Do nuclei go pear-shaped?

Coulomb excitation of ²²⁰Rn and ²²⁴Ra at REX-ISOLDE(CERN)

> Marcus Scheck University of the West of Scotland Peter A. Butler, Liam P. Gaffney University of Liverpool for the IS475 collaboration

CGS XV - Dresden 2014

Nuclear shell structure

UNIVERSITY OF THE WEST of SCOTLAND

 $E_{L} \leq \varepsilon_{F} \leq E_{L+3}$

Nuclear shell structure

 $E_{L} < \varepsilon_{F} < E_{L+3}$ $\Delta E = E_{L+3} - E_{L} \ll$

Nuclear

shell structure

⇒enhanced octupole collectivity

UNIVERSITY OF THE

WEST of SCOTLAND

UNIVERSITY OF THE

'EST of SCOTLAND

Multipole expansion of the shape: 2^{L} -pole and L=3 \Rightarrow Octupole

Multipole expansion of the shape: 2^{L} -pole and L=3 \Rightarrow Octupole

Multipole expansion of the shape: 2^{L} -pole and L=3 \Rightarrow Octupole

Reflection Asymmetric

Experimental observables $E_{3^{-}}$ and B(E3, 0⁺ \mapsto 3⁻)

Excitation energy E₃₋

Neutron Number N

T.Kibédy & R.H.Spear, At. Data and Nucl. Data tables 80 (2002) 35

Experimental observables $E_{3^{-}}$ and B(E3, 0⁺ \mapsto 3⁻)

199192

Excitation energy E₃₋

B(E3, $0^+ \mapsto 3^-$)-strength

T.Kibédy & R.H.Spear, At. Data and Nucl. Data tables 80 (2002) 35

Experimental observables $E_{3^{-}}$ and B(E3, 0⁺ \mapsto 3⁻)

199192

Excitation energy E₃₋

Inverse sum rule

T.Kibédy & R.H.Spear, At. Data and Nucl. Data tables 80 (2002) 35

ISOL → **IS**otope **OnL**ine separation **DE**tector

UNIVERSITY OF THE WEST of SCOTLAND

ISOL → **IS**otope **OnL**ine separation **DE**tector

CERN accelerator complex

UNIVERSITY OF THE WEST of SCOTLAND

ISOL → **IS**otope **OnL**ine separation **DE**tector

ISOL → **IS**otope **OnL**ine separation **DE**tector

Physical processes

²³⁸U binding energy: 1.8 GeV

Target nucleus

Physical processes

²³⁸U binding energy: 1.8 GeV

Physical processes

²³⁸U binding energy: 1.8 GeV

- **1.** Spallation \Rightarrow heavy nucleus
- **2.** Fission \Rightarrow medium mass nucleus
- 3. Fragmentation \Rightarrow light nucleus

Physical processes

²³⁸U binding energy: 1.8 GeV

- **1.** Spallation \Rightarrow heavy nucleus
- **2.** Fission \Rightarrow medium mass nucleus
- 3. Fragmentation \Rightarrow light nucleus

Target Outline

UNIVERSITY OF THE

WEST of SCOTLAND

199192

UNIVERSITY OF THE WEST of SCOTLAND

ISOL → **IS**otope **OnL**ine separation **DE**tector

UNIVERSITY OF THE WEST of SCOTLAND

ISOL → **IS**otope **OnL**ine separation **DE**tector

Radioactive ion beam EXperiment - REX

UNIVERSITY OF THE WEST of SCOTLAND

Coulomb excitation at Miniball

DSSD Particle detector

UNIVERSITY OF THE

WEST of SCOTLAND

Coulomb excitation at Miniball

Coulomb excitation at Miniball

Miniball Triple Cluster Projectile **REX:** E_{beam}~2.83 MeV/u A/q 4-4.5 (²²⁴Ra⁵²⁺) ~66% E_{safe} (⁶⁰Ni) ²²⁴Ra/ ²²⁰Rn Mary **Coulex Target** (⁶⁰Ni, ¹¹²Cd, ¹²⁰Sn) Target recoil **Miniball:** DSSD

DSSD: Angles 15°-53° Front 16 strips Back 24/2 strips

UNIVERSITY OF THE

WEST of SCOTLAND

Miniball: 8x Triple Cluster ⇒ 24 HPGe Detectors Solid Angle coverage: ~60% of 4π DSSD Particle detector

UNIVERSITY OF THE WEST of SCOTLAND

De-excitation process

UNIVERSITY OF THE WEST of SCOTLAND

De-excitation process

E1 10⁴-10⁶x more probable

UNIVERSITY OF THE WEST of SCOTLAND

De-excitation process

E1 10⁴-10⁶x more probable

UNIVERSITY OF THE WEST of SCOTLAND

Populate 3⁻ level with E3 in Coulex \Rightarrow observe E1(and E2) decay γ ray(s)

UNIVERSITY OF THE WEST of SCOTLAND

Particle Detector: (inverse kinematic)

Polar angle θ [°]

UNIVERSITY OF THE WEST of SCOTLAND

Particle Detector: (inverse kinematic)

UNIVERSITY OF THE WEST of SCOTLAND

Particle Detector: (inverse kinematic)

Particle Detector: (inverse kinematic)

HPGe γ-ray Detector array

199192

Particle Detector: (inverse kinematic)

HPGe γ-ray Detector array

Different Targets (Z)

Disentangle one- and multi-step excitation paths

UNIVERSITY OF THE West*of* Scotland
CoulEx: Experimental Info

UNIVERSITY OF THE WEST of SCOTLAND

199192

Different Targets (Z)

Disentangle one- and multi-step excitation paths

Literature (²²⁴Ra)

- Lifetimes (2x)
- Branching ratios (4x)
- Multipole mixing ratios

CoulEx: Experimental Info

CoulEx: Experimental Info

Decay Transitions

B(E3, $3^- \mapsto 0^+$) strength

Inverse sum rule

Nuclear surface

$$R(\Theta) = c(\beta_{\lambda})R_0 \left[1 + \sum_{\lambda=2}^{\infty} \sqrt{\frac{2\lambda+1}{4\pi}} \beta_{\lambda} P_{\lambda 0}(\cos\Theta) \right]$$

Our experiments: β_2, β_3 & Theory*: β_4

*W.Nazarewicz, Nucl. Phys. A429 (1984) 269

Nuclear surface

$$R(\Theta) = c(\beta_{\lambda})R_0 \left[1 + \sum_{\lambda=2}^{\infty} \sqrt{\frac{2\lambda+1}{4\pi}} \beta_{\lambda} P_{\lambda 0}(\cos\Theta)\right]$$

Our experiments: β_2, β_3 & Theory*: β_4

Nucleus	λ	β_{λ}
²²⁰ Rn	2	0.119
	3	0.095
	4	0.002*
²²⁴ Ra	2	0.154
	3	0.097
	4	0.080*

*W.Nazarewicz, Nucl. Phys. A429 (1984) 269

Nuclear surface

190192

$$R(\Theta) = c(\beta_{\lambda})R_0 \left[1 + \sum_{\lambda=2}^{\infty} \sqrt{\frac{2\lambda+1}{4\pi}} \beta_{\lambda} P_{\lambda 0}(\cos\Theta)\right]$$

Our experiments: β_2, β_3 & Theory*: β_4

Nucleus	λ	β_{λ}
²²⁰ Rn	2	0.119
	3	0.095
	4	0.002*
²²⁴ Ra	2	0.154
	3	0.097
	4	0.080*

*W.Nazarewicz, Nucl. Phys. A429 (1984) 269

Nuclear Schiff Moment

$$S = \Sigma rac{\langle +_{gs} || \hat{S}_z || -
angle \langle - || \hat{V}_{PT} || +_{gs}
angle}{E_0 - E_i} + c. \ c.$$

Nuclear Schiff Moment

$$S = \sum rac{\langle +_{gs} || \hat{S}_{z} || - \rangle \langle - || \hat{V}_{PT} || +_{gs}
angle}{E_{0} - E_{i}} + c. \ c$$

 $\sim eta_{3} eta_{2}$
 $\hat{S}_{z} = rac{e}{10} \sum_{\pi} (r_{\pi}^{2} - rac{5}{3} ar{r}_{ch}^{2}) z_{\pi}$

Asymmetric proton distribution (Pear shape!)

Nuclear Schiff Moment

Nuclear Schiff Moment

(Pear shape!)

Lab.

frame

N.Auerbach, V.V.Flambaum, & V. Spevak PRL 76 (1996) 4316 J.Dobaczewski & J.Engel, PRL **94** (2005) 232502

UNIVERSITY OF THE

Nuclear Schiff Moment

Asymmetric proton distribution , (Pear shape!)

N.Auerbach, V.V.Flambaum, & V. Spevak PRL 76 (1996) 4316 J.Dobaczewski & J.Engel, PRL **94** (2005) 232502

UNIVERSITY OF THE

Nuclear Schiff Moment

Asymmetric proton distribution , (Pear shape!)

On 223Ra E1 E2 M1+E2 z=0.14ns $11/2^{+}$ 174.7 z=0.3ns $9/2^{+}$ 130.3 z=0.4ns $7/2^{+}$ 61.5 z=0.6 ns $7/2^{+}$ 61.5 z=0.4ns $7/2^{+}$ 61.5 z=0.4ns $7/2^{+}$ 29.9 z=0.2 ns z=0.6 ns

> J=3/2-Parity doublet π no longer a good QN \Rightarrow states mix

N.Auerbach, V.V.Flambaum, & V. Spevak PRL 76 (1996) 4316 J.Dobaczewski & J.Engel, PRL **94** (2005) 232502

UNIVERSITY OF THE

Nuclear Schiff Moment

Asymmetric proton distribution , (Pear shape!)

UNIVERSITY OF THE WEST of SCOTLAND

Nuclear Schiff Moment

Asymmetric proton distribution (Pear shape!)

UNIVERSITY OF THE WEST of SCOTLAND

J.Dobaczewski & J.Engel, PRL 94 (2005) 232502

Mid-term future?

IS552: Coul-Ex ^{222,226,228}Ra & ^{221,222}Rn

Mid-term future?

IS552: Coul-Ex 222,226,228 Ra & 221,222 Rn

Beam development β-decay 221,223 At $\rightarrow ^{221,223}$ Rn

Mid-term future?

IS552: Coul-Ex ^{222,226,228}Ra & ^{221,222}Rn

UNIVERSITY OF THE WEST of SCOTLAND

...the IS475 collaboration:

P.A.Butler, L.P.Gaffney, A.B.Hayes, F.Wenander, M.Albers, B.Bastin, C.Bauer, A.Blazhev, S.Boenig, N.Bree, J.Cederkall, T.Chupp, D.Cline, T. E.Cocolios, T.Davinson, H.DeWitte, J.Diriken, T.Grahn, A.Herzan, M.Huyse, D.G.Jenkins, D.T.Joss, N.Kesteloot, J.Konki, M.Kowalczyk, Th.Kroell, E.Kwan, R.Lutter, K. Moschner, P.Napiorkowski, J.Pakarinen, M.Pfeiffer, D.Radeck, P.Reiter, K.Reynders, S.V.Rigby, L.M.Robledo, M.Rudigier, S.Sambi, M.Seidlitz, B. Siebeck, T.Stora, P.Thoele, P.Van Duppen, M.J.Vermeulen, M. von Schmid, D.Voulot, N.Warr, K.Wimmer, K. Wrzosek-Lipska, C. Y. Wu & M. Zielinska

UNIVERSITY OF THE WEST of SCOTLAND

...the IS475 collaboration:

P.A.Butler, L.P.Gaffney, A.B.Hayes, F.Wenander, M.Albers, B.Bastin, C.Bauer, A.Blazhev,

kall, T.Chupp, D.Cline, T. E.Cocolios, T.Davinson, H.DeWitte, an, M.Huyse, D.G.Jenkins, D.T.Joss, N.Kesteloot, J.Konki, .Kwan, R.Lutter, K. Moschner, P.Napiorkowski, J.Pakarinen, eiter, K.Reynders, S.V.Rigby, L.M.Robledo, M.Rudigier, S.Sambi, tora, P.Thoele, P.Van Duppen, M.J.Vermeulen, M. von Schmid,

D.Voulot, N.Warr, K.Wimmer, K. Wrzosek-Lipska, C. Y. Wu & M. Zielinska

UNIVERSITY OF THE WEST of SCOTLAND

...the IS475 collaboration:

P.A.Butler, L.P.Gaffney, A.B.Hayes, F.Wenander, M.Albers, B.Bastin, C.Bauer, A.Blazhev,

E.Cocolios, T.Davinson, H.DeWitte, s,D.T.Joss, N.Kesteloot, J.Konki, chner, P.Napiorkowski, J.Pakarinen, by, L.M.Robledo, M.Rudigier, S.Sambi, ppen, M.J.Vermeulen, M. von Schmid,

D.Voulot, N.Warr, K.Wimmer, K. Wrzosek-Lipska, C. Y. Wu & M. Zielinska

...the ISOLDE beam operator crew

UNIVERSITY OF THE WEST of SCOTLAND

...the IS475 collaboration:

P.A.Butler, L.P.Gaffney, A.B.Hayes, F.Wenander, M.Albers, B.Bastin, C.Bauer, A.Blazhev,

E.Cocolios, T.Davinson, H.DeWitte, s,D.T.Joss, N.Kesteloot, J.Konki, chner, P.Napiorkowski, J.Pakarinen, by, L.M.Robledo, M.Rudigier, S.Sambi, ppen, M.J.Vermeulen, M. von Schmid,

D.Voulot, N.Warr, K.Wimmer, K. Wrzosek-Lipska, C. Y. Wu & M. Zielinska

...the ISOLDE beam operator crew

...the funding organizations! Especially:

Why odd-mass?

²²⁴Ra: Comparison to Theory

BCP: Barcelona-Catania Paris Energy Density Functional D1S: HFB Mean-Field (D1S Gogny Force)

UNIVERSITY OF THE WEST of SCOTLAND

199192

L.M.Robledo et al., PRC 81 (2010) 034315

²²⁴Ra: Comparison to Theory

L.M.Robledo et al., Phys.Rev.C 81 (2010) 034315

GOC/D1S: Hartree-Fock Bogoliubov

(Gogny D1S Force)

BCP:

Barcelona Catania Paris Energy Density Functional

190192

²²⁴Ra: Comparison to Theory

GOC/D1S:

UNIVERSITY OF THE West*of* Scotland

Hartree-Fock Bogoliubov (Gogny D1S Force)

BCP:

Barcelona Catania Paris Energy Density Functional

L.M.Robledo et al., Phys.Rev.C 81 (2010) 034315

E1 moments in nuclei

Electric dipole

Not possible!!! Only protons are charged

Mechanism

Divide center of charge and center of mass

E1 strength in spherical nuclei?

Coupling quadrupole and octupole degrees-of-freedom

3500

3000

2500

2000

1500

1000

500

0

Excitation Energy [keV]

3-

 2^+

Example: Nd-isotopic chain

Spherical nucleus

iE1

E₄

 E_{2^+}

 E_1

92

Question: Are there nuclei that have a static octupole deformation? Nuclear Schiff moment?

82

84

86

Neutron Number N

88

90

Odd-even parity levels: energy differences

E [MeV E2 E2 E1 13 2.0 11 10^{+} 9 8⁺-1.0 5 220Rn

J.F.Cocks, P.A.Butler et al., PRL 78, 2920 (1997)

Odd-even parity levels: energy differences

E [MeV E2 E2 **E1** 13 12+ 2.0 11 10^{+} 9 8⁺-1.0 5 4^+ 220Rn

J.F.Cocks, P.A.Butler et al., PRL 78, 2920 (1997)

UNIVERSITY OF THE

Odd-even parity levels: energy differences

E E2 [MeV E2 **E1** 13 12^{+,} 2.0 11 10⁺-9 8^{+.} 1.0 6 5 3 4^+ 220Rn 0

J.F.Cocks, P.A.Butler et al., PRL 78, 2920 (1997)

UNIVERSITY OF THE

Production of ISOL-Radioactive Ion Beams

Physical processes

²³⁸U binding energy: 1.8 GeV

- **1.** Spallation \Rightarrow heavy nucleus
- **2.** Fission \Rightarrow medium mass nucleus
- 3. Fragmentation \Rightarrow light nucleus

Target Outline

UNIVERSITY OF THE

ISOLDE @ CERN

ISOLDE @ CERN

ISOLDE @ CERN

UNIVERSITY OF THE WEST of SCOTLAND

199191