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Nuclear structure models 

 Shell-model diagonalization method 

 Based on quantum mechanical principles  

 Growing computer power helps extending applications 

 A single configuration contains no physics 

 Huge basis dimension required, severe limit in applications 

 Mean-field approximations 

 Applicable to any size of systems  

 Fruitful physics around minima of energy surfaces 

 No configuration mixing, results depending on quality of mean-field 

 States with broken symmetry, cannot study transitions 

 Algebraic models 

 Based on symmetries, simple and elegant 

 Serve as important guidance for complicated calculations 



Deformed basis vs spherical basis 

 Most nuclei are deformed. To describe a deformed 

nucleus, a spherical shell model needs a huge 

configuration space, thus has no obvious advantage. 

 J.P. Elliott was the first to take the advantage of a 

deformed many-body basis and developed the SU(3) 

shell model. 

 For heavy nuclei, the original Elliott SU(3) scheme is 

no longer valid;  

 one may use generalized SU(3) schemes if symmetries exist.  

 or more generally, one can start from a deformed basis and 

apply angular-momentum-projection technique. 



A method related to mean-field, 

shell model, algebraic models 

 Angular-momentum projection method based on 

mean-field solutions 
 

 Start from intrinsic bases (e.g. solutions of deformed mean-

field) and select most relevant configurations 

 Use angular momentum projection technique to transform 

them to laboratory basis (many-body technique)  

 Diagonalize Hamiltonian in the projected basis (configuration 

mixing, a shell-model concept)  

 Numerical results can be discussed using algebraic models 

 

The Projected Shell Model: 

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



The procedure 

 Take a set of quasiparticle states at a fixed deformation (e.g. 

solutions of HF, HFB or HF + BCS) 

 Select configurations (qp vacuum + multi-qp states near the 

Fermi level) 

 Project them onto good angular momentum (if necessary, also 

parity, particle number) to form a basis in laboratory frame 

 Diagonalize a two-body Hamiltonian in the projected basis 

 

 This model has worked well for spectrum description for nuclei 

with stable deformation (and super-deformation or superheavy 

nuclei)  

 
K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



Example of a good axially-deformed 

rotor 

 Angular-momentum-projected energy calculation shows a 

deep prolate minimum 

 A very good rotor with axially-deformed shape 

 Quasi-particle excitations based on the same deformed potential 



Emergence of SU(3) symmetry 

 Nearly perfect SU(3) symmetry 

emerges from a.-m.-projection 

 Project on separate BCS vacuum 

of         and       , then couple the 

projected states  

    to form the basis        

 Diagonalize the Hamiltonian in the 

coupled basis  

 Multi-phonon scissors mode is 

predicted 

 Y. Sun et al., PRL 80 (1998) 672;   

                          NPA 703 (2002) 130 
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g-vibrational states 

 g-vibration states cannot be obtained when axial symmetry in 

the basis states is assumed 

 Need 3-dimensional angular-momentum projection performed 

on a triaxially deformed basis 

Y. Sun et al.  Phys. Rev. C61 (2000) 064323  



g-vibrations 

 Calculated transition rates 

confirm the multi-phonon 

structure 

P. Boutachkov et al. 

          Eur. Phys. J. A15 (2002) 455 



Example of softness – no definite 

shapes 

Mean-field calculation  

shows a spherical shape. 

 

Projected calculation 

shows shallow minima 

separated by a low  

energy barrier. 

 

Shapes may be 

developed with rotation. 



g-softness in well-deformed nuclei 

Angular-momentum-projected energy surfaces as functions of e and g 



 A spherical nucleus described by 

spherical shell model. 

 A deformed nucleus described by 

deformed shell model. 

 Transitional ones are difficult. A 

better wavefunction is a 

superposition of many states of 

deformation parameter b.  

Description of a system with soft 

potential surfaces 

Schematic energy potential for 

spherical (red), transitional (dashed), 

and deformed (blue) nuclei. 

Spherical 

Deformed 

Transitional 



Generate Coordinate Method (GCM) 

 GCM starts with a general ansatz for a trail wave function 

 

 

     with                                being generate coordinates   

         is a weight function, determined by solving the Hill-Wheeler 

Equation 

 

      with the overlap functions 

 

 

 



Projected Generate Coordinate 

Method (PGCM) 

 Choosing generate coordinate as e2, an improved wave function 

 

 

 

 Hamiltonian 

 

 

     with a fixed set of parameters (fixed c, GM, and GQ) is 

diagonalized for a chain of isotopes. 

 
      F.-Q. Chen, Y. Sun, P. Ring,  Phys. Rev. C88 (2013) 014315  

 



Energy levels 

 
 Comparison of energy 

levels of 21
+, 41

+, and 61
+ 

of ground band and 

excited 02
+ state 

 

 Exp data (filled squares) 

 Calculations (open circles) 

 

     for isotopes from N=90 

(transitional) to N=98 

(well-deformed) nuclei  

N=90 N=98 



Spherical-deformed shape phase 

transition 

Vibrator 

Critical 

point 

Rotor 



 Drastic changes in electric 

quadrupole transition B(E2, 2+ 

 0+) from vibrator 152Gd 

(N=88), to critical point 154Gd 

(N=90), to rotor 156-160Gd (N>90). 

 

 Black squares show if use only 

one fixed deformation e2 in the 

calculation, transitional feature 

cannot be reproduced. 

Spherical-deformed shape phase 

transition 



Distribution function 

 The Hill-Wheeller Equation diagonalizes the Hamiltonian in 

a non-orthogonal basis, and therefore, f(e2) is not a proper 

quantity to analyze the GSM wave function. 

 

 Transformation of f(e2) to an orthogonal basis gives 

 

 

    which can be used to present the distribution of the GCM   

wave functions. 

 

• g2(e2)  represent  the probability function. 



Distribution function of deformation 

Calculated distribution function of deformation 

for the first three 0+ states in 154Gd and 160Gd 



Probability function of deformation 

Calculated probability function of deformation for ground 

state 01
+ and excited 02

+ state in 154Gd and 160Gd.  



 Peak of the Gaussian defines deformation 


160Gd being more deformed than 154Gd 

 The distribution is wider for 154Gd 

 reflecting the softness of this nucleus 

 The distribution for 02
+ is much more fragmented 

 reflecting a vibrational nature of these states 

 For 01
+ , system stays mainly at system’s deformation with the 

largest probability 

 For 02
+ , system shows two peaks having different heights lying 

separately at both sides of the equilibrium  

 indicating an anharmonic oscillation 

 prefering to have a larger probability in the site of larger 

deformation 

 

 

 

 

Probability function of deformation 



Hg isotopes 

B(E2) for first 0+ band 

B(E2) for second 0+ band 

Energy levels for two 0+ bands 

Main features can not be described 

when superposition is taken only for 

prolate deformation. 

 

Need superposition for both prolate  

and oblate deformations. 



Hg isotopes 

Distribution function for 

the first 0+ band 

I=0: nearly spherical, two 

peaks distributed around 

zero deformation 

 

I=2: has one node, but 

distributed more on prolate 

side 

 

I=4 or higher: mainly peaked 

on the prolate side   



Hg isotopes 

Distribution 

function for 

the second 

0+ band 

I=0: nearly prolately deformed 

I=2: has two nodes, but developed to co-existing shapes at 188Hg 

I=4 or higher: shape developed rapidly. Finally mainly peaked on the prolate 

      side with one node  



a.-m.-projected multi-quasi-particle 

states based on a fixed deformation 

 Even-even nuclei: 

 

 

 Odd-odd nuclei: 

 

 

 Odd-neutron nuclei: 

 

 

 Odd-proton nuclei: 
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Multi-quasiparticle excitations 

 0-, 2-, 4-qp states 

of 178Hf 

 Data:  

 S.M. Mullins et al, 

Phys. Lett.  B 393 

(1997) 279 

 Theory:  

 Y. Sun et al, 

Phys. Lett. B 589 

(2004) 83 



Multi-quasiparticle computation  

using the Pfaffian algorithm 

 Calculation of projected matrix elements usually uses the 

generalized Wick theorem 

 A matrix element having n (n’) qp creation or annihilation 

operators respectively on the left- (right-) sides of the rotation 

operator contains (n + n − 1)!! terms in the expression – a 

problem of combinatorial complexity 

 Use of the Pfaffian algorithm: 

 L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).  

 L.M. Robledo, Phys. Rev. C 84 (2011) 014307. 

 T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219. 

 M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305. 

 T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175 

 

 

 

 Example of triaxial PSM 

 Fail for study vibrational bands even with many qp states 

 b 



L.-J. Wang et al.  Phys. Rev. C90 (2014) 011303(R)  

A third band-crossing is described. 

Extension of configuration  

space to 6-qps. 



Example for very high-spin states 

Calculation including 8-qps 

based on a fixed deformation 



 New development in the Projected Shell Model: 

 We improved the PSM wave function by superimposing 

(angular-momentum and particle-number) projected states with 

different deformation e2 

 The method can be applied to problems of soft nuclei, shape 

co-existence, phase transition, etc. 

 excited 0+ states can be described together with the ground 

state in an equal footing 

 High order multi-quasiparticle states using the Phaffian 

algorithm 

 To overcome the problem in the classical Wick’s theorem for 

matrix-element calculation 

 Computer code can be developed when large number of 

quasiparticle excitations are included.  

 

 

 

 

Summary 
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