¹²⁴XE(N,γ)¹²⁵XE AND ¹²⁴XE(N,2N)¹²³XE MEASUREMENTS FOR NATIONAL IGNITION FACILITY

Megha Bhike Werner Tornow (Duke University and TUNL)

Nurin Ludin (REU student, University of Denver)

FUSION ENERGY RESEARCH AT NATIONAL IGNITION FACILITY (NIF)

- Efforts are underway at LLNL to accurately measure neutron energy distribution obtained in DT shots
- NIF irradiates a small D-T capsule inside a cryogenically cooled hohlraum with 192 laser beams
- Peak Power ~500 TW and up to 1.85 MJ of UV light deposited

> Radius of the capsule = $200-400 \ \mu m$

Based on simulations $\leq 10^{15}$ dopant atoms can be loaded without interfering the implosion performance (C. Cerjan, LLNL-TR-472595)

Schematic of D-T capsule

RADIOCHEMICAL APPARATUS FOR GASEOUS SAMPLES (RAGS)

➢RAGS designed for collection and analysis of gaseous samples produced during ignition following a NIF shot

After collection, the activated products counted via gamma spectroscopy
 Noble gases are suitable dopants

124 Xe for fuel density (ρR) diagnostics

>In the presence of DT neutrons 124 Xe undergoes both (n, γ) and (n,2n) reactions

➢In case of neutron induced reactions, collection efficiency cancels out

>Isotopic ratio 125 Xe/ 123 Xe ratio related to areal density ρR of the fuel.

≻to benchmark the capsule performance

¹²⁴Xe reactions

Probes primary down scattered low energy neutrons

 $^{124}Xe + n \rightarrow ^{125}Xe + \gamma$ No threshold

Probes primary 14 MeV DT neutrons

 124 Xe + n \rightarrow 123 Xe + 2n E_{th} = 10.569 MeV

PRESENT STATUS OF $^{124}Xe(N,\gamma)$ CROSS SECTION DATA

A NIF shot on a 2.1 mm diameter spherical glass shell filled with a 1:1 DT mixture and a small amount of ¹²⁴Xe was performed in February 2012 for commissioning of the RAGS

*M. Bhike et al., PRC 89, 031602(R) (2014)

Obtaining new data is an important step to interpret the activation measurements at NIF

PRESENT STATUS OF ¹²⁴XE(N,2N)¹²³XE CROSS SECTION DATA

A NIF shot on a 2.1 mm diameter spherical glass shell filled with a 1:1 mixture and a small amount of ¹²⁴Xe was performed in February 2012 for commissioning of RAGS system

ACTIVATION MEASUREMENTS @ TUNL

0.37 -3.8 <mark>(n,γ)</mark>
4.5-7.3 (n,γ) 11.3-14.5 (n,2n)
14.8 (n,2n)

TOF

 \succ Ip/d = 1.5 – 3.5 µA $\flat \phi_n = 10^7 \text{ n/cm}^2/\text{s}$

10 MV accelerator at TUNL

¹²⁴XE TARGET

> Xenon gas target

contained in a stainless steel sphere of inner diameter 20 mm and wall thickness of 0.6 mm enriched to 99.9% in $^{124}\rm Xe$ mass = 2.697 g

- pressurized to 120 atm
- \succ Can be recycled
- In and Au monitor foils for flux measurement diameter 20 mm and thickness 0.1 mm attached upstream and downstream faces of the sphere for neutron fluence determination
- Identical empty sphere used to check contamination in the energy region of interest

EXPERIMENTAL SETUP FOR (N,γ) MEASUREMENTS

Neutron source	E _n (MeV)	Monitor Reaction
³ H(p,n) ³ He	0.37	¹¹⁵ In(n,γ) ^{116m1} In
	0.86, 1.86 2.73, 3.65	¹¹⁵ In(n,n') ^{115m} In
² H(d,n) ³ He	$\begin{array}{c} 4.48, 5.31 \\ 6.31, 7.25 \end{array}$	¹¹⁵ In(n,n') ^{115m} In

➢ ³H(p,n)³He-PT

2.1 Ci tritium loaded into a 2.2 mg/cm² of Ti of 16 mm diameter evaporated on a 0.4 mm thick Cu backing separated from by a 6.5 μ m havar foil from accelerator vacuum

\geq ²H(d,n)³He-DD

3~cm long gas cell pressurized to 3~atm of deuterium gas separated by a $6.5~\mu m$ havar foil from accelerator vacuum

Distance between target and sphere = 10 mm

Tritiated target schematic

TIME OF FLIGHT AND ENERGY SPECTRA

Liquid scintillator-based neutron detector

(Bicron 501A, 1.5"x1.5") positioned at 3 m from neutron production target

- Incident beam pulsed at 2.5 MHz with overall time resolution 2.5 ns
- Monitoring of neutron flux
- Determination of mean neutron energy and its spread

Schematic of experimental setup

TOF and Energy spectra for En = 14.8 MeV

Off-line $\gamma\text{-}RAY$ counting with HPGe detectors

TUNL's low background counting facility

γ RAY SIGNATURE FROM ¹²⁴XE(N, γ)¹²⁵XE REACTION

AUXILIARY MEASUREMENTS $-{}^{3}H(P,N){}^{3}HE$ REACTION

> For Ep > 2.8 MeV i.e. $E_n > 2$ MeV 8000 **Tritiated target** primary neutrons from ${}^{3}H(p,n){}^{3}He$ Untritiated target accompanied by low-energy neutrons 6000 from (p,n) reactions on tritium target 188.4 keV Counts/channel backing (Cu and Ti) 243.4 keV > Auxiliary measurements performed 4000 with an untritiated but identical target Two individual measurements are 2000 normalized to the accumulated proton charge (BCI)

180

200

220

Neutron Energy (MeV)

240

Correction factors for background neutrons for ³H(p, n)³He reaction

E _n (MeV)	C _{In} (%)	C _{Xe} (%)
2.73	13.55	16.36
3.6	18.73	27.94

AUXILIARY MEASUREMENTS $-{}^{2}H(D,N){}^{3}He$ REACTION

 $Q = (^{2}H + d - ^{3}He - n) = +3.3 MeV$

The deuteron break up on beam line components has Q = -2.2 MeV

Implies the break up neutrons come at ~ 5.5 MeV less than the neutron energy

➢Any Energy Higher than 5.5 MeV therefore <u>HAS</u> breakup neutrons

≻Auxiliary measurements performed with the deuterium gas pumped out.

≻Two individual measurements are normalized to the accumulated deuteron beam charge (BCI)

Correction factors for background neutrons from ²H(d, n)³He reaction

E _n (MeV)	C _{In} (%)	C_{Xe}(%)
5.31	1.58	0.9
6.33	2.02	10.02
7.25	5.99	37.23

With the experimental facility at TUNL, ($n,\gamma)$ measurements between 8 and 14 MeV are not possible

EXPERIMENTAL SETUP FOR (N,2N) MEASUREMENTS

Schematic for (n, 2n) measurements

\geq ²H(d,n)³He -DD

3~cm long gas cell pressurized to ~3~atm of deuterium gas separated from accelerator vacuum by a $6.5~\mu m$ havar foil

\succ ³H(d,n)⁴He −DT

2.1 Ci loaded into a $2.2~mg/cm^2$ of titanium of 16 mm diameter evaporated on a 0.4 mm thick copper backing separated from vacuum by $6.5~\mu m$ havar foil

γ RAY SIGNATURE FROM ¹²⁴XE(N,2N)¹²³XE REACTION

NEUTRON FLUX AND CROSS SECTION CALCULATION

 $\sigma = \frac{A\lambda}{N\epsilon\phi I_{\gamma}(1-e^{-\lambda t_{irr}})e^{-\lambda t_d}(1-e^{-\lambda t_c})}$

- A = total yield in the photo peak
- $\gamma = \text{decay constant}$
- N = no of target nuclei
- $\epsilon = Efficiency$
- ϕ = Neutron flux
- I_{γ} = Emission probability
- tirr = Irradiation time
- $t_d = delay time$
- tc = counting time

PRELIMINARY RESULTS FROM $^{124}Xe(N,\gamma)^{125}Xe$ measurements at TUNL

□ None of the evaluations are in agreement with the experimental data

order of magnitude is well predicted

PRELIMINARY RESULTS FROM ¹²⁴XE(N,2N)¹²³XE MEASUREMENTS

□ TUNL data follows the predicted energy dependence but slightly lower in magnitude than the ENDF/B-VII.1 evaluation.

□ Our data at 14 MeV slightly below the data of Sigg et al and Kondaiah et al.

SUMMARY

 \Box ¹²⁴Xe(n, γ)¹²⁵Xe cross section has been measured between 0.3 and 7.25 MeV and ¹²⁴Xe(n,2n)¹²³Xe cross section data has been obtained from threshold to 14.8 MeV

□Present work provides for the first time an accurate basis for interpreting measurements of the ¹²⁵Xe/¹²³Xe intensity ratio performed at NIF in laser shots on ¹²⁴Xe loaded DT capsules.

 \square The extracted information on ρR of the inertial confinement of fusion plasma will help to make substantial progress towards break-even goal at NIF

REACTION RATE AT TUNL AND NIF FOR $^{124}Xe(N,\gamma)^{125}Xe$

Parameter	TUNL	NIF
Activation time	$1.8 \ge 10^4 = s$	~10 ⁻⁹ s
Decay time	1 min	1 min
Measurement time	1 min - hours	min - hours
Sample mass	$2.7~{ m g}~(1.3{ m x}10^{22}{ m atoms})$	\sim 1µg (10 ¹⁵ atoms)
Neutron flux	7x10 ⁶ n/cm ² /s	$10^{14} \mathrm{~n/ns}$
Neutron fluence	$1.3\mathrm{x}10^{11}\mathrm{n/cm^2}$	$1\mathrm{x}10^{18}\mathrm{n/cm^2}$
Fluence x sample mass	$1.7 \mathrm{~x~} 10^{33} \mathrm{~n/cm^2} \mathrm{~g}$	$1 \ge 10^{33} \ \mathrm{n/cm^2g}$