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Nuclear structure models

o Shell-model diagonalization method
Based on quantum mechanical principles
Growing computer power helps extending applications
A single configuration contains no physics
Huge basis dimension required, severe limit in applications

o Mean-field approximations
Applicable to any size of systems
Fruitful physics around minima of energy surfaces
No configuration mixing, results depending on quality of mean-field
States with broken symmetry, cannot study transitions

o Algebraic models
Based on symmetries, simple and elegant
Serve as important guidance for complicated calculations



Deformed basis vs spherical basis

o Most nuclei are deformed. To describe a deformed
nucleus, a spherical shell model needs a huge
configuration space, thus has no obvious advantage.

o J.P. Elliott was the first to take the advantage of a
deformed many-body basis and developed the SU(3)
shell model.

o For heavy nuclel, the original Elliott SU(3) scheme is
no longer valid;
one may use generalized SU(3) schemes if symmetries exist.

or more generally, one can start from a deformed basis and
apply angular-momentum-projection technique.



A method related to mean-field,
shell model, algebraic models

o Angular-momentum projection method based on
mean-field solutions

Start from intrinsic bases (e.g. solutions of deformed mean-
field) and select most relevant configurations

Use angular momentum projection technique to transform
them to laboratory basis (many-body technigue)

Diagonalize Hamiltonian in the projected basis (configuration
mixing, a shell-model concept)

Numerical results can be discussed using algebraic models

The Projected Shell Model:
K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637



The procedure

Take a set of quasiparticle states at a fixed deformation (e.qg.
solutions of HF, HFB or HF + BCYS)

Select configurations (gp vacuum + multi-gp states near the
Fermi level)

Project them onto good angular momentum (if necessary, also
parity, particle number) to form a basis in laboratory frame

Diagonalize a two-body Hamiltonian in the projected basis

This model has worked well for spectrum description for nuclei
with stable deformation (and super-deformation or superheavy
nuclet)

K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637



Example of a good axially-deformed
rotor

o Angular-momentum-projected energy calculation shows a
deep prolate minimum

A very good rotor with axially-deformed shape
Quasi-particle excitations based on the same deformed potential
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o Nearly perfect SU(3) symmetry
emerges from a.-m.-projection

Project on separate BCS vacuum
of |¢,) and|¢,), then couple the
projected states [1_)=N'P'|4,)

to form the basis |(1, ®1,)1)

Diagonalize the Hamiltonian in the
coupled basis

Multi-phonon scissors mode is
predicted

Y. Sun et al., PRL 80 (1998) 672;
NPA 703 (2002) 130
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v-vibrational states

o vy-vibration states cannot be obtained when axial symmetry in
the basis states is assumed

o Need 3-dimensional angular-momentum projection performed
on a triaxially deformed basis
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v-vibrations

o Calculated transition rates
confirm the multi-phonon

structure

Table 1. Comparison of all known experimental in-band and
inter-band B(E2) values (associated errors in parenthesis) and
calculated ones in W.u. for '®*Er. K = 4% lifetimes from
ref. 2], K = 07, and K = 27 lifetimes and B(E2) values

from ref. [8] and all the references therein.

B(E2)tpsm (W)

(2,0); — (0,0) 207 (6)
(4,0)i — (2,0) 318 (12
(6.0); — (4.,0); 440 (3
(8,0); — (6.0) 350 (20
(10.0); — (8.0); 302 (21

228.6
326.9
361.2
380.0
393.0

P. Boutachkov et al.

Eur. Phys. J. A15 (2002) 455

(2.2)i — (0,0) 4.80 (17) 2.7
(2.2); — (2.0) 8.5 (4) 4.5
(2.2); — (4,0); 0.62 (4) 0.3
(3.2)i — (2,0) > 0.19 4.9
(3,2); — (4,0); > 0.13 2.7
(4,2)i — (2,0) 1.7 (4) 1.3
(4.2); — (4.0) 8.7 (18) 5.5
(4.2); — (6,0); 1.13 (25) 0.7
(5.2); — (4,0); 3.9
(5.2); — (6,0) 3.7
(6.2)i — (4,0); 0.78 (19) 0.8
(6.2); — (6,0) 6.4 (16) 5.7
(6.2); — (8.0)¢ 2.4 (7) 1.1
(7.2); — [:G.(])f 3.3
(7.2); — (8.0) 4.4
(8.2)i — (6,0); 1.3 (6) 0.5
(8.2);i — (8,0); 1.8 (8) 5.7
(8.2)i — (10, 0); 120 (50) 1.4
(4.4); — (2,2) 3.4 (19) 11.9
(4.4)i — (3,2) 2.2 (13) 7.1
(4,4); — (4.2); 1.7%) (9) 2.7
(4,4); — (5,2) 0.7 (3) 0.6
(4.4); — (6,2) 2.0 (13) 0.1
(5.4); — (3.2) 5 (5) 7.7
(5.4); — [—1 2jf 4 [3) 3.6
(5,4); — (5.2)¢ 1.8 (15) 4.6
(5.4); — (6,2) 0.8 (7) 1.3
(5.4); — (7,2) 7 (6) 0.2




Example of softness — no definite
shapes

Mean-field calculation
shows a spherical shape.

Projected calculation
shows shallow minima
separated by a low
energy barrier.

Shapes may be
developed with rotation.




v-softness in well-deformed nuclel
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Description of a system with soft
potential surfaces

o A spherical nucleus described by
spherical shell model. Eh

o A deformed nucleus described by
deformed shell model.

o Transitional ones are difficult. A
better wavefunction is a
superposition of many states of Bo 0 Bo
deformation parameter g.

Schematic energy potential for
spherical (red), transitional (dashed),

}‘l*“r> — /f!(ﬁ) ‘(;[)'r(ﬁ)>dﬁ and deformed (blue) nuclei.
D' (B))=P'o(B)) By =1{B1.B2. B3, }



Generate Coordinate Method (GCM)

o GCM starts with a general ansatz for a trail wave function
) = [ daf(a)|®(a)

with {a} = ay.a,.....a; being generate coordinates

o f(a) Is a weight function, determined by solving the Hill-Wheeler
Equation

Hf=EN|
with the overlap functions
H(a,d) = (®(a)|H|P(d))
N(a.d) = (P(a)|P(d)



Projected Generate Coordinate
Method (PGCM)

o Choosing generate coordinate as &,, an improved wave function

‘ liﬂ,N) _ f dngf.N ( & ) ‘(I)I,N (SZ) >

D' (&2)) = PP |y (e2).)
o Hamiltonian
A =Ho—% Y 05 Ou—GuP P—Go Y B P,
It L

with a fixed set of parameters (fixed y, Gy, and Gg) is
diagonalized for a chain of isotopes.

F.-Q. Chen, Y. Sun, P. Ring, Phys. Rev. C88 (2013) 014315
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Spherical-deformed shape phase
transition

Eﬂ'ﬂ T T | T T H"E' | | 1 1 I
r 7" | 36 - exp
7001 Y Gd M 4P %1 Gd ® cal |
@ 2 cal 1
600 1 347 "t
. A 4'exp - , _ omom
| v 4cal | | 327 / Rotor]
500 - - ] . ]
—
. 3.0 . .
-':E, o Critical
@ 400 L 1o~ o -
— - oln -
0 " oy 2.8 P
007 @ ¥ 1 28
i A | |
2004 1 24 i
100 a ¢ 1
- | 224 m Vibrator .
LN LA R B | DN BN RN N
152 154 156 158 160 152 154 156 158 160

A A



transition

o Drastic changes in electric
guadrupole transition B(E2, 2*
- 0%) from vibrator 1°2Gd
(N=88), to critical point >4Gd
(N=90), to rotor 1%6-160Gd (N>90).

o Black squares show if use only
one fixed deformation ¢, in the
calculation, transitional feature
cannot be reproduced.

B(E2, 2] --> 0) (W.u.)
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Distribution function

o The Hill-Wheeller Equation diagonalizes the Hamiltonian in
a non-orthogonal basis, and therefore, f(&,) is not a proper
guantity to analyze the GSM wave function.

o Transformation of f(g,) to an orthogonal basis gives

g(&) = /,_/V'f’fj(eg.eﬁ)f(ei)dei

which can be used to present the distribution of the GCM
wave functions.

g%(s,) represent the probability function.



Distribution function of deformation
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Probability function of deformation
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Probabillity function of deformation

Peak of the Gaussian defines deformation
160Gd being more deformed than 1°4Gd
The distribution is wider for 1°4Gd
reflecting the softness of this nucleus
The distribution for 0,* is much more fragmented
reflecting a vibrational nature of these states
For 0,*, system stays mainly at system’s deformation with the
largest probability

For 0,* , system shows two peaks having different heights lying
separately at both sides of the equilibrium
indicating an anharmonic oscillation

prefering to have a larger probability in the site of larger
deformation



B(E2) for first 0* band
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a.-m.-projected multi-quasi-particle
states based on a fixed deformation

o Even-even nuclei:

{ISB;K‘O% Pl ol 0), FA’RLKa;a;‘O>, Pl atata’al

| 2000 2N /)

0),...|

o Odd-odd nuclei:
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o Odd-neutron nuclei:
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o 0O-, 2-, 4-gp states
of 178Hf

o Data:

S.M. Mullins et al,
Phys. Lett. B 393
(1997) 279

o Theory:

Y. Sun et al,
Phys. Lett. B 589
(2004) 83
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Multi-quasiparticle computation
using the Pfaffian algorithm

o Calculation of projected matrix elements usually uses the
generalized Wick theorem

o A matrix element having n (n’) gp creation or annihilation
operators respectively on the left- (right-) sides of the rotation
operator contains (n + n — 1)!! terms in the expression — a
problem of combinatorial complexity

o Use of the Pfaffian algorithm:

L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).

L.M. Robledo, Phys. Rev. C 84 (2011) 014307.

T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219.

M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305.

T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175
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E (MeV)

Example for very high-spin states
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Summary

o New development in the Projected Shell Model:

We improved the PSM wave function by superimposing
(angular-momentum and particle-number) projected states with
different deformation &,

The method can be applied to problems of soft nuclei, shape
co-existence, phase transition, etc.

excited O0* states can be described together with the ground
state in an equal footing

o High order multi-quasiparticle states using the Phaffian
algorithm

To overcome the problem in the classical Wick’s theorem for
matrix-element calculation

Computer code can be developed when large number of
guasiparticle excitations are included.
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