

137Ba Double Gamma Decay Measurement with GAMMASPHERE

Edana Merchán, C. J. (Kim) Lister, K. Moran *University of Massahusetts Lowell*

An E5 decay from the $J^{\pi} = 11/2^{-}$ isomer in ¹³⁷Ba

K. Moran¹, E.A. McCutchan², C.J. Lister¹, S. Zhu³, M.P. Carpenter³
P. Chowdhury¹, J.P. Greene³, T. Lauritsen³, E. Merchan¹, and R. Shearman^{1*}
¹Department of Physics, University of Massachusetts, Lowell, MA 01854
²National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973
³Physics Division, Argonne National Laboratory, Lemont, IL 60473
(Dated: July 29, 2014)

Submitted to Phys Rev C

2-photon decay

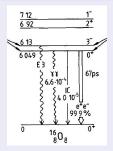
- One of a family of second order electromagnetic processes.
- They are sensitive to the initial and final state wave functions.

STOKESSCher Fall des RAMAN-Effekts.

Fig. 2. Antistokesscher Fall des Raman-Effekts.

Fig. 3. Doppelemission.

Doppelabsorption.

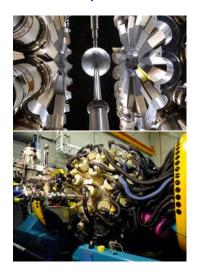

On the probability of a collaboration of two light quanta in an elementary process M. Goppert. Natureweiss 17 932 (1929)

Classic Nuclear Experiment

J Kramp et al. Nucl. Phys. A474 (1987) 412

- Studied $0^+ \rightarrow 0^+$ transition on 16 O, 40 Ca, and 90 Zr.
- Using crystallball a 162 NaI(TI) 4π array.

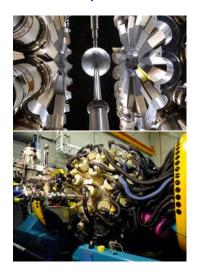
- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42 × 10¹¹ decays.



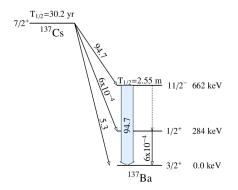
- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42×10^{11} decays.

- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42 × 10¹¹ decays.

- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42×10^{11} decays.

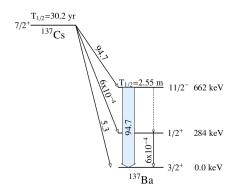


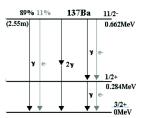
- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42×10^{11} decays.



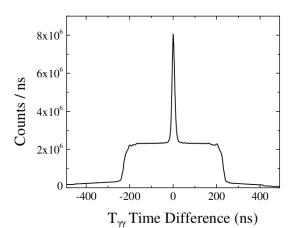
- A total of 68 Compton suppressed HpGe were used.
- The forward section was removed to avoid scattering from FMA.
- A calibrated 19.27 μ Ci ¹³⁷Cs source was used.
- Doubles trigger.
- Collected data for \sim 10 days.
- A total of 6.42×10^{11} decays.

¹³⁷Cs Decay

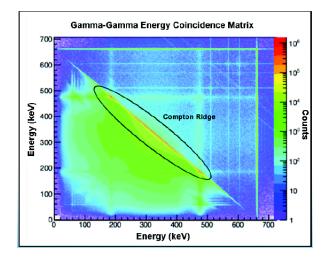



- 662 keV dominant transition (> 10⁶ stronger than other decays).
- 284 keV γ previously detected (much stronger than 378 keV γ , fed by β -decay)

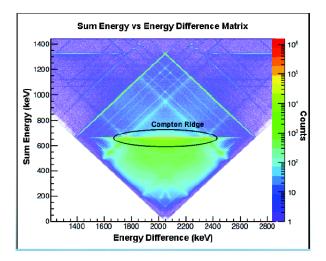
¹³⁷Cs Decay

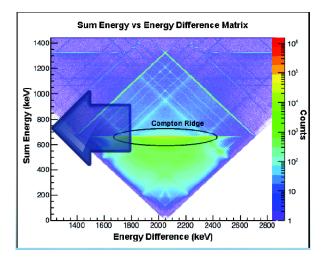


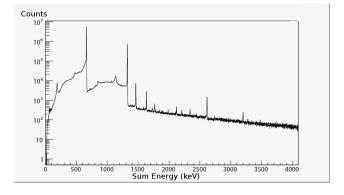
- 662 keV dominant transition (> 10⁶ stronger than other decays).
- 284 keV γ previously detected (much stronger than 378 keV γ , fed by β -decay)

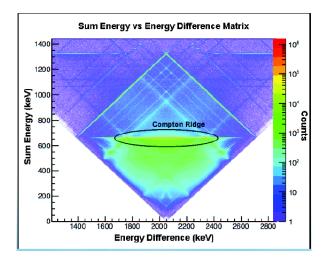

Background Substraction

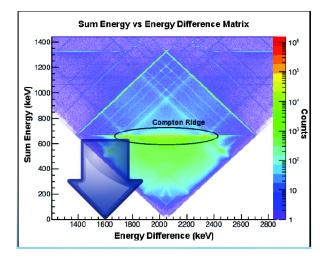
- $\gamma \gamma$ coincidence windows of 400 ns.
- Trigger level around 2 × 10⁶ counts/ns
- 15 ns window at zero time difference to extract about 10% of the prompt coincidence events.

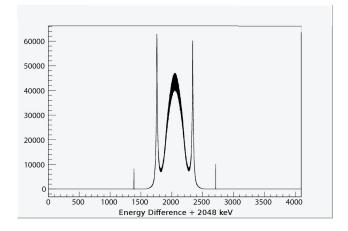


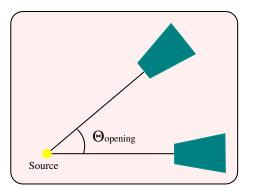






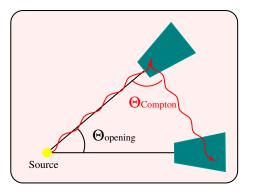






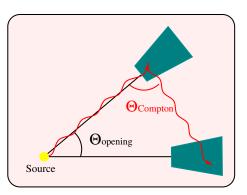
Compton Background

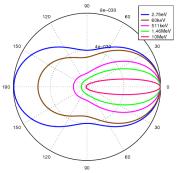
Angular selection, follow Klein-Nishina distribution.



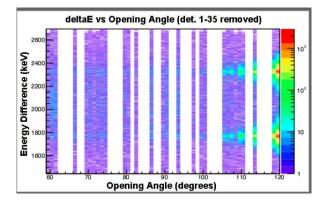
Compton Background

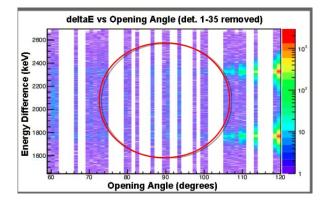
Angular selection, follow Klein-Nishina distribution.

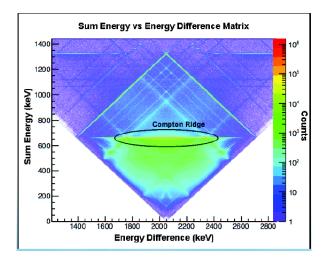


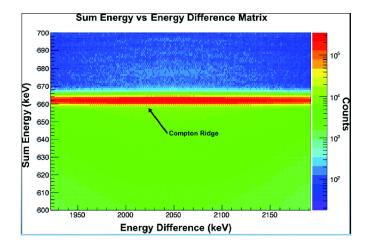


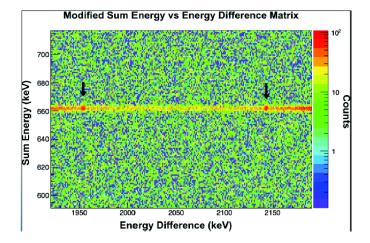
Compton Background

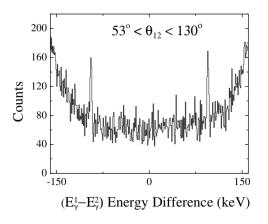

Angular selection, follow Klein-Nishina distribution.

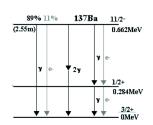












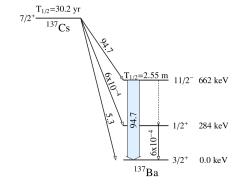
Gamma Cascade (Duotrigesapole Transition)

- Cascade is isotropic (no angular correlation).
- Values correspond to \pm (378 keV-284 keV), or \pm 94 keV

Branching Ratio

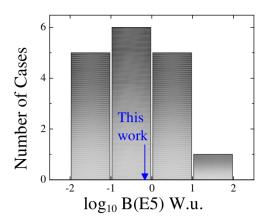
$$Br_{\gamma}^{E5} = \frac{I_{\gamma}^{E5}}{\sum I(\gamma + CE)} = 1.12 \pm 0.9 \times 10^{-7}$$

- Gammasphere efficiency.
- Detector selection.
- Total time (dead time).
- Factor of 2 accounting for symmetrized matrix.
- Correction due to EC.

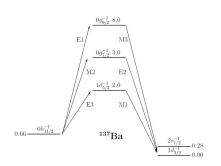


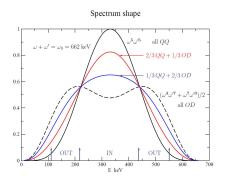
Intensities

$E_{\gamma}(\mathit{keV})$	Intensity $_{\gamma}$
662	94.7(14)
284	$5.8(8) \times 10^{-4}$
378	$1.06(9) \times 10^{-5}$


New estimate value: log ft = 16.49(12)

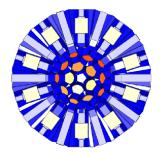
Distribution of B(E5) values


• B(E5) = 0.71(6) W.u. \rightarrow Typical value for "single particle" decays of this type.

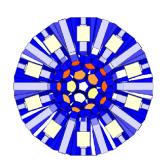


¹³⁷Cs Decay

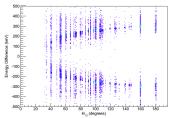
- Determine the 1-photon vs. 2-photon branching ratio.
- Investigate high multipolarity competition, Q-Q vs. Oct-Dip.
- A test of both QED and nuclear wave functions.



Geant4 Simulation*

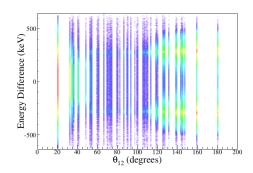

- Approximate geometry.
- No background.
- No doubles trigger.
- Time consuming (6.42 × 10¹¹ decays).

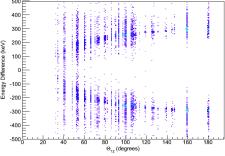
*Simulation geometry provided by the GFNUN - Colombia



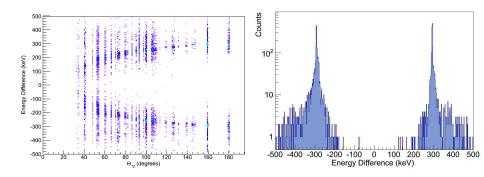
Geant4 Simulation*

- Approximate geometry.
- No background.
- No doubles trigger.
- Time consuming (6.42 \times 10¹¹ decays).



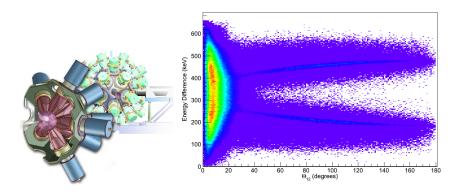

^{*}Simulation geometry provided by the GFNUN - Colombia

Compton Distribution

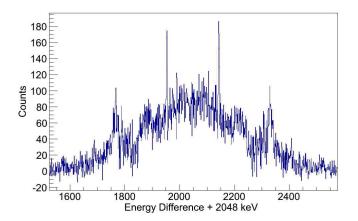


 Distribution of the Compton from the 662 keV with the opening angle.

Compton Distribution



 Distribution of the Compton from the 662 keV with the opening angle.


GRETA Simulation

Double Gamma Distribution

• Expected the order of 10^{-6} branching ratio for the double gamma events.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- ullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10⁻⁷
- \bullet The intensity of the 378 keV transition has been measured to be $1.06(9)\times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- \bullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10 $^{-7}$
- The intensity of the 378 keV transition has been measured to be $1.06(9) \times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- \bullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10 $^{-7}$
- \bullet The intensity of the 378 keV transition has been measured to be $1.06(9)\times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- \bullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10 $^{-7}$
- \bullet The intensity of the 378 keV transition has been measured to be $1.06(9)\times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- \bullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10 $^{-7}$
- \bullet The intensity of the 378 keV transition has been measured to be $1.06(9)\times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.

- The branch of the ¹³⁷Ba cascade of two photons has been measured.
- \bullet The calculated branching ratio is of 1.12 \pm 0.9 \times 10 $^{-7}$
- \bullet The intensity of the 378 keV transition has been measured to be $1.06(9)\times 10^{-5}$
- The cascade is about two orders of magnitude less than the expected double gamma decay.
- A distribution for the double gamma decay has been observed, its angular distribution must be carefully studied.
- Compton correction is ongoing by using the GS simulation.