)

ii) phonon coupling (collisional damping)
 (spoils partly pairing coherence,
 especially in ¹⁶⁸Er)

¹⁶⁸Er as a special case (Bucurescu et al., PRC 73, 064309 (2006))

0⁺ in transitional nuclei: ¹⁶⁰Dy

0^+ in γ -soft nuclei:Os isotopes

N. Lo Iudice and A. V. Sushkov, PRC 78, 054304 (2008).

Evolution toward γ softness (from A=188 to A=192)

-Increasing strenghts S(t,p) and S(p,t)

-Increasing complexity of $|\Psi_0>$

*Fragmentation of $|\Psi_0>$

$$\begin{split} |\Psi_0> &\sim c_1 \; |(20)_1> \; + \; c_2 \; |(20)_2> \; + \; .. \\ +.. \; c_{22} |(22)_1, (22)_1> \end{split}$$

** dominance of π -pairing in $|(20)_1>$ and of v-pairing in others

Dominant two-phonon configurations

¹⁵⁸ Gd	MeV	¹⁶⁸ Er	MeV
31⊗31	1.96	22 ⊗22	2.8
44⊗44	2.9	4⁻⊗4⁻	2.6
100			
¹⁶⁰ Dy	MeV	¹⁹⁰ Os	MeV
¹⁶⁰ Dy 22⊗22	MeV 1.7	¹⁹⁰ Os 22⊗22	MeV 0.94
¹⁶⁰ Dy 22⊗22 32⊗32	MeV 1.7 2.5	¹⁹⁰ Os 22⊗22 33⊗33	MeV 0.94 2.5
¹⁶⁰ Dy 22⊗22 32⊗32 4 ⁻ ⊗4 ⁻	MeV 1.7 2.5 3.3	¹⁹⁰ Os 22⊗22 33⊗33 32⊗32	MeV 0.94 2.5 2.8

Nature of 0^+ states

multiphonon excitations ? NO (in general) $|0^+ > \sim |(\lambda x \lambda)^0 >$

Elementary one-phonon excitations ? Yes

Collective	β -vi	brations?	No!
$ K^{\pi}=0^{+}>$	~	$Q_0 0 >$	

Pairing vibrations?

Yes

 $|K^{\pi}=0^{+}> \sim P_{0} |0> = G \Sigma a^{\dagger}_{a} a^{\dagger}_{-a} |0>$

More specifically **Damped Pairing vibrations Due to phonon coupling**

4⁺ state in Os isotopes

Double- γ ? (C.Y. Wu et al. PRC 64 (01))

 $- E_4 \sim 2 E_\gamma$

 $R_4(E2) = B(E2, 4^+ \rightarrow 2^+)/B(E2, 2^+ \rightarrow 0^+) \sim 2$

$$|\Psi_4> \sim |\gamma\gamma>$$

with

$$|c(n=1)|^2 < 25 \%$$

one-phonon hexadecapole admixture

4⁺ state in Os isotopes

Hexadecapole one-phonon? (D. G. Burke PRC 66 (02))

- -B(E4, K=4 \rightarrow 0) large
- From (t, α) (d,³He) large admixtures of $5/2^{+}[402]_{\pi} + 3/2^{+} [402]_{\pi}$ $|\Psi_{4}\rangle \sim |n=1,4+\rangle$

4⁺ state in Os isotopes N. Lo Iudice and A. V. Sushkov, PRC 78, 054304 (2008).

 $R_4 (E2) = B(E2; 4^+ \rightarrow 2^+)/B(E2; 2^+ \rightarrow 0_g)$

 $\Psi(\text{QPM}) \sim 0.60 |\text{n}=1,4^+> + 0.35 |\gamma\gamma>$

$\mathcal{M}_4 (4^+ \rightarrow 0^+_g) = \langle 4^+ || M(\lambda = 4) || 0^+_g \rangle$

 $\Psi(\text{QPM}) \sim 0.60 | n=1, 4^+> + 0.35 | \gamma \gamma >$

(t,α) reaction:Spectroscopic factor

 $\Psi(\overline{\text{QPM}}) \sim 0.60 | n=1, 4^+> + 0.35 | \gamma \gamma >$

(t, α) and (³He,d) reaction: Spectroscopic factor

- Dominant configuration $5/2^{+}[402]_{\pi} + 3/2^{+}[402]_{\pi}$ $^{188}Os: 32\%$ 190 Os: 30% $^{192}Os: 35\%$ In agreement with recent experiments
- (P. Garrett et al. Finustar 2 (08) and private communication)

 $\Psi(\text{QPM}) \sim 0.60 |\text{n}=1,4^+> + 0.35 |\gamma\gamma>$

4+: QPM versus EXP

THANK YOU