DETI.2 Kick-Off Meeting September 13, 2012, HZDR

Growth and electronic properties of TiO₂–based thin films

Mitglied der Helmholtz-Gemeinschaft

Dr. Mykola Vinnichenko | Institute of Ion Beam Physics and Materials Research | m.vinnichenko@hzdr.de

Outline

- History of development
- Motivation
- Overview of activities
- Basics of transparent conductive oxides
- Challenges and objectives
- Experimental approach
- Basics of magnetron sputtering
- Direct growth of TiO₂-based TCOs
- Two-step formation process
- Summary and Outlook
- Acknowledgements

History of development

CdO: bulk 1902 (Streintz), thin film 1907 (Badeker)

- CdO-based compounds:
 - best electrical properties
 - o optical transmittance is not optimal, toxic material
- **SnO₂**: first patent 1938 (Littleton), films on glass 1942 (McMaster)
 - SnO₂:F is dominating on the market (Asahi Glass)
 - o established technology, integration in large area glass production
 - o fluorine-containing precursors, high environmental footprint
- In₂O₃: first patent 1947 (Zunick)
 - $-\ln_2O_3$:Sn (ITO)
 - o standard technology (sputtering), the best material available
 - o expensive, metallic indium supply problems
- **ZnO:AI**: first publication 1971 (Wasa)
 - \circ early stages of commercialization, cost-efficient production
 - environmentall stability problems
- TiO₂:Nb: first publication 2005 (Furubayashi)

Review: Ingram et al, *J. Electroceram.* 13, 167 (2004) Furubayashi et al, *Appl. Phys. Lett.* 86, 252101 (2005)

History of development

Motivation

Transparent conductive oxides (TCOs): key materials in optoelectronics

Mitglied der Helmholtz-Gemeinschaft

Dr. Mykola Vinnichenko | Institute of Ion Beam Physics and Materials Research | m.vinnichenko@hzdr.de

Overview of activities

Wilde, Cornelius (FWIN), Liedke, Vinnichenko

> Bilateral, BMWi/AiF, BMBF-TUBITAK

HZB, von Ardenne, GfE Fremat, Bosch, Solayer, Vaciontec, DTF, Heliatek, CreaPhys, Interpane, Euroglas, LIMO, METU, Bilkent Univ.

Neubert, Cornelius (FWIN), Vinnichenko

Bilateral, BMBF MatRessource (submitted)

FEP, DTF, Solayer, Vaciontec, LIMO, Euroglas, HZDR Innovation

Basics of transparent conductive oxides (TCOs)

Basics of transparent conductive oxides

- Material can be highly doped: native defects + extrinsic impurities
- Degenerate n-type semiconductors

Medvedeva in Transparent Electronics: From Synthesis to Applications, Wiley 2010

Basics of transparent conductive oxides

- Photon Energy $\leq \hbar \omega_p$: free electron absorption in the near IR
- Plasma frequency $\omega_p \le 1 \text{ eV}$

- Photon Energy≥E_G: interband transitions
- Burstein-Moss shift due to free charge carriers

```
e N_e \mu_e = \frac{1}{e^2 N_e \tau}
```

Sn-doped indium oxide (ITO): best understood TCO !?

What is the band gap of In_2O_3 ?

- Generally accepted: direct gap of E_G=3.75 eV, based on optical investigations Hamberg et al, PRB 30, 299 (1984)
- X-ray photoelectron spectroscopy: fundamental gap is <3 eV
- In some cases optical data show absorption outset at 2.6 eV
- It is attributed to indirect transitions
 Christou, et al, JAP 88, 5180 (2000)
 McGuinness et al, PRB 68, 165104 (2003)
- Recent comprehensive study: fundamental band gap is not higher than 2.9 eV, direct gap
- But corresponding transitions are parity forbidden!
- Only transitions from lower levels (green) are allowed

Walsh et al, PRL 100, 167402 (2008)

Basics of transparent conductive oxides

Exclusively post-transition metal oxides?

- CdO, In₂O₃, SnO₂, ZnO-based:
 - $-(n-1)d^{10}ns^2$ electronic configurations
 - -four- (ZnO) or six-fold (CdO, In_2O_3 , SnO₂) coordinated atoms
 - Conduction band bottom: metal s +oxygen p
- TiO₂-based: exception

Basics of transparent conductive oxides

Not true for TiO₂-based TCOs!

Basics of transparent conductive oxides: TiO₂:Nb/Ta

- Difference to conventional transparent conducting oxides (TCOs):
 - Conduction band bottom:
 - no extended metal s-states
 - mainly formed by Ti 3d orbitals
 - Different phases/polymorphs different electrical properties:
 - Amorphous: non-conductive
 - Anatase: very well conductive (low m*)
 - Rutile: only weak conductivity (high m*)
 - High refractive index
 - By now highest quality films are achievable only using epitaxial substrates
- Challenges:
 - introducing controllable oxygen deficiency into the material
 - control of the phase composition
 - achieving high quality polycrystalline films

Hitosugi et al, Phys.Stat.Sol (a) 207, 1529 (2010)

Anatase

http://cst-www.nrl.navy.mil

Basics of transparent conductive oxides: TiO₂:Nb/Ta

FIG. 4. Calculated local density of states (DOS) for \Box_0^0 , Ti_i^0 , V_{Ti}^0 , and Nb_{Ti}^0 using GGA. The hosts VBM and CBM are indicated by vertical-dashed lines.

Osorio-Guillen, Lany, Zunger, Phys.Rev.Lett. 100, 036601 (2008)

Basics of transparent conductive oxides: TiO₂:Nb/Ta

Challenges and Objectives

"... understanding of the basic physics and chemistry of metal oxide surfaces lags a decade or more behind that of metals and semiconductors..."

Henrich and Cox, The Surface Science of Metal Oxides, Cambridge University Press, 2000

 Understanding even of the properties of metal oxide films and single crystals often lags behind

Basic understanding:

- Defect formation
- Incorporation and electrical activation of doping impurity
- Formation of secondary phases and their properties
- Limits to the charge carrier transport

Controllability and reproducibility:

- Fine tuning of the metal/oxygen flux
- Understanding role of the plasma energetic species
- Thin film microstructure and surface morphology

Addressing these issues is crucial to ensure further progress

Experimental approach: film synthesis

- Four sputter deposition systems
- DC and pulsed magnetron sputtering
 - Reactive (Ar + O₂), metallic (elemental and alloy) targets
 - Non-reactive (Ar), conductive (reduced) ceramic targets
- 2- and 3-inch magnetrons, balanced and unbalanced
- Energy-resolved mass spectrometry for detection of plasma ion species
- Langmuir probe with fine time resolution
- Precise tuning of metal/oxygen flux ratio:
 - Zn, Zn-Al, Zn-Ga: magnetron voltage
 - Ti, Ti-Nb: magnetron current
 - Reduced ceramic targets: optical emission of plasma intensity as a feedback

Mitglied der Helmholtz-Gemeinsch

Experimental approach: film characterization

- Annealing chamber (vacuum, Ar, O₂), equipped with in situ four point probe for resistivity measurements
- Annealing unit is transferrable to other experimental set-up: e.g. in situ XANES
- In situ spectroscopic ellipsometers: M-2000V, M-2000FI, J.A. Woollam Inc.
- Spectral photometer: SoliSpec 3700, Shimadzu

Basics of magnetron sputtering

 Energetic particle bombardment during growth may be used as a tool to affect the film structure and properties

Mitglied der Helmholtz-Gemeinschaft

Page 19

Ellmer, JPD 33, R17 (2000)

Role of energetic particles

Mitglied der Helmholtz-Gemeinschaf

ZnO:Al

Metallic vs ceramic targets: plasma

Mitglied der Helmholtz-Gemeinschaft

Dr. Mykola Vinnichenko | Institute of Ion Beam Physics and Materials Research | m.vinnichenko@hzdr.de

Page 21

Direct growth, reactive magnetron sputtering, variation of deposition temperature

Reactive sputtering: hysteresis

pressure-voltage vs. flow hysteresis of Ti in (Ar,O₂), P=500W

Local atom arrangements

XANES data

- Ti2p spectra: 2p to 3d transitions
- L_{3,2} edges: spin-orbit splitting of Ti-2p core level into 2p_{3/2} and 2p_{1/2}
- XANES shows differences between as-grown disordered anatase- and rutile-like films, which are indistinguishable by XRD

Gago, Vinnichenko et al. Plasma Process. Polym. 7, 813 (2010)

Two-step process, DC magnetron sputtering of reduced ceramic targets

vacuum annealing at ~400°C, 1 hour

deposition of amorphous film (no heating) reduced ceramic target

Local atom arrangements

- Amorphous anatase-like films readily crystallize in good polycrystalline anatase TiO₂
- Disordered nc-rutile TiO₂ films remain stable upon annealing

Gago, Redondo-Cubero, Vinnichenko, Vazquez, Chem. Phys. Lett. 511, 367 (2011)

Relation to the structure and properties

2: the same films after annealing in vacuum

55

60

TiO₂:Nb

Page 27

Vinnichenko et al (in preparation)

Dr. Mykola Vinnichenko | Institute of Ion Beam Physics and Materials Research | m.vinnichenko@hzdr.de

TiO₂:Ta: structure and properties

As-deposited

- insulating
- XRD-amorph.
- TEM-amorph.

Neubert et al (in preparation)

HZDR

TiO₂:Ta: optical properties, optimized films

Mitglied der Helmholtz-Gemeinschaft Dr. Mykola Vinnichenko I Institute of Ion Beam Physics and Materials Research I m.vinnichenko@hzdr.de

- The polycrystalline anatase TiO₂-based films with properties above current state of the art are realized by magnetron sputtering
- High-precision control of the oxygen deficiency and prevention of the rutile seed layer formation are crucial

Acknowledgements

J. Fiedler (FWIM), A. Kolitsch (FWIZ), A. Mücklich (FWIZ)

- M. Jünghähnel (FEP, Dresden), R. Gago (CSIC-ICMM, Madrid)
- Financial support: BMWi/AiF, DTF (bilateral), HGF DETI2.0

