Contact

Dr. Frank Stefani
Magnetohydrodynamics
f.stefaniAthzdr.de
Phone: +49 351 260 - 3069
Fax: 13069, 2007

DRESDYN

The DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) is an infrastructure project devoted both to large scale liquid sodium experiments with geo- and astrophysical background, as well as to investigations of various energy related technologies.

The most ambitious installation in the framework of DRESDYN is a precession driven dynamo experiment, which aims at clarifying whether precession could be a viable source of planetary magnetic fields. Basically, it consists of a liquid sodium filled container of 2 m diameter, with a central cylinder of 2 m height and two conical end pieces, rotating around its central axis with up to 600 rpm, and around an inclined axis with up to 60 rpm. Depending on the precession ratio, and on the angle between the rotation and the precession axis, different flow structures appear and will be tested with respect to their suitability for magnetic field self-excitation.

The goal of a second experiment is to study various combinations of the magnetorotational instability (MRI) and the Tayler instability (TI). The MRI is widely believed to trigger turbulence and angular momentum transport in accretion disks around protostars and black holes, thereby allowing mass concentration onto these central objects. The TI is thought to play a role in the angular momentum transport in neutron stars, and is also discussed as a key ingredient of an alternative stellar dynamo model, the Tayler-Spruit dynamo. After having investigated the helical and the azimuthal MRI, as well as the pure TI in much smaller experiments with the eutectic alloy GaInSn, the new liquid sodium experiment will allow to studying the combinations of these instabilities, as well as the standard version of MRI.

Besides its astrophysical background, the TI may also be of relevance for a much more earthly application. This is related to large-scale liquid metal batteries which are promising to become cheap means for storing the highly fluctuating electric energy from solar and wind power. While utilizing the economies of scale, the increasing current of such batteries will become prone to the TI, which in turn may destroy the stratification of the light anodic material (Mg,Li,Na), the thin electrolyte, and the heavy cathodic material (Pb,Sb,Bi). Various measures to prevent the TI, which have been developed at HZDR, will be tested in a large-scale battery experiment.

Further experiments will be devoted to the development of measuring techniques for various thermohydraulic applications of liquid sodium.

DRESDYN building DRESDYN central hall
Fig. 1: Planned DRESDYN building Fig. 2: Central experimental hall with the containment for the precession dynamo
precession dynamo experiment MRI/TI experiment
Fig. 3: Planned precession dynamo experiment Fig. 4: Planned MRI/TI experiment
The Tayler instability in liquid metal batteries
Fig. 5: The Tayler instability in liquid metal batteries

Contact

Dr. Frank Stefani
Magnetohydrodynamics
f.stefaniAthzdr.de
Phone: +49 351 260 - 3069
Fax: 13069, 2007