

Experimental neutron capture data of ⁵⁸Ni from the CERN n₋TOF facility

Petar Žugec

Department of Physics, Faculty of Science, University of Zagreb

25. August 2014.

Overview

- - Motivation
 - n_TOF facility
 - Measurements and simulations
 - Final results

• fundamental research in nuclear physics

- · astrophysical implications
 - modeling the stellar nucleosynthesis (s-process)
- technological concerns
 - ⁵⁸Ni as a constituent material in nuclear technologies

n_TOF facility: neutron production

Spallation target:

• Pb block (1.3 t)

Proton source:

- PS (Proton Synchrotron) accelerator
- proton energy: 20 GeV
- pulse mode: $\Delta t = n \cdot (1.2 \text{ s})$
- $7 \cdot 10^{12}$ protons per pulse
- every proton \rightarrow 300 neutrons

Moderation:

- Pb block + layer of (borated) water
- $E_n = 10 \text{ meV} 10 \text{ GeV}$

C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)

R. Plag et al., Nucl. Instrum. Methods A 496, 425 (2003)

Time of flight technique

$$E_n = m_n c^2 \left(\frac{1}{\sqrt{1 - \left(\frac{L}{c\Delta t}\right)^2}} - 1 \right)$$

Goals and challenges

- **Goals:** to calculate the capture yield
 - to extract the cross section

- **Challenges:** detection efficiency
 - scattered neutrons

Efficiency for detecting a cascade C by a detector of **low** detection efficiency:

$$\varepsilon_{\rm C} \approx \sum_{i} \varepsilon_i^{({\rm C})}$$

If $\varepsilon_i^{(\mathrm{C})} \propto E_i^{(\mathrm{C})}$ then:

$$\varepsilon_{\mathrm{C}} \propto \sum_{i} E_{i}^{(\mathrm{C})} = E_{\mathrm{tot}}$$

where:

$$E_{\text{tot}} = S_n + E^* \neq f(C)$$

$$\sum_{i} \left[\int W(E') R(j; E') dE' - \alpha E_{\gamma}(j) \right]^{2} = \min.$$

Weighted counts

GEANT4 simulation of the neutron background

Žugec et al., Nucl. Instrum. Methods A 760, 57 (2014)

γ -ray cascades (197 Au case)

. P. Žugec et al., Nucl. Instrum. Methods A 760, 57 (2014)

Zugec et al., Nucl. Instrum. Methods A 760, 57 (2014)

$^{58}\mathrm{Ni}$ capture yield

Resolved resonance region (<122 keV; SAMMY)

Unresolved resonance region (>122 keV; SESH)

Maxwellian averaged cross sections (MACS)

Maxwellian averaged cross sections (MACS)

12% lower MACS at 30 keV 60% more 58 Ni in $25M_{\odot}$ stars

Žugec et al., Phys. Rev. C 89, 014605 (2014)

Maxwellian averaged cross sections (MACS)

Žugec et al., Phys. Rev. C 89, 014605 (2014)

Thank you for listening!

