Recent development of projected shell model based on many-body techniques

Yang Sun Shanghai Jiao Tong University, China

CGS15, Aug. 26, 2014

Nuclear structure models

- Shell-model diagonalization method
 - Based on quantum mechanical principles
 - Growing computer power helps extending applications
 - A single configuration contains no physics
 - Huge basis dimension required, severe limit in applications
- Mean-field approximations
 - Applicable to any size of systems
 - Fruitful physics around minima of energy surfaces
 - No configuration mixing, results depending on quality of mean-field
 - States with broken symmetry, cannot study transitions
- Algebraic models
 - Based on symmetries, simple and elegant
 - Serve as important guidance for complicated calculations

Deformed basis vs spherical basis

- Most nuclei are deformed. To describe a deformed nucleus, a spherical shell model needs a huge configuration space, thus has no obvious advantage.
- J.P. Elliott was the first to take the advantage of a deformed many-body basis and developed the SU(3) shell model.
- For heavy nuclei, the original Elliott SU(3) scheme is no longer valid;
 - one may use generalized SU(3) schemes if symmetries exist.
 - or more generally, one can start from a deformed basis and apply angular-momentum-projection technique.

• • • A method related to mean-field, shell model, algebraic models

- Angular-momentum projection method based on mean-field solutions
 - Start from intrinsic bases (e.g. solutions of deformed meanfield) and select most relevant configurations
 - Use angular momentum projection technique to transform them to laboratory basis (many-body technique)
 - Diagonalize Hamiltonian in the projected basis (configuration mixing, a shell-model concept)
 - Numerical results can be discussed using algebraic models

The Projected Shell Model:

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637

• • The procedure

- Take a set of quasiparticle states at a fixed deformation (e.g. solutions of HF, HFB or HF + BCS)
- Select configurations (qp vacuum + multi-qp states near the Fermi level)
- Project them onto good angular momentum (if necessary, also parity, particle number) to form a basis in laboratory frame
- Diagonalize a two-body Hamiltonian in the projected basis
- This model has worked well for spectrum description for nuclei with stable deformation (and super-deformation or superheavy nuclei)

K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637

Example of a good axially-deformed rotor

- Angular-momentum-projected energy calculation shows a deep prolate minimum
 - A very good rotor with axially-deformed shape
 - Quasi-particle excitations based on the same deformed potential

Emergence of SU(3) symmetry

- Nearly perfect SU(3) symmetry emerges from a.-m.-projection
 - Project on separate BCS vacuum of $|\phi_{\nu}\rangle$ and $|\phi_{\pi}\rangle$, then couple the projected states $|I_{\sigma}\rangle = N^{I}\hat{P}^{I}|\phi_{\sigma}\rangle$ to form the basis $|(I_{\nu} \otimes I_{\pi})I\rangle$
 - Diagonalize the Hamiltonian in the coupled basis
 - Multi-phonon scissors mode is predicted
 - Y. Sun *et al.*, *PRL* 80 (1998) 672;
 NPA 703 (2002) 130

• • • γ -vibrational states

- γ-vibration states cannot be obtained when axial symmetry in the basis states is assumed
- Need 3-dimensional angular-momentum projection performed on a triaxially deformed basis

Y. Sun et al. Phys. Rev. C61 (2000) 064323

γ-vibrations

Calculated transition rates confirm the multi-phonon structure

Table 1. Comparison of all known experimental in-band and inter-band B(E2) values (associated errors in parenthesis) and calculated ones in W.u. for ¹⁶⁸Er. $K = 4^+$ lifetimes from ref. [2], $K = 0^+$, and $K = 2^+$ lifetimes and B(E2) values from ref. [8] and all the references therein.

$(I,K)_{\rm i} \to (I,K)_{\rm f}$	$B(E2)_{\rm exp}$ (W.u.)	$B(E2)_{\text{TPSM}}$ (W.u.)
$(2,0)_i \to (0,0)_f$	207~(6)	228.6
$(4,0)_i \rightarrow (2,0)_f$	318(12)	326.9
$(6,0)_i \rightarrow (4,0)_f$	$440^{(a)}$ (30)	361.2
$(8,0)_i \rightarrow (6,0)_f$	350(20)	380.0
$(10,0)_{i} \to (8,0)_{f}$	302(21)	393.0

P. Boutachkov et al. *Eur. Phys. J.* A15 (2002) 455

$(2,2)_i \rightarrow (0,0)_f$	4.80(17)	2.7
$(2,2)_i \rightarrow (2,0)_f$	8.5(4)	4.5
$(2,2)_i \rightarrow (4,0)_f$	0.62(4)	0.3
$(3,2)_i \rightarrow (2,0)_f$	> 0.19	4.9
$(3,2)_i \rightarrow (4,0)_f$	> 0.13	2.7
$(4,2)_{i} \to (2,0)_{f}$	1.7(4)	1.3
$(4,2)_i \rightarrow (4,0)_f$	8.7 (18)	5.5
$(4,2)_{i} \to (6,0)_{f}$	1.13(25)	0.7
$(5,2)_{i} \rightarrow (4,0)_{f}$		3.9
$(5,2)_{i} \to (6,0)_{f}$		3.7
$(6,2)_{i} \to (4,0)_{f}$	0.78(19)	0.8
$(6,2)_{i} \to (6,0)_{f}$	6.4(16)	5.7
$(6,2)_{i} \to (8,0)_{f}$	2.4(7)	1.1
$(7,2)_{i} \to (6,0)_{f}$		3.3
$(7,2)_{i} \to (8,0)_{f}$		4.4
$(8,2)_{i} \to (6,0)_{f}$	1.3(6)	0.5
$(8,2)_{i} \to (8,0)_{f}$	1.8 (8)	5.7
$(8,2)_{i} \to (10,0)_{f}$	120(50)	1.4
$(4,4)_{i} \rightarrow (2,2)_{f}$	3.4(19)	11.9
$(4,4)_{i} \to (3,2)_{f}$	2.2(13)	7.1
$(4,4)_{i} \to (4,2)_{f}$	$1.7^{(b)}$ (9)	2.7
$(4,4)_{i} \to (5,2)_{f}$	$0.7^{(b)}$ (3)	0.6
$(4,4)_i \rightarrow (6,2)_f$	2.0(13)	0.1
$(5,4)_{i} \rightarrow (3,2)_{f}$	5(5)	7.7
$(5,4)_{i} \to (4,2)_{f}$	4(3)	8.6
$(5,4)_{i} \to (5,2)_{f}$	1.8(15)	4.6
$(5,4)_{i} \rightarrow (6,2)_{f}$	0.8(7)	1.3
$(5,4)_{i} \to (7,2)_{f}$	7 (6)	0.2

Example of softness – no definite shapes

Mean-field calculation shows a spherical shape.

Projected calculation shows shallow minima separated by a low energy barrier.

Shapes may be developed with rotation.

Angular-momentum-projected energy surfaces as functions of ϵ and γ

Description of a system with soft potential surfaces

- A spherical nucleus described by spherical shell model.
- A deformed nucleus described by deformed shell model.
- Transitional ones are *difficult*. A better wavefunction is a superposition of many states of deformation parameter β.

$$\begin{split} \left| \Psi^{I} \right\rangle &= \int f^{I}(\beta) \left| \Phi^{I}(\beta) \right\rangle d\beta \\ \left| \Phi^{I}(\beta) \right\rangle &= \hat{P}^{I} \left| \phi(\beta) \right\rangle \end{split}$$

Schematic energy potential for spherical (red), transitional (dashed), and deformed (blue) nuclei.

$$[\boldsymbol{\beta}] = \{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \dots\}$$

Generate Coordinate Method (GCM)

o GCM starts with a general ansatz for a trail wave function

$$\left|\Psi\right\rangle = \int da f(a) \left|\Phi(a)\right\rangle$$

with $\{a\} = a_1, a_2, \dots, a_i$ being generate coordinates

• f(a) is a weight function, determined by solving the Hill-Wheeler Equation

$$\mathcal{H}f = E\mathcal{N}f$$

with the overlap functions

$$\mathcal{H}(a,a') = \left\langle \Phi(a) | \hat{H} | \Phi(a') \right\rangle, \mathcal{N}(a,a') = \left\langle \Phi(a) | \Phi(a') \right\rangle$$

Projected Generate Coordinate Method (PGCM)

• Choosing generate coordinate as \mathcal{E}_2 , an improved wave function

$$\left|\Psi^{I,N}\right\rangle = \int d\varepsilon_2 f^{I,N}(\varepsilon_2) \left|\Phi^{I,N}(\varepsilon_2)\right\rangle$$
$$\left|\Phi^{I,N}(\varepsilon_2)\right\rangle = \hat{P}^I \hat{P}^N \left|\Phi_0(\varepsilon_2).\right\rangle$$

• Hamiltonian

$$\hat{H} = \hat{H}_0 - \frac{\chi}{2} \sum_{\mu} \hat{Q}^+_{\mu} \hat{Q}_{\mu} - G_M \hat{P}^+ \hat{P} - G_Q \sum_{\mu} \hat{P}^+_{\mu} \hat{P}_{\mu}$$

with a fixed set of parameters (fixed χ , G_M , and G_Q) is diagonalized for a chain of isotopes.

F.-Q. Chen, Y. Sun, P. Ring, Phys. Rev. C88 (2013) 014315

Energy levels

- Comparison of energy levels of 2₁⁺, 4₁⁺, and 6₁⁺ of ground band and excited 0₂⁺ state
 - Exp data (filled squares)
 - Calculations (open circles)

for isotopes from N=90 (transitional) to N=98 (well-deformed) nuclei

Spherical-deformed shape phase transition

Spherical-deformed shape phase transition

- Drastic changes in electric quadrupole transition B(E2, 2⁺ → 0⁺) from vibrator ¹⁵²Gd (N=88), to critical point ¹⁵⁴Gd (N=90), to rotor ¹⁵⁶⁻¹⁶⁰Gd (N>90).
- Black squares show if use only one fixed deformation ε_2 in the calculation, transitional feature cannot be reproduced.

Distribution function

- The Hill-Wheeller Equation diagonalizes the Hamiltonian in a non-orthogonal basis, and therefore, $f(\varepsilon_2)$ is not a proper quantity to analyze the GSM wave function.
- Transformation of $f(\varepsilon_2)$ to an orthogonal basis gives

$$g(\boldsymbol{\varepsilon}_2) = \int \mathscr{N}^{1/2}(\boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_2') f(\boldsymbol{\varepsilon}_2') d\boldsymbol{\varepsilon}_2'$$

which can be used to present the distribution of the GCM wave functions.

• $g^2(\varepsilon_2)$ represent the probability function.

Distribution function of deformation

Calculated distribution function of deformation for the first three 0⁺ states in ¹⁵⁴Gd and ¹⁶⁰Gd

Probability function of deformation

Calculated probability function of deformation for ground state 0_1^+ and excited 0_2^+ state in ¹⁵⁴Gd and ¹⁶⁰Gd.

Probability function of deformation

- Peak of the Gaussian defines deformation
 - ¹⁶⁰Gd being more deformed than ¹⁵⁴Gd
- The distribution is wider for ¹⁵⁴Gd
 - reflecting the softness of this nucleus
- The distribution for 0_2^+ is much more fragmented
 - reflecting a vibrational nature of these states
- For 0₁⁺, system stays mainly at system's deformation with the largest probability
- For 0₂⁺, system shows two peaks having different heights lying separately at both sides of the equilibrium
 - indicating an anharmonic oscillation
 - prefering to have a larger probability in the site of larger deformation

Hg isotopes

Energy levels for two 0⁺ bands

Main features can not be described when superposition is taken only for prolate deformation.

Need superposition for both prolate and oblate deformations.

B(E2) for first 0⁺ band

B(E2) for second 0⁺ band

Hg isotopes

Distribution function for the first 0⁺ band

I=0: nearly spherical, two peaks distributed around zero deformation

I=2: has one node, but distributed more on prolate side

I=4 or higher: mainly peaked on the prolate side

I=0: nearly prolately deformed

I=2: has two nodes, but developed to co-existing shapes at ¹⁸⁸Hg
 I=4 or higher: shape developed rapidly. Finally mainly peaked on the prolate side with one node

a.-m.-projected multi-quasi-particle states based on a fixed deformation

• Even-even nuclei:

 $\left\{ \hat{P}_{MK}^{I} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \ldots \right\}$

• Odd-odd nuclei:

 $\left\{\hat{P}_{MK}^{I}\alpha_{\nu}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{\nu}^{+}\alpha_{\nu}^{+}\alpha_{\nu}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{\nu}^{+}\alpha_{\pi}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \hat{P}_{MK}^{I}\alpha_{\nu}^{+}\alpha_{\nu}^{+}\alpha_{\nu}^{+}\alpha_{\nu}^{+}\alpha_{\pi}^{+}\alpha_{\pi}^{+}\big|0\right\rangle, \ldots\right\}$

- Odd-neutron nuclei: $\left\{ \hat{P}_{MK}^{I} \alpha_{v}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{v}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}_{MK}^{I} \alpha_{v}^{+} \alpha_{v}^{+} \alpha_{v}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \ldots \right\}$
- Odd-proton nuclei: $\left\{ \hat{P}^{I}_{MK} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}^{I}_{MK} \alpha_{\nu}^{+} \alpha_{\nu}^{+} \alpha_{\pi}^{+} | 0 \rangle, \hat{P}^{I}_{MK} \alpha_{\nu}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} \alpha_{\pi}^{+} | 0 \rangle, \ldots \right\}$

Multi-quasiparticle excitations

- 0-, 2-, 4-qp states of ¹⁷⁸Hf
- Data:
 - S.M. Mullins *et al*, *Phys. Lett.* B 393 (1997) 279
- Theory:
 - Y. Sun *et al*, *Phys. Lett.* B 589 (2004) 83

Multi-quasiparticle computation using the Pfaffian algorithm

- Calculation of projected matrix elements usually uses the generalized Wick theorem
- A matrix element having n (n') qp creation or annihilation operators respectively on the left- (right-) sides of the rotation operator contains (n + n - 1)!! terms in the expression – a problem of combinatorial complexity
- Use of the Pfaffian algorithm:
 - L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).
 - L.M. Robledo, Phys. Rev. C 84 (2011) 014307.
 - T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219.
 - M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305.
 - T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175

Example for very high-spin states

• • • Summary

• New development in the Projected Shell Model:

- We improved the PSM wave function by superimposing (angular-momentum and particle-number) projected states with different deformation ε₂
- The method can be applied to problems of soft nuclei, shape co-existence, phase transition, etc.
- excited 0⁺ states can be described together with the ground state in an equal footing
- High order multi-quasiparticle states using the Phaffian algorithm
 - To overcome the problem in the classical Wick's theorem for matrix-element calculation
 - Computer code can be developed when large number of quasiparticle excitations are included.

Fang-Qi Chen Long-Jun Wang (Shanghai Jiao Tong University, China)

T. Mizusaki (Senshu University, Japan)M. Oi (Senshu University, Japan)P. Ring (TU Munich, Germany)