Comparing Electron and Neutron Compton Scattering technquies

<u>**R.** Moreh¹</u>, Y. Finkelstein², M. Vos³

¹Ben-Gurion University of the Negev (↓ ↓),Beer-Sheva, Israel ²Nuclear Research Center - Negev, Beer-Sheva, Israel ³Australian National University, Canberra, Australia

OUTLINE OF TALK

 \Rightarrow What is Electron Compton Scattering (ECS)? \Rightarrow Using ECS for measuring atomic kinetic energies In samples of water (H_2O) and Ammonia (NH_3) \Rightarrow Analogy with Neutron Compton scattering (NCS) Testing Anomalous n-H scattering intensities: ~ 30% deficiency was reported by NCS Cooper, Hitchcock, et al, PRL100, 043204 (2008). Chatzidimitriou-Dreismann, Vos, et al, PRL 91, 57403 (2003). Searching for similar deficiency Using ES in H_2O and H_2+D_2

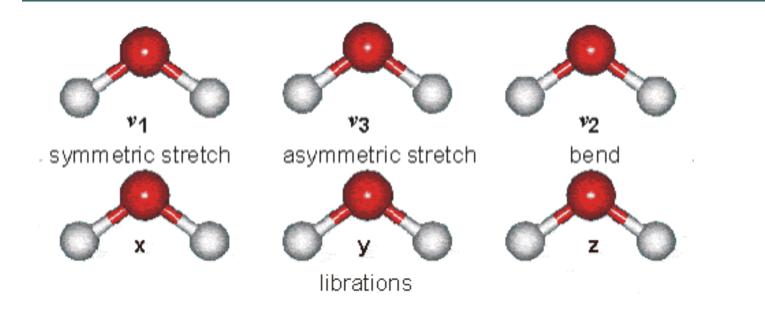
Why Use electron scattering? Electron scat can simulate Neutron scattering Impulse Approximation

Energy conditions:At $E_n \sim 10-200 \text{ eV}$, N's scatter from bound atoms as if atoms were free: Neutron Compton Scat (NCS). De Broglie $\lambda_n = 0.09-0.02 \text{ Å} << \text{molecular dimensions}$

Electron Compton Scat (ECS). At $E_e \sim 1 - 30 \text{ keV}$, $\lambda_e \sim 0.38\text{\AA} - 0.07\text{\AA} < d(H_2O) \sim 3.0 \text{\AA}$ Electrons scatter from bound atoms as if atoms were free:

Measuring atomic Kinetic Energies

Scatt Electr from stationary atoms have well defined $E_e(\theta)$ Scatt Electr from moving atoms are **Doppler broadened Broadening**: Δ_D provides **atomic Kinetic Energy (Ke)** and also **Zero point Ke (ZPKE)**. **In exactly the same manner as in Neutron Scattering**


Measuring Ke of H, O atoms in e.g. Water (H₂O)

 \Rightarrow Scattering is from free atoms in the molecule. (Incident energy $E_e >> E_b$ (atomic binding of molecule) **Kinematics of ECS process**: m_e << M_a ~ M_n For $E_e \sim 4$ keV, at $\theta = 135^\circ$, Recoil energy: $R_e(H) = E_e^2/2M_pc^2 \sim 4 \text{ eV}$, $R_e(O) = R_e/16 \sim 0.25 \text{ eV}$. A high resolution e-spectrometer is required to measure ΔR_{e} e-scattering from stationary atom: e-line: E_{θ} is narrow from a moving atom: E_{θ} is Doppler broadened The broadening provides Ke(H) and Ke(O) in H₂O

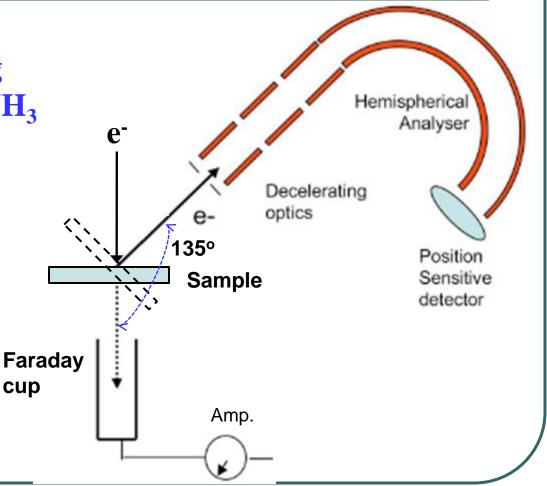
What is: Atomic kinetic energy & Zero-point (ZP) KE' of atoms in a molecule (H₂O): Ke(H), Ke(O) ?

How to calculate Ke and ZPKe: **Consider all molecular modes of motion: Translation, Rotation, Internal Vibrations** Calculate kinetic energy of **H**, **O** atoms in each mode, then sum up over all contributions. **Free molecule: Translation has no ZP motion Rotation has no ZP motion Internal Vibrations:** Represented by Harm Oscillators **High ZP motion**

Illustration of H-Motion in WATER (H_2O) Vibration: Stretching $(v_1 + v_3)$ + Bending v_2 + Kinetic + Rot-Libration

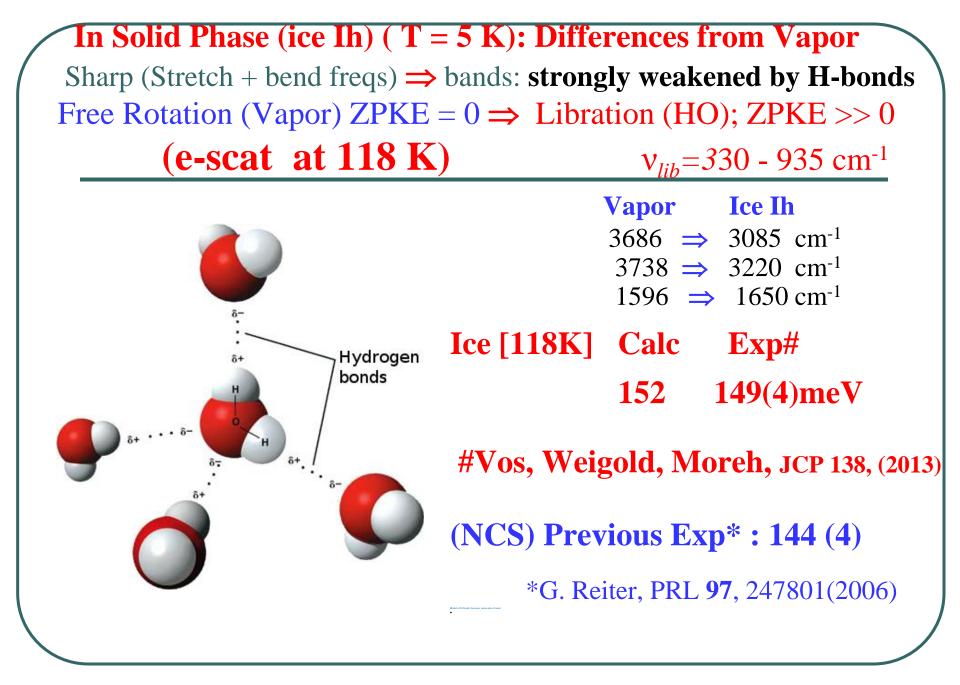
All oscillations (librations) contain Zero-point Energy NO Zero-point Energy in Free Rotations KE of each **H-atom** in Isolated H₂O (Vapor phase) Exp v_j (cm⁻¹) Vapor = 3686 3738 1596 Important: H₂O Freely rotates in Vapor

 $S_T = 1/18 = KE$ fraction of each H-atom in translation (classical), $S_R = 0.475 = KE$ fraction of each H-atom in rotation (classical) $S_j = KE$ fraction of each H-atom in jth internal mode of vibration Sj calculated Using methods of IR spectroscopy values of v_1, v_2, v_3 are taken from experiment

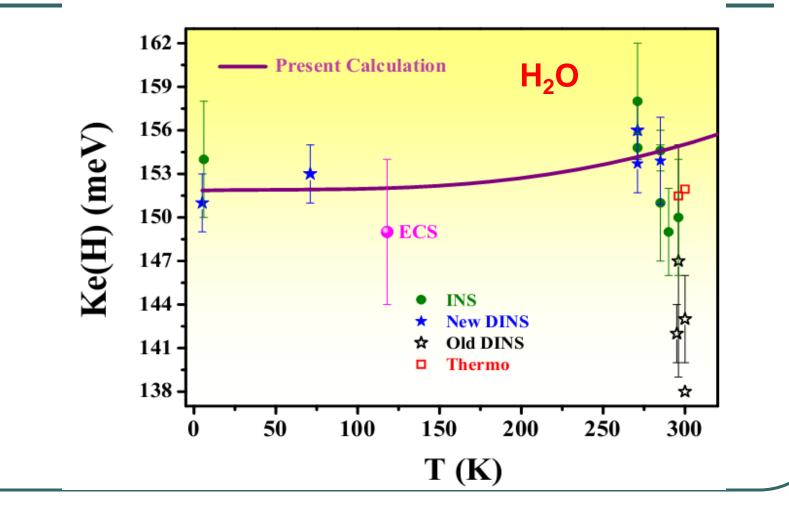

Calculated Results of S_i and Ke [Isolated molecules – Vapor] $v_i(cm^{-1}) = 3686 \quad 3738$ 1596 Vapor $S_i = 0.467 \quad 0.477 \quad 0.464$ This method of calculation is called Semi-empirical (SE) using Exp Infra red **And Frequencies**

Present SE calculation - successful in vapor phase: Super crit phase-High T (P = 65, 120, 1060 bar) # H-bonds: n ~ 1.5 **Neutron scattering measurements of atomic Kinetic energies**

T(K)	K _e (H) [meV]			
	Exp*	Calc	Classical (3k	(T/2)
523	169±5	168	68	
573	172 ± 3	172	74	
673	178±4	179	87	
* C. Pantalei, et al., PRL 100, 177801 (2008)				
Conclusion: Present calculations produce Excellent agreement with Neutron-scattering Experiment (Vapor)				

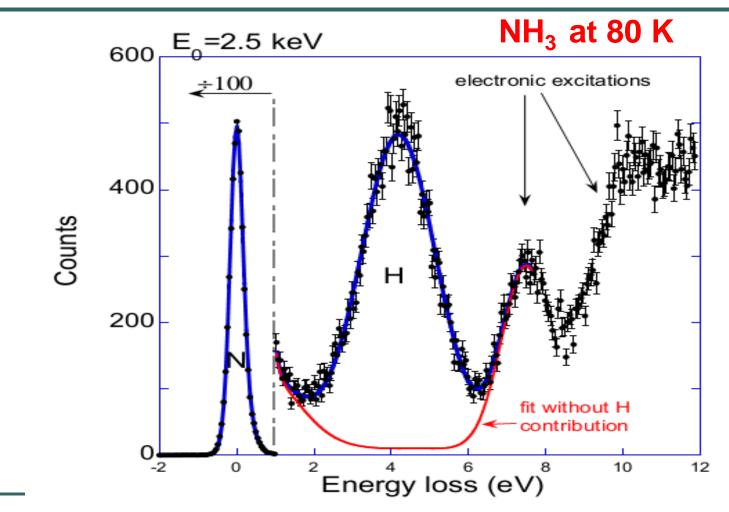

Experimental System: Energy Loss spectrometer Vos, Went: PRB 74 (2006) 205407 Aust Nat Univ

- Incident e-beam: 1-6 keV Scattered elect's: 135 deg Sample: H₂O (ice), HD, NH₃
- Detector
- High Resolution spectrometer
- **σ ~ 0.2 eV**

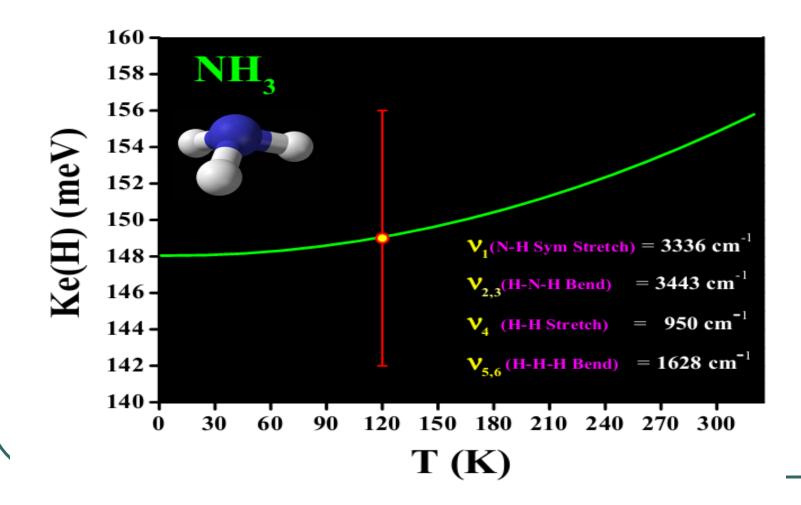


Incident e-Energy: 2 keV; H_2O vapor sample, $\theta = 135^{\circ}$, Classical kinematics: $\Delta E_r(O \text{ to } H) = 3.49 \text{ eV}$ Recoil: $E_{rH} = q^2/2M_H = 3.72 \text{ eV}$, $E_{rO} = 0.233 \text{ eV}$

Signal-BKG $1.5 \, 10^5$ Vos, Weigold, Moreh $\times 100$ JCP138 (2013) 044307 Fit σ = Sigma ~ Peak width Fit ×100 $E_e = kin energy$ E_e= 2 keV 1 10⁵ $\sigma = (4E_r E_e/3)^{0.5}$ Sounts Vapor $\sigma_{\rm H} > \sigma_{\rm O}$ H₂O Width caused by internal н $5\,10^4$ vibrations in **H**₂**O**: Moreh, Nemirovsky: **JCP 130 (2009)** -2 8 6 Energy Loss (eV)



Calculated Ke(H) in H_2O (note continuity S-L-Gas) Major part of Ke(H) is ZP motion 151 meV vs 154 meV (290K ECS (Exp) : 149 ± 5 meV (at T=118 K)



e-scattered spectrum solid NH₃ sample at 80 K. $\theta = 135^{\circ}$. $\Delta E_r(N \text{ to } H) = 4.17 \text{ eV vs } 4.36 \text{ eV}$ Recoil: $E_{rH} = q^2/2M_H$

Doppler Broadening of H much higher than N (Vos measurement)

Calculated Ke(H) in NH₃ (note continuity S-L-Gas) Major part of Ke(H) is ZP motion 148 meV vs 150 meV (vapor) Prelim ECS (Vos Exp) : 149 ± 7 meV

Anomalous n-H scattering Intensities Neutron experiments Reported ~ 30% Lower n-H Scattering intensity compared to n-D in H₂O/D₂O and to n-C in CH₂ **Neutron Scattering xsections** $\sigma(n-H) = \sigma(n-D)$ **σ(n-C)** σ**(n-O)** 82.2 b 7.64 b 4.23b 5.51b $\sigma(n-H)/\sigma(n-D) = 10.7$ $\sigma(n-H)/\sigma(n-O) = 19.4$ Measured $\sigma(n-H)/\sigma(n-D) \sim 8.5 (\sim 30\% \text{ less})$ Test with **Electron** scattering: governed by Rutherford Z^2 relation. Hence, one expects: Z(H)=Z(D)=1, $Z(O)=8 \Rightarrow$ σ(e-H)/σ(e-O) = 1/64 $\sigma(e-H)/\sigma(e-D) = 1.0$ PRL100, 043204 (2008); PRL 91, 57403 (2003).

Testing anomalous n-H Scattering Intensities Using e-H scattering

Initial ECS results* at ~ 30 keV using (CH₂)_n sample: Reported Similar anomalies to n-H measurements i.e. instead of $\sigma(e-H_2)/\sigma(e-C) = 2/36 = 1/18$ of the Z²- relation they obtained $\sigma(e-H_2)/\sigma(e-C) = 1/23 = 0.7R$ (Rutherford) **Explanation: interaction of e⁻ with 2 Quantum Entangled** (QE) protons in CH₂: **Real Reason:** Radiation Damage: Desorbing H & Depositing C \Rightarrow H/C ratio decreased \Rightarrow Missing H-intensity *Chatzidimitriou-Dreismann et al: PRL 91(2003) 057403.

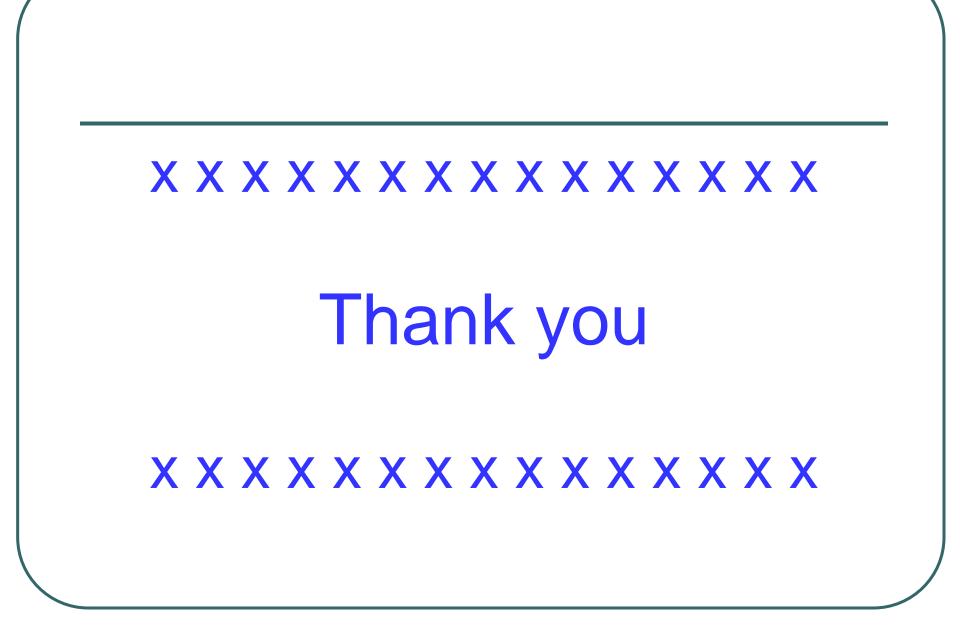
Testing n-H Anomalies Using Electron Compton Scattering on H₂O

Refined ECS measurements: on H_2O / D_2O samples At T = 118 K (ice), $E_e = 1-6$ keV we measured the ratios of scattering intensities from H, O in H_2O and D, O in D_2O H_2O : $\sigma(e-H_2)/\sigma(e-O) = R_1$; D_2O : $\sigma(e-D_2)/\sigma(e-O) = R_2$ We found $R_1 = R_2 \implies$ No anomaly

• Vos, Weigold, Moreh, JCP **138** (2013) 044307.

Scattering Anomaly Using Electrons: Deviation from Rutherford Scattering

Large deviation of electron-proton scattering from Rutherford's formula was reported when the ratio I_H/I_D of a gas mixture H_2+D_2 and pure HD were compared **Pure gas: HD** : $I_H/I_D=1=R$ **Gas mixture: H_2+D_2: I_H/I_D=0.70 R \Rightarrow 30\% deficiency** Referred to a spin effect.


*Cooper et al: PRL 100 (2008) 043204.

Explanation of e-scattering Intensity Ratio I_H/I_D in H₂+D₂ mixture

In thermal Equilibrium: H₂ and D₂ Velocities are Different $V_{H2} = V_{D2} \sqrt{(M_D/M_H)} = V_{D2} * \sqrt{2}$ (Vos) \Rightarrow The heavier mass spends more time in interaction region with the e-beam \Rightarrow **I**_D stronger than **I**_H \Rightarrow **I**_D = $\sqrt{2*I_H}$ \Rightarrow **I**_H/**I**_D = **0.69** \Rightarrow **Good agreement** with Measurement of Cooper et al: PRL 100 (2008): $I_{\rm H}/I_{\rm D} = 0.70 \pm 0.03 \Longrightarrow$ No deviation from R. Moreh & Nemirovsky: JCP 131 (2009)

CONCLUSIONS Using ECS : Comparison to NCS

- 1) e-scattering important New tool for measuring Ke(H)& Zero-point kinetic energies: Major part of atomic Ke **in light molecules**
- 2) Similarity to Neutron Compton Scat- Measured same Ke valuesSame Doppler broadening was measured by NCS and ECS
- 3) In H₂O, Ke(H)=149 meV agree with ~ 152 meV at T = 0 300 K.
- 4) **SE Calculations** (assuming harmonic model+ decoupling of motions) produces Good agreement with Experiment
- 4) Puzzling anomalies reported using NCS were not reproduced using ECS. Great advantage in using ECS.

