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Why measure (v, n) cross sections?

* (y,n) c.s. measurement required by nuclear astrophysics in order to explain
the nucleosynthesis of elements;
* (y,n) reactions a very powerful tool for:
* Study and parameterization of the y-ray strength functions;
* Level densities studies.
* (y,n) reactions can be used to obtain (n,y) c.s. using detailed balance
theorem, useful for applications, IV-th generation of reactors, ADS etc.

O(n,y) for radioactive nuclei along the line of B stability in the medium-
to heavy-mass region

Nuclear astrophysics - determine the s-process path at
the (n,y) /B decay branching points

Nuclear engineering - nuclear transmutation of long-lived
fission products




Neutron capture

- < “— — <« 51N [ 153
Sm (| 143 ) 144 | 145 “1;‘;'0 21)47 148 | 149 | 150(| oo | 152(| yg34/) 154
875m ) 340d \(1.03 10%yr > > > > > >

We performed a systematic measurement of photoneutron cross sections for stable Sm
isotopes in the vicinity of four radioactive Sm nuclei. The radioactive Sm nuclei belong to
the second peak of fission products centered around A ~ 140 in the fission of nuclear
fuels, 23°U and 23°Pu. *1Smis a (n,y) / 8 decay branching point in the s-process
nucleosynthesis.

The photoneutron emissions studied constitute a part of the reaction network of the p-
process nucleosynthesis in which photodisintegration plays a primary role in re-
processing the preexisting nuclei produced by the s-process and r-process.

Photoneutron cross sections for two odd-N nuclei, 4’Sm and 149Sm, are measured for

the first time. Those for 144Sm represent the destruction cross section for the p-process
nucleus.



Laser Compton Scattering (LCS) gamma ray sources

The y ray beams are produced by the inverse Compton scattering of laser
photons from relativistic electrons.
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Laser Compton Scattering (LCS) gamma ray sources

Main collimator aperture variation
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Experimental facility NewSUBARU — GACKO

Laser photons are scattered from relativistic electrons circulating inside the storage
ring of the synchrotron radiation facility NewSUBARU.
A linear accelerator injects 974 MeV electrons into the storage ring.

E

electrons

=(0.5-1.5) GeV.

Electron beam intensity —

up to 500 mA
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Experimental facility NewSUBARU — GACKO

Electron energy:

We performed an electron energy calibration experiment before the Sm(y, n) measurements.

1. We produced low-energy (0.5-1.7
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Unfortunately LCS gamma sources are produced by
NOT-Ideal Electron & Laser beams

Laser modeling: hyperbolic _ Electron and laser beam shape in the
dependence along the beam axis interaction region along straight beamline
in the NewSUBARU e~ storage ring
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Dependence of Electron & Laser profile + space phase
along the straight beamline of NewSUBARU e~ ring
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Real Electron & Laser beam parameters (non-head on collision)
Main collimator aperture variation
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Real beam — dependence on the electron beam focus
Electron Horz. focus variation
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LCS y—ray beam energy profile measurements

Large volume LaBr3(Ce) detector 4 x 4 inch;
Before and after each measurement single
photon spectra was measured at low laser
power;

Incident LCS y-ray spectra were obtained by
reproducing with Geant4 simulations the
LaBr;(Ce) spectra.
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Simulation of Laser photon — relativistic electron interaction

* A complex simulation code of the interaction between the laser photons and the relativistic
electrons was developed to analyze the energy spectra of the incident LCS y-ray beam, which
was measured with a LaBr; detector.

e Using Geant4, the simulations previously used to reproduce the LaBr; detector response were
improved by generating the interaction between the laser photons and the relativistic electrons
considering the electron beam size and emittance.

* The code was tested against experimental data produced at the NewSUBARU facility.
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Photoneutron cross sections

EMax Nn
General formula: /Sn n"/(E’Y)J(E’Y)dE'y — NtN,},feng
E)ilgstg?r:erf\:onochromatic o "(E,) = - -
NtN'}/geng

approximations.

Second step:

Take into account the measured energy distribution of the y- ray beam. Apply
an iterative fitting procedure using the Taylor expansion of the integral above
to obtain the non-monochromatic cross sections.
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Neutron counting

- 41 high efficiency neutron detector

- 20 3He proportional counters arranged in 3 concentric

rings, embedded in a parallelepiped polyethylene Temporal macrostructure of y beam
moderator (36x36x50 cm) covered with polyethylene used in order to measure neutron

plates with cadmium sheets towards interior; background
- Efficiency of neutron detector obtained with ring-ratio 80ms 80ms 80 ms
technique J on H on H on L
20ms  20ms
off off

Neutron efficiency obtained with MCNP simulation

80 —
—Total 1
——Ring 3 (8 *He counters at 10.0 cm)
——Ring 2 {8 *He counters at 7.0 cm)
—Ring 1 (4 *He counters at 3.8 cm) |

70 H

B0

50+

40

Efficiency [%]

30 H
20 4

104

0 T T T T T T T T T T T T
=




Counts /10 keV

Incident LCS y-ray beam flux measurement

Large volume Nal(Tl) detector 20 cm diameter x 30 cm length was used,;

Pile-up spectra was acquired in beam at full laser power;

Before and after each measurement single photon spectra was measured at low laser power;
Total number of photons was obtained as weighting average of the pile-up spectra using single
photon spectra as weighting function;

Beam flux varied between 1 X 10° and 6 x 10%for electron current drop from 170 to 60 mA during
8 hours.
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Preliminary results
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Preliminary results
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ELI-NP Status

December 2012: Tenders for civil construction and major instrumentation
May 2013: Earth breaking
Civil construction of the ELI-NP complex (2013 — 2015)
July 2013: Laser-Beam System (LBS) contract signed
Construction of the 2 x 10 PW Lasers (2013 — 2017)
March 2014. Gamma-Beam System (GBS) contract signed
Construction of 200 keV — 20 MeV gamma-beam system (2104 — 2018)

April 2013: Science Division of ELI-NP was established
Definition and preparation of experimental TDRs (due in early 2015)

2015: Tenders for experimental instrumentation
2017: Commissioning experiments
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Buildings — one contractor, 33000 m? total 1 205201 4
* Experimental area building

« Office building
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ELI-NP Gamma Beam System:
the Italy-France-United Kingdom proposal
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European Collaboration for
the proposal of the gamma-

ray source.
vltaly: INFN,Sapienza
v'France: IN2P3, Univ. Paris Sud
v'UK: ASTeC/STFC
~ 80 collaborators elaborating
the CDR/TDR
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GBS — Gamma beam parameters
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TDR on physics above the neutron threshold

« Studies of GDR and PDR decay
« Studies of spin-flip M1 resonances

* (Y, n) cross section measurements, e.g.
P process related measurement
— the 38La(y,n) 3’La reaction,
— the 180mTa(y,n)1"®Ta reaction.

20 3He n counters

Instrumentation:
() LaBr;(Ce) array,
(i) Fast-neutron detector array

. — 62 n det. (20cm x 5cm) +
(i) NE213 liquid scintillator array 34 (x2) LaBr, det. (3 x 3 inch)

el
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Conclusions

Photoneutron cross section measurements were performed for all the
stable Sm isotopes using y-ray beams produced by the inverse Compton
scattering of laser photons on relativistic electrons.

o Due to the high energy resolution of this new gamma ray source, we
investigated the cross sections of (y,n) reactions with a lower degree of
uncertainty and also at energies much closer to the neutron emission threshold
compared to the previous experiments.

Data reduction
v Obtain the monochromatic cross sections.

» Obtain the incident LCS y-ray spectra for each measurement point.

» We have developed a new Geant4 simulation code of the interaction between the
laser photons and the relativistic electrons. The collision parameters are generated
considering the emittance of the electron beam and the spacial distribution of the
laser beam with physical constraints between these two input parameters.

» Obtain the non-monochromatic cross sections.
Perform photoneutron cross section calculations for all stable Sm isotopes
and use the experimental values to constrain the ySF.
Test the adopted ySF by reproducing experimentally known reverse (n, y)
cross sections, both for the stable Sm isotopes and for the unstable >Sm.
Predict (n, y) cross sections for the radioactive 143146.153Sm isotopes.
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