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Nuclear structure models 

 Shell-model diagonalization method 

 Based on quantum mechanical principles  

 Growing computer power helps extending applications 

 A single configuration contains no physics 

 Huge basis dimension required, severe limit in applications 

 Mean-field approximations 

 Applicable to any size of systems  

 Fruitful physics around minima of energy surfaces 

 No configuration mixing, results depending on quality of mean-field 

 States with broken symmetry, cannot study transitions 

 Algebraic models 

 Based on symmetries, simple and elegant 

 Serve as important guidance for complicated calculations 



Deformed basis vs spherical basis 

 Most nuclei are deformed. To describe a deformed 

nucleus, a spherical shell model needs a huge 

configuration space, thus has no obvious advantage. 

 J.P. Elliott was the first to take the advantage of a 

deformed many-body basis and developed the SU(3) 

shell model. 

 For heavy nuclei, the original Elliott SU(3) scheme is 

no longer valid;  

 one may use generalized SU(3) schemes if symmetries exist.  

 or more generally, one can start from a deformed basis and 

apply angular-momentum-projection technique. 



A method related to mean-field, 

shell model, algebraic models 

 Angular-momentum projection method based on 

mean-field solutions 
 

 Start from intrinsic bases (e.g. solutions of deformed mean-

field) and select most relevant configurations 

 Use angular momentum projection technique to transform 

them to laboratory basis (many-body technique)  

 Diagonalize Hamiltonian in the projected basis (configuration 

mixing, a shell-model concept)  

 Numerical results can be discussed using algebraic models 

 

The Projected Shell Model: 

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



The procedure 

 Take a set of quasiparticle states at a fixed deformation (e.g. 

solutions of HF, HFB or HF + BCS) 

 Select configurations (qp vacuum + multi-qp states near the 

Fermi level) 

 Project them onto good angular momentum (if necessary, also 

parity, particle number) to form a basis in laboratory frame 

 Diagonalize a two-body Hamiltonian in the projected basis 

 

 This model has worked well for spectrum description for nuclei 

with stable deformation (and super-deformation or superheavy 

nuclei)  

 
K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637  



Example of a good axially-deformed 

rotor 

 Angular-momentum-projected energy calculation shows a 

deep prolate minimum 

 A very good rotor with axially-deformed shape 

 Quasi-particle excitations based on the same deformed potential 



Emergence of SU(3) symmetry 

 Nearly perfect SU(3) symmetry 

emerges from a.-m.-projection 

 Project on separate BCS vacuum 

of         and       , then couple the 

projected states  

    to form the basis        

 Diagonalize the Hamiltonian in the 

coupled basis  

 Multi-phonon scissors mode is 

predicted 

 Y. Sun et al., PRL 80 (1998) 672;   

                          NPA 703 (2002) 130 
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g-vibrational states 

 g-vibration states cannot be obtained when axial symmetry in 

the basis states is assumed 

 Need 3-dimensional angular-momentum projection performed 

on a triaxially deformed basis 

Y. Sun et al.  Phys. Rev. C61 (2000) 064323  



g-vibrations 

 Calculated transition rates 

confirm the multi-phonon 

structure 

P. Boutachkov et al. 

          Eur. Phys. J. A15 (2002) 455 



Example of softness – no definite 

shapes 

Mean-field calculation  

shows a spherical shape. 

 

Projected calculation 

shows shallow minima 

separated by a low  

energy barrier. 

 

Shapes may be 

developed with rotation. 



g-softness in well-deformed nuclei 

Angular-momentum-projected energy surfaces as functions of e and g 



 A spherical nucleus described by 

spherical shell model. 

 A deformed nucleus described by 

deformed shell model. 

 Transitional ones are difficult. A 

better wavefunction is a 

superposition of many states of 

deformation parameter b.  

Description of a system with soft 

potential surfaces 

Schematic energy potential for 

spherical (red), transitional (dashed), 

and deformed (blue) nuclei. 

Spherical 

Deformed 

Transitional 



Generate Coordinate Method (GCM) 

 GCM starts with a general ansatz for a trail wave function 

 

 

     with                                being generate coordinates   

         is a weight function, determined by solving the Hill-Wheeler 

Equation 

 

      with the overlap functions 

 

 

 



Projected Generate Coordinate 

Method (PGCM) 

 Choosing generate coordinate as e2, an improved wave function 

 

 

 

 Hamiltonian 

 

 

     with a fixed set of parameters (fixed c, GM, and GQ) is 

diagonalized for a chain of isotopes. 

 
      F.-Q. Chen, Y. Sun, P. Ring,  Phys. Rev. C88 (2013) 014315  

 



Energy levels 

 
 Comparison of energy 

levels of 21
+, 41

+, and 61
+ 

of ground band and 

excited 02
+ state 

 

 Exp data (filled squares) 

 Calculations (open circles) 

 

     for isotopes from N=90 

(transitional) to N=98 

(well-deformed) nuclei  

N=90 N=98 



Spherical-deformed shape phase 

transition 

Vibrator 

Critical 

point 

Rotor 



 Drastic changes in electric 

quadrupole transition B(E2, 2+ 

 0+) from vibrator 152Gd 

(N=88), to critical point 154Gd 

(N=90), to rotor 156-160Gd (N>90). 

 

 Black squares show if use only 

one fixed deformation e2 in the 

calculation, transitional feature 

cannot be reproduced. 

Spherical-deformed shape phase 

transition 



Distribution function 

 The Hill-Wheeller Equation diagonalizes the Hamiltonian in 

a non-orthogonal basis, and therefore, f(e2) is not a proper 

quantity to analyze the GSM wave function. 

 

 Transformation of f(e2) to an orthogonal basis gives 

 

 

    which can be used to present the distribution of the GCM   

wave functions. 

 

• g2(e2)  represent  the probability function. 



Distribution function of deformation 

Calculated distribution function of deformation 

for the first three 0+ states in 154Gd and 160Gd 



Probability function of deformation 

Calculated probability function of deformation for ground 

state 01
+ and excited 02

+ state in 154Gd and 160Gd.  



 Peak of the Gaussian defines deformation 


160Gd being more deformed than 154Gd 

 The distribution is wider for 154Gd 

 reflecting the softness of this nucleus 

 The distribution for 02
+ is much more fragmented 

 reflecting a vibrational nature of these states 

 For 01
+ , system stays mainly at system’s deformation with the 

largest probability 

 For 02
+ , system shows two peaks having different heights lying 

separately at both sides of the equilibrium  

 indicating an anharmonic oscillation 

 prefering to have a larger probability in the site of larger 

deformation 

 

 

 

 

Probability function of deformation 



Hg isotopes 

B(E2) for first 0+ band 

B(E2) for second 0+ band 

Energy levels for two 0+ bands 

Main features can not be described 

when superposition is taken only for 

prolate deformation. 

 

Need superposition for both prolate  

and oblate deformations. 



Hg isotopes 

Distribution function for 

the first 0+ band 

I=0: nearly spherical, two 

peaks distributed around 

zero deformation 

 

I=2: has one node, but 

distributed more on prolate 

side 

 

I=4 or higher: mainly peaked 

on the prolate side   



Hg isotopes 

Distribution 

function for 

the second 

0+ band 

I=0: nearly prolately deformed 

I=2: has two nodes, but developed to co-existing shapes at 188Hg 

I=4 or higher: shape developed rapidly. Finally mainly peaked on the prolate 

      side with one node  



a.-m.-projected multi-quasi-particle 

states based on a fixed deformation 

 Even-even nuclei: 

 

 

 Odd-odd nuclei: 

 

 

 Odd-neutron nuclei: 

 

 

 Odd-proton nuclei: 

 ,0ˆ,0ˆ,0ˆ,0ˆ 

  I

MK

I

MK

I

MK

I

MK PPPP

 ,0ˆ,0ˆ,0ˆ,0ˆ 

  I

MK

I

MK

I

MK

I

MK PPPP

 ,0ˆ,0ˆ,0ˆ 

  I

MK

I

MK

I

MK PPP

 ,0ˆ,0ˆ,0ˆ 

  I

MK

I

MK

I

MK PPP



Multi-quasiparticle excitations 

 0-, 2-, 4-qp states 

of 178Hf 

 Data:  

 S.M. Mullins et al, 

Phys. Lett.  B 393 

(1997) 279 

 Theory:  

 Y. Sun et al, 

Phys. Lett. B 589 

(2004) 83 



Multi-quasiparticle computation  

using the Pfaffian algorithm 

 Calculation of projected matrix elements usually uses the 

generalized Wick theorem 

 A matrix element having n (n’) qp creation or annihilation 

operators respectively on the left- (right-) sides of the rotation 

operator contains (n + n − 1)!! terms in the expression – a 

problem of combinatorial complexity 

 Use of the Pfaffian algorithm: 

 L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).  

 L.M. Robledo, Phys. Rev. C 84 (2011) 014307. 

 T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219. 

 M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305. 

 T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175 

 

 

 

 Example of triaxial PSM 

 Fail for study vibrational bands even with many qp states 

 b 



L.-J. Wang et al.  Phys. Rev. C90 (2014) 011303(R)  

A third band-crossing is described. 

Extension of configuration  

space to 6-qps. 



Example for very high-spin states 

Calculation including 8-qps 

based on a fixed deformation 



 New development in the Projected Shell Model: 

 We improved the PSM wave function by superimposing 

(angular-momentum and particle-number) projected states with 

different deformation e2 

 The method can be applied to problems of soft nuclei, shape 

co-existence, phase transition, etc. 

 excited 0+ states can be described together with the ground 

state in an equal footing 

 High order multi-quasiparticle states using the Phaffian 

algorithm 

 To overcome the problem in the classical Wick’s theorem for 

matrix-element calculation 

 Computer code can be developed when large number of 

quasiparticle excitations are included.  

 

 

 

 

Summary 
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