

The Iron-Rhodium System

Modification of the Magnetic Phase

Outline

- Motivation The FeRh binary alloy
- 2. Introduction
- 3. The new measurement system
- 4. Outlook

Copyright by Time Warner Entertainment

Motivation: Heat assisted magnetic recording (HAMR)

*Higher storage Density *Lower writing speed

Source Seagate: Whoever said disk drive technology and supply was settling into boredom? No way, Jose!

Outline

- 1. Motivation
- 2. Introduction
- 3. The new measurement system
- 4. Outlook

Introduction: The Iron-Rhodium System

Phasediagram of the FeRh-Alloy.

Swartzenhuber, L.J., Bulletin of Alloy Phase Diagrams, 1984

Near equiatomic composition:

- B2-structure (bcc based, AFM, FM)
- A1-structure (fcc based, PM)
- Thermally induced phase transition

Introduction - The Iron-Rhodium system

AFM ground state

a = b = 2,98 Å

c = 3,004 Å

- α"-phase (B2)
- G-typ AFM order (magnetic monolayers along 111 plane → GMR)
- Fe \approx 3,3 μ_B
- Rh = $0 \mu_B$

FM high temperature state

- α'-phase (B2)
- FM order
- Fe \approx 3,2 μ_B
- Rh = $0.9 \mu_{\rm B}$

Introduction - Basics for the measurement

Resistance change at Curie point

- Occurs in ferromagnets
- Electrical resistance below Curietemperature smaller then in non-ferromagnets
- Above the Curie-Temperature ferromagnets become paramagnetic and behave like normal conductors

Comparision of the electrical resitance of the non-ferromagnetic Pd and the ferromagnetic Ni. (R.Gross, WMI Lecture Spintronics, 2005)

Introduction - Basics for the measurement

Magnetic phasetransition and negative magnetoresistive effect of a 50 nm thick FeRh-Layer.

Suzuki, I., et al., Journal of Applied Physics, 2011

AFM-FM phase transition

around 350 K

Phase transition detection

- Resistance
- Magnetization
- Giant Magnetoresistance

Between adjanced Fe layers

Introduction - Ion beam induced magnetization changes

Ion irradiation of 80 nm B2 FeRh films

Ion irradiation

- Change in magnetization as a function of fluence
- Critical value of fluence exists
- Above critical value change of lattice structure from B2 to A1

Outline

- 1. Motivation
- 2. Introduction
- 3. The new measurement system
- 4. Outlook

The New Measurement System

How ?!?

FeRh properties

- AFM-FM transition due to temperature at 350 K
- AFM-FM transition due to ion irradiation
- Detection by resistance change with temperature
- Detection by Giant Magnetoresistance measured as function of external field at T > 350K

In-situ system with

- Temperature variation
- Resistance measurement
- GMR measurement (external field required)
- Ion irradiation and measurement of the fluence

The New Measurement System

Material Selection

The New Measurement System

Construction

- Heating up to 400+ K
- Chamber reaches high vacuum conditions

(leakage rate $10^{-10} mbar \cdot l/s$)

important for running the ion gun

Construction of the Measurment System

Construction of the Measurment System

Safety - High voltage is not your friend !!!

Ion irradiation

- Creates charging effects of the sample stage about 5 kV
- No transfer of the charge to any touchable parts
- Secured grounding of this charge

PEEK as high performance polymer with a dielectric strenght of **75 kv/mm**

Conclusion

Possible measurements

- Measuring the GMR via layer resistivity with applied external magnetic field
- Measuring the phase transition temperature vs. ion flux via the layer resistivity
- Under high vacuum conditions

Acknowledgements

You don't reach your goals without some friends.

Dr. Kay Potzger Andreas Henschke Alireza Heidarian

Thank you!

