Vitae of Astrid Barkleit

Scientific career

  • since 2000:
    Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, scientific staff member
  • 2007-2014:
    Technische Universität Dresden, Radiochemistry Division, research associate
  • 2000-2004:
    Universität Rostock, postgraduate studies in Environmental Protection, Diploma in Life Sciences
  • 1999-2000:
    Leibniz Institute for New Materials Saarbrücken, research associate
  • 1999:
    Universität des Saarlandes Saarbrücken, Institute of Inorganic Chemistry, PhD thesis: "Synthesis and Investigations of Structure and Reactivity of Metalchelatkomplexes of Tridentate Disilazane Ligands"
  • 1996-1998:
    Universität des Saarlandes, Institute of Inorganic Chemistry, research associate
  • 1989-1996:
    Georg-August-Universität Göttingen, Universität des Saarlandes, Diploma in Chemistry

Research experience

  • Actinide speciation in biosystems and in aqueous solutions, namely U(VI), Cm(III), Am(III) and Eu(III)
  • Application of various spectroscopic techniques, in particular time-resolved laser-induced fluorescence spectroscopy (TRLFS)
  • Decommissioning of nuclear facilities: Determination of activities in components of nuclear power plants

Current projects

  • Joint project RADEKOR(1) - Speciation and transfer of radionuclides in the human organism especially taking into account decorporation agents.
    Project coordinator (BMBF, 02NUK057A, 2020-2024).

  • Joint project EMPRADO(2) - Development of a method for pre-activity and dose rate calculations of components in the reactor vicinity based on neutron fluence distributions
    (BMBF, FORKA, 15S9409A, 2018-2023).

Past projects

  • WERREBA(3) - Means for efficient decommissioning of reactor components and concrete shielding: Calculation of the activity inventory and their validation on drilling cores as well as mobility investigations of radionuclides
    (BMBF, FORKA, 15S9412, 2019-2022).
  • EU project INSIDER(4) - Improved nuclear site characterization for waste minimization in decommissioning and dismantling operations under constrained environment (Horizon 2020 EURATOM, 2017-2021).

  • TransAqua - Transfer of radionuclides in aquatic ecosystems. Subproject Biokinetic models: "Spectroscopic determination of the binding form (speciation) of trivalent actinides and lanthanides in biofluids of the human intestinal tract and in the blood" (KVSF, BMBF, 02NUK030F, 2012-2017)
  • Joint Project: Retention of repository-relevant radionuclides in natural clay rocks and in saline systems. Subproject: "Thermodynamics of the interaction of An(III)/Ln(III) with borate and organic repository-relevant ligands" (BMWi, 02E11021, 2011-2014)
  • Joint Project: Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Subproject: "Investigations of temperature dependence of complexation and sorption of trivalent actinides in the system actinid-NOM-natural clay rock-aquifer" (BMWi, 02E10417, 2007-2010)
  • Binding form of Cm(III) and Eu(III) in human body fluids (saliva, urine) (DFG, BE2234/10-1/2, 2007-2010)
  • The mobilization of actinides by microbial ligands taking into consideration the final storage of nuclear waste. Interactions of selected actinides with pyoverdins and related model compounds. (BMBF, 02E9985, 2005-2007)

Publications

2023

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

before 2007



URL of this article
https://www.hzdr.de/db/Cms?pOid=45366


Links of the content

(1) https://www.hzdr.de/db/Cms?pOid=61341&pNid=532
(2) https://www.hzdr.de/db/Cms?pOid=60980&pNid=532
(3) https://www.hzdr.de/db/Cms?pOid=60981&pNid=0
(4) http://insider-h2020.eu/
(5) https://doi.org/10.3390/molecules28145421
(6) https://doi.org/10.3390/molecules28124881
(7) https://doi.org/10.1016/j.tox.2021.152771
(8) https://doi.org/10.1016/j.ecoenv.2021.112887
(9) https://doi.org/10.1002/ejic.202000124
(10) https://doi.org/10.1021/acs.inorgchem.9b02921
(11) https://doi.org/10.1007/s00411-019-00823-z
(12) https://doi.org/10.1021/acs.inorgchem.8b03231
(13) https://doi.org/10.1016/j.ecoenv.2019.02.013
(14) https://doi.org/10.1039/C8CC09329F
(15) https://doi.org/10.1021/acs.chemrestox.8b00106
(16) https://www.schweizerbart.de/papers/zfg/detail/61/88259/Scale_dependent_soil_erosion_dynamics_in_a_fragile_loess_landscape
(17) https://doi.org/10.1016/j.jinorgbio.2017.07.020
(18) https://doi.org/10.1039/C6DT03726G
(19) https://doi.org/10.1038/srep33137
(20) https://doi.org/10.1039/C5DT04790K
(21) https://doi.org/10.1039/C5DT00213C
(22) https://doi.org/10.3390/molecules20069847
(23) https://doi.org/10.1021/tx5004084
(24) https://doi.org/10.1039/C4DT02555E
(25) https://doi.org/10.1371/journal.pone.0102447
(26) https://doi.org/10.1021/la501112a
(27) https://doi.org/10.1016/j.nimb.2014.02.041
(28) https://doi.org/10.1039/C4DT00843J
(29) https://doi.org/10.1039/C4DT00440J
(30) https://doi.org/10.1016/j.poly.2013.08.047
(31) https://doi.org/10.1016/j.ica.2012.09.014
(32) https://doi.org/10.1080/01490451.2012.688927
(33) https://doi.org/10.1039/C2DT31480K
(34) https://doi.org/10.1524/ract.2012.1921
(35) https://doi.org/10.1039/c1dt10546a
(36) https://doi.org/10.1021/ic102292j
(37) https://doi.org/10.1021/tx100273g
(38) https://doi.org/10.1016/j.saa.2010.09.003
(39) https://doi.org/10.1366/000370210792081127
(40) https://doi.org/10.1016/j.jinorgbio.2010.03.004
(41) https://doi.org/10.1039/B818702A
(42) https://doi.org/10.1016/j.ica.2008.06.016
(43) https://doi.org/10.1039/B715669C
(44) https://www.osapublishing.org/as/abstract.cfm?uri=as-62-7-798
(45) https://doi.org/10.1016/j.jinorgbio.2007.01.001
(46) https://doi.org/10.1524/ract.92.12.903.55114
(47) https://doi.org/10.1016/j.poly.2004.04.022
(48) https://doi.org/10.1524/ract.91.7.393.20017
(49) https://doi.org/10.1002/(SICI)1522-2675(19980909)81:9%3C1640::AID-HLCA1640%3E3.0.CO;2-I
(50) https://doi.org/10.1021/om971142d