The Interior of Giant Planets

Cyrill Milkau 01.12.15

Outline

- 1. What is a planet?
- 2. Nuclear fusion
- 3. Properties of Jupiter
- 4. Summary
- 5. Sources

1. What is a Planet?

- Definition by International Astronomical Union IAU
 - 1. orbits the sun
 - 2. has sufficient mass to be round, or nearly round
 - 3. not a satellite (moon) of another object
 - 4. has removed debris and small objects from the area around its orbit
- Others:
 - Dwarf planets
 - Extrasolar planets
 - Stars
 - Brown Dwarfes
 - Planetary Mass Object (PMO)

Jovian Planets

- Giant planets/ Gas planets

- are not composed entirely of gas
- Helium, hydrogen are main components
- higher amounts of methane and ammonia (Neptune, Uranus)
- high temperatures in the middle -> rocky core believed to be liquid heavy compounds (nickel)

Terrestrial Planets

http://nineplanets.org/tour/

image by Apollo 8 crew, NASA	image by Galileo spacecraft, NASA	image by Viking 1 spacecraft, NASA	image by Messanger spacecraft, NASA	 Earth like planets Solid planetary surface central core made mostly of iron density trends towards lower values as the distance from the Sun increases
relative to sunabsoluteequatorial diameter0.009 x Sunsurface gravity0.04 x Sunsurface temperature15°Crotation period23h 56msolar orbit period1 yearmean dist.from sun150 M Km	relative to earthabsoluteequatorial diameter0.95 x Earthsurface gravity0.9 x Earthsurface temperature462°Crotation period0.004 x fastersolar orbit period1.63 x fastermean dist.from sun0.72 x Earth	relative to earthabsoluteequatorial diameter0.53 x Earthsurface gravity0.38 x Earthtemperature - summer17°Ctemperature - winter-140°Crotation period1.03 x slowersolar orbit period1.88 x slowermean dist.from sun1.52 x Earth	relative to earthabsoluteequatorial diameter0.38 x Earthsurface gravity0.38 x Earthtemperature - day473°Ctemperature - night-183°Crotation period59 x slowersolar orbit period4.2 x fastermean dist.from sun0.39 x Earth	

2. Nuclear fusion

- Stars: Nuclear fusion process
 - Proton-proton reaction (\approx 27 MeV)
 - Carbon-Nitrogen-Oxygen Cycle (CNO-Cycle)
 - Mass of our Sun 1,9884 \cdot 10³⁰ kg ± 2 \cdot 10²⁶ kg
- not possible in Jupiter's interior -> Mass not large enough -> Temperature not getting high enough
- 12 MJ deuterium fusion possible
- 75 MJ hydrogen 1 fusion possible

3. Properties of Jupiter

https://www.youtube.com/watch?v=NkqXMztPWIU

- largest and heaviest of all planets (143.000 km radius, $M_J = 1,898 \cdot 10^{27} \text{ kg} = 318 * M_{\oplus}$)
- has at least 67 moons (including Ganymed, Callisto, Io and Europa)
- components (per volume):
 - hydrogen 89.8±2.0%
 - helium 10.2±2.0%
 - ethane (C₂H₆) 0.0006%
 - water (H₂O) 0.0004%
 - methane (CH4) $\approx 0.3\%$
 - ammonia (NH₃) $\approx 0.026\%$
 - hydrogen deuteride $\approx 0.003\%$

JUNO

- water in Jupiter's atmosphere

- measure composition, temperature, cloud motions and other properties
- map Jupiter's magnetic and gravity fields
- magnetosphere near the planet's poles (esp. at auroras)

Launch:

Deep Space Maneuvers: Earth flyby gravity assist: Jupiter arrival: Orbiting Jupiter: End of mission: August 5, 2011 August/September 2012 October 2013 July 2016 20 months (37 orbits) February 2018

http://www.nasa.gov/sites/default/files/images/492704main_junoartist2009 04-full_full.jpg

- Giant planets formation in protosolar nebula:
 - accretion of solid core
 - capture of surrounding gaseous hydrogen and helium
- 3 distinct regions:
 - rocky, icy core
 - fluid metallic hydrogen region
 - fluid molecular hydrogen region

https://www.youtube.com/watch?v=p1YjtEfUJ70

- Helium [Hydrogen] mass mixing ratio Y [X] -> Y/(X+Y) = 0.238 \pm 0.007 lower than in protosolar nebula (0.280. \pm 0.005)
- explained by first order liquid-liquid insulator-to-metal transition (LL-IMT) of hydrogen
- molecular and metallic hydrogen region quasi-homogeneous

http://www.lpi.usra.edu/education/explore/solar_system/images/interior.jpg

Tristan Guillot, "Interiors of Giant Planets Inside and Outside the Solar System," Science 286: 72-77, 1999, doi: 10.1126/science.286.5437.72.

Schematic phase diagram of hydrogen

http://mappingignorance.org/fx/media/2015/07/Figure2-kundson-z-machine-giant-planets-640x522.jpg

Gravitational field

- measuring changes in spacecraft velocities (velocity as a function of time often measured)
- Doppler shift of the radio signal
- density variations gives information about storms

Atmosphere

- storms are observed -> GRS
- heat generated inside (emits 2.5 times of the energy it receives from the sun –
 Kelvin-Helmholtz-mechanism)
- coming out as infrared or microwave energy (absorbed by water)

https://www.youtube.com/watch?v=layVZv6UE7 A&index=1&list=PL7QxvGn3bZ0mHbHn3_OYYC QTrxfk-zuFH

https://www.youtube.com/watch?v=_1Le_CRwiT8

Magnetic field

- moving ionized Hydrogen <u>and</u> fast self rotation (10h per rotation) causing the dynamo effect
- dynamo effect leads to magnetic dipole field
- equatorial field strength ≈ 428 μ T (4.28 G) [ten times stronger than the earths]
- Jupiter's Magnetosphere second largest structure in solar system

http://science.gsfc.nasa.gov/695/images/Picture1.jpg

Magnetic field self-excitation in the Riga dynamo experiment \perp

- Experiment by Agris Gailitis, Olgerts Lielausis, Ernests Platacis, Gunter Gerbeth, Frank Stefani in 2000
- Motivation: experimentally demonstrate a magnetic field self-excitation in a moving liquid

The Sandia Z Machine

https://nycnews.net/sites/default/files/field/image/Sandia-Z-machine-Age-Saturn.png

<u>General</u>

- Largest X-Ray generator in the world
- Test materials under condition of high temperature and pressure
- 80 Trillion Watts of electrical power (5-6 times than all power plants in world combined)
- 2 Billion Kelvin (15 Million in Sun)

Function

- intense electrical pulses (~20 million amperes) and
 large magnetic field densities (~10 million gauss)
- magnetic pressures of several hundred GPa
- reflectivity of a 532-nm laser light is measured using a spectrometer (450- to 650-nm bandwidth).
- increase in reflectivity of the deuterium samples

4. Summary

- Giant Planets contain a lot of hydrogen in different states
- are not massive enough to let nuclear fusion processes happen
- magnetic fields result from inner rotation of ionized hydrogen
- conditions can be reproduced on earth to verify either theoretical presumptions or experimental observations in space

5. Sources

Title	Link	Date	<u>Time</u>
Models and Outstanding Questions	http://arxiv.org/pdf/astro-ph/0502068v1.pdf	04.11.15	03:11
Inside and Outside the Solar System	https://www.sciencemag.org/content/286/5437/72.full.pdf	04.11.15	03:14
Models and Outstanding Questions PPT	https://solarsystem.nasa.gov/docs/28_guillot.ppt.pdf	04.11.15	03:19
The Sandia Z machine	http://mappingignorance.org/2015/07/10/the-sandia-z-machine-unveils-the-interior-of-gas-giant- planets/#note-2617-2	04.11.15	03:11
The Outer Planets	http://lasp.colorado.edu/education/outerplanets/giantplanets_interiors.php	04.11.15	03:13
Planets	http://www.space.com/25986-planet-definition.html	12.11.15	00:03
Planets	http://www.iau.org/news/pressreleases/detail/iau0603/	12.11.15	00:11
Jovian Planets	http://www.universetoday.com/33061/jovian-planets/	17.11.15	18:46
Terrestrial Planets	http://space-facts.com/terrestrial-planets/	17.11.15	18:57
Sandia Machine	https://share.sandia.gov/news/resources/releases/2006/physics-astron/hottest-z-output.html	17.11.15	20:02
JUNO Overview	http://www.nasa.gov/mission_pages/juno/overview/index.html	19.11.15	17:42
Dynamo	http://onlinelibrary.wiley.com/doi/10.1002/phbl.19760321003/pdf	26.11.15	02:33
Neptune	http://voyager.jpl.nasa.gov/science/neptune_magnetic.html	26.11.15	02:53