Soziale Medien

Twitter-Logo  Mastodon-Logo  LinkedIn-Logo

Aktuelle Veranstaltungen

Initiativen & Kooperationen

Vorschau-Bild

Magnetwirbel-Antennen für drahtlose Datenwege

Presseinformation vom 06.05.2013

Dreidimensionale Magnetwirbel entdeckten Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Paul Scherrer Instituts (PSI) im Rahmen einer internationalen Kooperation. Die Ergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.110.177201). Wirbelzustände sind mögliche Antennen für die ultraschnelle, drahtlose Datenübertragung der Zukunft.

„Magnetische Wirbelzustände wurden bisher nur in zwei Dimensionen, also innerhalb einer Fläche, beobachtet“, erklärt Sebastian Wintz, Physiker am Helmholtz-Zentrum Dresden-Rossendorf. Sie treten typischerweise in nanometerkleinen Magnetscheiben auf. In einer Kooperation untersuchte Wintz nun mit Kollegen des Schweizerischen Paul Scherrer Instituts dreidimensionale magnetische Schichtsysteme: Die Forscher stapelten jeweils zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander. Der spezielle Aufbau führt dazu, dass sich alle um die Zwischenschicht herumliegenden Magnete zu gleichgerichteten, dreidimensionalen Wirbeln anordnen – eine vollkommen neue Beobachtung.

Die Magnetwirbel helfen den Forschern, magnetische Materialien grundlegend besser zu verstehen. Sie bieten aber auch vielversprechende Anwendungen, zum Beispiel in der Informations- und Kommunikationstechnologie. „Die dreidimensionalen Magnetwirbel könnten stabile und leistungsstarke Antennen für die ultraschnelle, drahtlose Übertragung von Informationen ermöglichen, zum Beispiel beim Mobilfunk oder W-Lan“, sagt Wintz. Warum das so ist, verrät ein genauerer Blick in eine einzelne Magnetscheibe sowie das am HZDR hergestellte magnetische Schichtsystem.

In einer Magnetscheibe sind alle Magnete – wie einzelne Stabmagnete hintereinander – im Kreis angeordnet. Auch wenn sich die Magnete nicht bewegen, sprechen Wissenschaftler von Magnetwirbeln, eben „statischen“. In der Mitte der Magnetscheiben, dem Wirbelkern, können sich die Magnete nicht weiter im Kreis ausrichten; sie zeigen aus ihm heraus, entweder nach oben oder nach unten. Ein solcher Magnetwirbel eignet sich als Antenne für die drahtlose Datenübertragung: Legt man einen Gleichstrom an, fängt der Wirbelkern an, sich im Kreis zu drehen. Dabei strahlt er charakteristische elektromagnetische Wellen ab. Wird die Geschwindigkeit aber zu hoch, wird das System instabil, die Magnetisierungsrichtung klappt um und die Funkwelle wird unterbrochen. Die Magnete im Wirbelkern richten sich nun in entgegengesetzter Richtung aus, beginnen wieder sich zu drehen und senden erneut Wellen aus – bis die Geschwindigkeit wieder zu hoch wird. Eine kontinuierliche Datenübertragung ist damit also nicht möglich.

Magnetscheiben-Paare stabilisieren Magnetisierung

Das ist anders, wenn man zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander stapelt. Die Struktur ist extrem flach; jede Magnetscheibe ist ca. zehn Nanometer dick und hat einen Durchmesser von etwa 500 Nanometern. Die Zwischenschicht kann dazu führen, dass in jeder Magnetscheibe die Magnete nicht genau im Kreis zeigen, sondern entweder leicht Richtung Wirbelkern geneigt sind oder nach außen. Je näher die Magnete an der Metallschicht liegen, desto mehr sind sie außerdem in Richtung dieser Barriere gekippt. Und zwar so, dass alle – sowohl über als auch unter der Zwischenschicht – in die gleiche Richtung zeigen: Die Magnete bilden zwischen Kern und äußerem Rand einen statischen, dreidimensionalen Wirbel um die Metallschicht herum.

Da die Magnete ganz innen fast senkrecht liegen und benachbarte Magnete immer in die gleiche Richtung zeigen, sind auch die senkrecht stehenden Magnete in den Wirbelkernen zweier übereinanderliegender Magnetscheiben stets gleich ausgerichtet: Sie folgen dabei der Richtung des Magnetwirbels. Ein einfaches Umklappen der Magnete ist dadurch nicht mehr möglich. „Die dreidimensionalen Magnetwirbel stabilisieren die Magnetisierung im Wirbelkern. Magnetische Schichtsysteme, wie die von uns hergestellten, eignen sich deshalb vermutlich für Wirbelantennen besser als vergleichbare Einzelschichten“, fasst Sebastian Wintz zusammen. Selbst bei hohen Drehgeschwindigkeiten bleibt die magnetische Richtung im Wirbelkern so erhalten. „Es ist denkbar, Frequenzen von mehr als einem Gigahertz, also eine Milliarde Umdrehungen pro Sekunde, zu erreichen. In diesem Bereich arbeiten zum Beispiel W-Lan-Netze“, so Wintz weiter.

Um die Magnetscheiben mit hauchdünner metallischer Zwischenschicht herzustellen, nutzte er die Elektronenstrahl-Lithografie am HZDR. „Wir haben das seltene Metall Rhodium benutzt und schließlich die gewünschten Eigenschaften erreicht, indem wir die Dicke und Rauigkeit der Schichten verändert haben“. Die Magnetwirbel kamen an der Synchrotron Lichtquelle Schweiz (SLS) des Schweizerischen Paul Scherrer Instituts zum Vorschein. Synchrotronlicht ist eine besonders intensive Form von Licht, das in seinen Eigenschaften genau an die Bedürfnisse eines Experiments angepasst werden kann. Die Arbeitsgruppe von Jörg Raabe betreibt an der SLS ein Raster-Transmissions-Röntgen-Mikroskop, es kann Magnetisierungsrichtungen mit einer Auflösung von 20 Nanometern direkt abbilden und die Signale zweier verschiedener magnetischer Schichten voneinander trennen. Mit der gleichen Methode wollen die Forscher als nächstes das Verhalten der Magnetscheiben-Paare als hochfrequente Wirbelantennen untersuchen.


Publikation:

S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, J. Fassbender, „Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements“, Phys. Rev. Lett. 110 (2013). DOI: 10.1103/PhysRevLett.110.177201


Weitere Informationen:

Helmholtz-Zentrum Dresden-Rossendorf
Institut für Ionenstrahlphysik und Materialforschung
Sebastian Wintz | Prof. Dr. Jürgen Faßbender, Institutsdirektor
Tel. +49 351 260 2919 | -3096

Paul Scherrer Institut
Synchrotron Radiation and Nanotechnology
Dr. Jörg Raabe
Tel. +41 56310 5193

Medienkontakte:

Helmholtz-Zentrum Dresden-Rossendorf
Anja Weigl
Tel. +41 351 260 2452

Paul Scherrer Institut
Dagmar Baroke
Verantwortliche für Kommunikation
Tel. +41 56310 2916