Einfache Produktionsmethode für begehrte Nanokristalle

Medieninformation vom 25.06.2013

Nanokristallines Cerdioxid (CeO2) wird vielseitig eingesetzt, angefangen von Katalysatoren bis hin zu Sonnencremes oder medizinischen Präparaten. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der University of New South Wales in Sydney, Australien, konnten erstmals den Wachstumsmechanismus beobachten und entdeckten so, wie man die Produktion dieses begehrten Nanomaterials erheblich vereinfachen kann. Ihre Ergebnisse sind in der Fachzeitschrift „Chemistry – A European Journal“ (DOI: 10.1002/chem.201204101) nachzulesen.

Cer gehört zur Gruppe der Seltenerd-Metalle. Sein Oxid findet in nanokristalliner Form einen breiten industriellen Einsatz, beispielsweise für Elektroden in Brennstoffzellen oder in Katalysatoren von Kraftfahrzeugen, wo es giftiges Kohlenstoffmonoxid in Kohlenwasserstoffe umwandelt. Nicht zuletzt dient Ceroxid als Schleif- oder Poliermittel in der Halbleiterindustrie.

Mit aufwendigen Studien ist es den Wissenschaftlern Dr. Atsushi Ikeda-Ohno von der University of New South Wales, Australien, und Dr. Christoph Hennig vom Helmholtz-Zentrum Dresden-Rossendorf vor kurzem gelungen, ein vereinfachtes Konzept für die industrielle Synthese von nanokristallinem Cerdioxid zu entwickeln. „Hierzu mussten wir zunächst herausfinden, wie sich die Nanokristalle auf atomarer Ebene bilden“, erklärt Dr. Ikeda-Ohno. Ausgefeilte spektroskopische Methoden waren also gefragt. Zum Einsatz kam das brillante Röntgenlicht an der European Synchrotron Radiation Facility (ESRF), der europäischen Synchrotronquelle im französischen Grenoble, und am japanischen Synchrotron SPring-8 in Hyogo.

Die Geburt metallischer Nanopartikel

Bisher war es nicht möglich, derartigen Nanokristallen direkt beim Wachsen zuzusehen, weil geeignete analytische Techniken fehlten. Typischerweise nutzte man hierfür unterschiedliche Elektronenmikroskope oder auch einen Röntgendiffraktometer und musste dazu die Nanokristalle von der Lösung abtrennen. Damit können zwar die Partikel selbst analysiert werden, nicht jedoch ihre Entstehung, welche in der Lösung abläuft. Dr. Ikeda-Ohno: „Wir haben verschiedene spektroskopische Techniken, wie z. B. dynamische Lichtstreuung, Röntgenabsorptions-Spektroskopie und Hochenergie-Röntgenstreuung kombiniert, und konnten erstmals die Bildung von nanokristallinem Cerdioxid in einer wässrigen Lösung live beobachten.“

Diese Einblicke erlauben es, den Produktionsprozess von Cerdioxid grundlegend zu vereinfachen. Das Ergebnis: Wird der pH-Wert für vierwertiges Cer in wässriger Lösung richtig eingestellt, bilden sich gleichmäßige Nanopartikel von Cerdioxid. Eine physikalische oder chemische Nachbehandlung wie etwa der Zusatz von Beschleunigersubstanzen kann entfallen. Die Forscher fanden auch heraus, dass die auf derart einfache Weise produzierten Cerdioxid-Kristalle eine Größe von zwei bis drei Nanometern besitzen, und zwar weitgehend unabhängig von den konkreten Umgebungsbedingungen. Damit liegen die Nanopartikel genau in dem für industrielle Produkte interessanten Bereich. Als Schlüsselentdeckung werten sie zudem, dass vierwertiges Cer nur dann Cerdioxid-Kristalle im Nanometerbereich ausbildet, wenn es zuvor in der Lösung entweder als Dimer oder als Trimer vorliegt.

„Wir freuen uns besonders darüber, dass unser multispektroskopischer Ansatz auch sehr einfach auf jede andere Sorte metallischer Nanokristalle übertragen werden kann und wir so die Türen öffnen für deren weitere Erforschung“, sagt Dr. Christoph Hennig vom Dresdner Helmholtz-Zentrum. „Dafür bietet die eigene Messstation des HZDR an der ESRF allerbeste Voraussetzungen.“


Publikation

A. Ikeda-Ohno u.a., Chem. Eur. J., 19(23), 7348-7360 (2013), DOI-Link: 10.1002/chem.201204101.
Das Fachmagazin „Chemistry – A European Journal“ widmete der Veröffentlichung das Titelbild.


Weitere Informationen

Dr. Vinzenz Brendler | Dr. Christoph Hennig

Institut für Ressourcenökologie im HZDR
Rossendorf Beamline an der ESRF/Grenoble
Tel.: +49 351 260 - 3210 | +33 476 88 - 2005 

Dr. Atsushi Ikeda-Ohno

School of Civil and Environmental Engineering
The University of New South Wales
UNSW, Sydney, New South Wales 2052, Australia
Tel.: +61 2 9385 0128

Medienkontakt

Dr. Christine Bohnet
Pressesprecherin im HZDR
Tel.: +49 351 260-2450 oder +49 160 969 288 56