Superconductivity in overdoped semiconductors

Heavy doping of semiconductors beyond the equilibrium solid solubility (overdoping) can fundamentally modify their properties. For instance overdoped semiconductors can behave like metals or even superconductors. [wikipedia].

These new functionalities enable fully integrated semiconductor-superconductor devices on chip for quantum sensing or computing. [press release HZDR].

Heavy doping without dopant precipitation requires special non-equilibrium preparation steps like ion implantation in combination with short-time flash lamp (~ ms) or laser annealing ( Standard rapid thermal annealing (~ 10..100 s) can be used to synthesize superconducting, dopant-rich nanolayers at the interface between the semiconductor and the capping SiO2-layer (see figure: General preparation scheme).

General preparation scheme:

Supraleitung Prozessschritte

1. Superconductivity in Ga-overdoped Si

2. Superconductivity in Ga-overdoped Ge

1. Superconductivity in Ga-overdoped Si

The nanolayer (~ 10 nm) at the SiO2/Si-interface with Ga-rich, amorphous precipitates becomes superconducting below 7 K.

Ga-Tiefenverteilung in Si

Ga depth distribution in Si after implantation of 80 keV, 4x1016  Ga+ cm-2 (as-implanted) and after rapid thermal annealing at 650°C for 65 s and 70 s. A Ga-rich nanolayer has been formed at the SiO2/Si-interface after annealing.

Falschfarbenbild Si-Verteilung

Pseudocolor image of the silicon distribution in the cross section of a sample annealed at 600°C for 60 s obtained from energy filtered transmission electron microscopy (EFTEM). Ga accumulation and oxygen intermixing close to the interface lead to local Si depletion. The silicon concentration decreases from orange to blue. The multilayer structure is clearly mapped: glue, SiO2 layer, Ga rich nanolayer and heavily doped Si with few impurity rich precipitates (from left to right).

Si:Ga Temperaturabhängigkeit des Schichtwiderstandes

Temperature dependence of the sheet resistance for samples annealed at different temperatures for 60 s. Within a narrow annealing temperature window (600–700 °C), superconductivity is observed below 7 K. The inset demonstrates that superconductivity disappears when etching away the SiO2 cover including the Ga-rich nanolayer at the Si-SiO2 interface.


2. Superconductivity in Ga-overdoped Ge

The Ga-heavily-doped Ge-layer (~ 50 nm) becomes supercondcuting below 0.5 K. There are no Ga-containing precipitates in the layer.

 TEM Ga-implantiertes Ge

Sequence of  XTEM micrographs of Ga-implanted (2x1016 cm-2, 100keV)  and subsequently 3 ms flash-lamp-annealed [Link zu FLA] Ge samples. The insets give the Ga depth distribution as measured by SIMS. In the as implanted state (left) an amorphous layer of about 100 nm width has been formed. After annealing  the layer consists of a single crystalline and a polycrystalline zone. With growing optical fluence (J/cm2) the annealing temperature increases. As a consequence broader single crystalline zones, interface roughening  and grain coarsening in the polycrystalline top layer is observed. However, Ga loss and redistribution is negligible because of the short annealing time.

Temperaturabhängigkeit des elektrischen Widerstandes in Ga-implantierten Ge

Temperature dependence of the electrical resistance of unimplanted Ge, as-implanted  Ge:Ga and annealed Ge:Ga (53.6 J/cm2, 3 ms). Only annealed Ge:Ga exhibits superconductivity below 0.5 K, depending on the flashlamp fluence (see inset).