Fast neutron inelastic scattering

Roland Beyer, Forschungszentrum Dresden-Rossendorf

Institute of Radiation Physics • Roland Beyer • www.fzd.de • Member of the Leibniz Association

Data needs for transmutation facilities

Table 32. Summary of Highest Priority Target Accuracies for Fast
Reactors

		Energy Range	Current Accuracy (%)	Target Accuracy (%)
U238	$\sigma_{\rm inel}$	6.07 ÷ 0.498 MeV	$10 \div 20$	$2 \div 3$
	σ _{capt}	24.8 ÷ 2.04 keV	3 ÷ 9	1.5 ÷ 2
Pu241	σ _{fiss}	1.35MeV ÷ 454 eV	8 ÷ 20	$\begin{array}{ll} 2 \div 3 & (SFR, GFR, \\ & LFR) \\ 5 \div 8 & (ABTR, \\ & EFR) \end{array}$
Pu239	σ _{capt}	498 ÷ 2.04 keV	7 ÷ 15	4 ÷ 7
Pu240	$\sigma_{\rm fiss}$	1.35 ÷ 0.498 MeV	6	$1.5 \div 2$
	v	1.35 ÷ 0.498 MeV	4	1 ÷ 3
Pu242	$\sigma_{\rm fiss}$	2.23 ÷ 0.498 MeV	19 ÷ 21	3 ÷ 5
Pu238	σ_{fiss}	1.35 ÷ 0.183 MeV	17	3 ÷ 5
Am242m	σ_{fiss}	1.35MeV ÷ 67.4keV	17	3 ÷ 4
Am241	σ_{fiss}	6.07 ÷ 2.23 MeV	12	3
Cm244	σ_{fiss}	1.35 ÷ 0.498 MeV	50	5
Cm245	σ_{fiss}	183 ÷ 67.4 keV	47	7
Fe56	$\sigma_{\rm incl}$	2.23 ÷ 0.498 MeV	16 ÷ 25	3 ÷ 6
Na23	$\sigma_{\rm inel}$	1.35 ÷ 0.498 MeV	28	$4 \div 10$
Pb206	$\sigma_{\rm inel}$	2.23 ÷ 1.35 MeV	14	3
Pb207	$\sigma_{\rm inel}$	1.35 ÷ 0.498 MeV	11	3
Si28	$\sigma_{\rm inel}$	6.07 ÷ 1.35 MeV	$14 \div 50$	3 ÷ 6
	σ _{capt}	19.6 ÷ 6.07 MeV	53	6

For simulations and calculations to design Gen IV reactors/ADS detailed knowledge about the neutron interactions in the relevant energy region are necessary

- ➔ for nuclei to be transmuted as well as for structural materials
- ➔ fast neutron spectrum
 - neutron capture
 - neutron induced fission
 - neutron inelastic scattering
- → ⁵⁶Fe (n,n'γ) ⁵⁶Fe

http://www.nea.fr/html/science/wpec/volume26/volume26.pdf

nELBE – neutron facility at ELBE

nELBE – neutron facility at ELBE

Institute of Radiation Physics • Roland Beyer • www.fzd.de • 4th Oct. 2010

nELBE – detector setup

flight paths: source - sample: 600 cmsample - BaF₂: 30 cmsample - plastics: 100 cm

Institute of Radiation Physics • Roland Beyer • www.fzd.de • 4th Oct. 2010

Experimental methods and results - Inelastic scattering

Experimental methods and results - Inelastic scattering

Experimental methods and results – Inelastic scattering ⁵⁶ Fe(n,n' γ)⁵⁶ Fe $\begin{cases} {}^{56}$ Fe+n $\rightarrow {}^{56}$ Fe^{*} $\rightarrow {}^{56}$ Fe^{*} $\rightarrow {}^{56}$ Fe neutron source e n without sample absorber 250 100 200 10 150 out fission Ч chamber 00 nple! 50 n 150 100 200 250 350 400 450 500 ToF_{in} / ns neutron -detectors detectors

Experimental methods and results - Inelastic scattering

Experimental methods and results - Inelastic scattering

Investigations of background sources

"good event": inelastic scattering in target

→ gamma detected in BaF2, neutron detected in plastic

"bad event": elastic scattering in target/air and inelastic scattering in BaF2

- ➔ neutron detected in plastic
- \rightarrow prevent neutrons flying from BaF₂ to plastic

Investigations of background sources

- \rightarrow borated polyethylene block between BaF₂ and plastics
- → change in geometry
- → combination of two single sided readout 20 cm long crystals to one double sided readout 40 cm long detector

2D ToF spectra from Feb'09 beamtime

2D ToF spectra from May'10 beamtime

- \rightarrow lower background (5x in empty, 10x in target run)
- \rightarrow 10x better signal to background ratio
- \rightarrow target structures also visible in in empty spectrum
 - (due to too small distance of target out position)

2D ToF spectra from May'10 beamtime

→ double-scattering on Fe-56 1st level (847 keV)

The ⁵⁶Fe(n,n' γ) cross section for the 1st excited state

The ⁵⁶Fe(n,n' γ) cross section for the 1st excited state

Plastics Efficiency

Measurement at PTB:

- Monoenergetic neutrons
- Beyer et al., NIMA 575 (2007) 449

Measurement at FZD:

- nELBE spectrum
- Relative to ²³⁵U fission chamber Modified NEFF7:
- Cuboid detector geometry
- Double sided readout
- Scintillation light propagation/attenuation
 - PMT Quantum efficiency
 - Threshold = one photo electron per PMT

Problems:

In simulation:

- Unknown light output function at low energy transfer In measurement:

- Collimated beam at nELBE
- Influence of lead shielding

Summary and outlook

- nELBE is intended to deliver data on fast neutron induced reactions
- the ELBE electron beam delivers a high neutron flux (new injector will deliver ~60 times more)
- nELBE is the only photo-neutron source at a superconducting cw linac
- first experiments were performed on inelastic neutron scattering using a double time of flight setup
- further investigations have to be done to:
 - re-measure plastics efficiency
 - determine influence of double scattering
 - \succ correct for angular effects \rightarrow neutron-gamma angular correlation
- analyze data for higher levels of Fe-56 and 1st level of Fe-54
- measurement of Na-23(n,n'γ)

Inelastic neutron scattering on ²³Na

Summary and outlook

- nELBE is intended to deliver data on fast neutron induced reactions
- the ELBE electron beam delivers a high neutron flux (new injector will deliver ~60 times more)
- nELBE is the only photo-neutron source at a superconducting cw linac
- first experiments were performed on inelastic neutron scattering using a double time of flight setup
- further investigations have to be done to:
 - re-measure plastics efficiency
 - determine influence of double scattering
 - \succ correct for angular effects \rightarrow neutron-gamma angular correlation
- analyze data for higher levels of Fe-56 and 1st level of Fe-54
- measurement of Na-23(n,n' γ)
- prepare measurements of neutron fission cross sections
- new bigger experimental area within extension of ELBE facility

National Center for High-Power Radiation sources

National Center for High-Power Radiation sources

2

Thanks to all collaborators

FZD, Institute of Radiation Physics:

A.R. Junghans, D. Bemmerer, **E. Birgersson**, **E. Grosse**, R. Hannaske, A. Hartmann, K. Heidel, M. Kempe, T. Kögler, M. Marta, R. Massarczyk, **A. Matic**, K.-D. Schilling, G. Schramm, R. Schwengner, M. Sobiella, A. Wagner, The ELBE Crew

FZD, Institute of Safety Research:

E. Altstadt, C. Beckert, A. Ferrari, V. Galindo, K. Noack, F.-P. Weiss

FZD, Department Radiation Protection and Safety:

B. Naumann

FZD, Department Research Technology:

R. Schlenk, S. Schneider

TU Dresden:

H. Freiesleben, D. Gehre, M. Greschner, A. Klix, K. Seidel

Physikalisch Technische Bundesanstalt Braunschweig:

M. Mosconi, R. Nolte, S. Röttger

Others:

Th. Beyer, M. Erhard, J. Klug, K. Kossev, C. Nair, C. Rouki, G. Rusev

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung