Porträt Dr. Kraus, Dominik; FWKH

Dr. Dominik Kraus
Helmholtz Young Investigator Group leader
High Energy Density
Phone: +49 351 260 - 3657

orangener PfeilMedia Response YIG Kraus

Shock formation of diamond and lonsdaleite from graphite: Want to make a diamond? Slam an asteroid into the earth! - Bad Astronomy Blog by Phil Plait Smash...

Eye catcher

Helmholtz Young Investigator Group - Dominik Kraus

Dynamic Warm Dense Matter Research with HIBEF

 "Warm Dense Matter" (WDM) is the name of the transition regime between cold solid or liquid matter and very hot plasmas. With temperatures from several thousand to several hundred thousand Kelvins and densities around solid-state density, resulting in pressures from several thousand to several million atmospheres, a detailed investigation of matter under these extreme conditions is a young and highly evolving field of physics. 

WDM overview small

A better understanding of the WDM state is highly desirable for astrophysics to e.g. improve modeling of the internal structure and evolution of planets, brown dwarfs and stars. Particularly, chemical processes in warm dense mixtures of light elements in the interior of planets strongly influence the magnetic field and surface temperature, which are important observables for models of planets in our and other solar systems. Moreover, WDM conditions were present within giant impacts during the early stages of our solar system, which defined the planetary structure up to creating the environment necessary for life on our planet. Finally, WDM conditions can be found as a transient state in every laboratory experiment where a solid-state sample is transferred quickly to a plasma state, prominent examples being intense laser-matter interaction as well as high-performance material and radiation damage research.

Robust physical models with predictive capabilities of the WDM regime are very challenging for various reasons . On the one hand, the temperature is in the order of the Fermi energy and thus, WDM cannot be described with methods of classical solid state physics (T~0) or plasma physics (T>>TF). On the other hand, the thermal energy is similar to the ionization energy of valence electrons and chemical bonding energies, leading to partial ionization of the atoms. The resulting ions remain in a strongly coupled state with remnants of solid or liquid structure, given by highly complex ion-ion interaction potentials.

HIBEF ns-Experiment

The controlled creation and even more the precise diagnosis of dynamic processes in WDM is extremely challenging. High-quality experiments require homogeneous samples, extreme temporal resolution and need to cover a broad parameter space. Since WDM samples are usually opaque for optical light, most brilliant X-ray sources are required for high-quality experiments. For a complete characterization, “over-diagnosis”, i. e. determining the same observable with different methods at the same time, is highly desirable, since most methods to determine WDM quantities are based on assumptions or require sophisticated theoretical models. This is especially true for measurements in non-equilibrium conditions. The combination of X-ray free electron lasers with high-energy/high-power optical lasers has shown to be capable of WDM experiments of unprecedented quality in terms of precision and time resolution. The HED experimental area at European XFEL equipped with HIBEF will set new standards here and our group is working towards first experiments at this facility to gain unprecedented insights into the dynamic properties of Warm Dense Matter.

Group members

Dominik Kraus Head
Nicholas Hartley Postdoc

PhD position available - selection process finished.

Another PhD position available

MSc / BSc positions will be available soon.

Contact Dominik Kraus for further information.

Selected publications

  • D. Kraus, A. Ravasio, M. Gauthier, D. O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L. B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E. J. Gamboa, S. Göde, E. Granados, G. Gregori, H. J. Lee, P. Neumayer, W. Schumaker, T. Döppner, R. W. Falcone, S. H. Glenzer, M. Roth
    Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
    Nature Communications 7, 10970 (2016)
  • D. Kraus, D. A. Chapman, A. L. Kritcher, R. A. Baggott, B. Bachmann, G. W. Collins, S. H. Glenzer, J. A. Hawreliak, D. H. Kalantar, O. L. Landen, T. Ma, S. Le Pape, J. Nilsen, D. C. Swift, P. Neumayer, R. W. Falcone, D. O. Gericke, T. Döppner
    X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
    Physical Review E 94, 011202(R) (2016)
  • D. Kraus, J. Vorberger, J. Helfrich, D. O. Gericke, B. Bachmann, V. Bagnoud, B. Barbrel, A. Blazevic, D. C. Carroll, W. Cayzac, T. Döppner, L. B. Fletcher, A. Frank, S. Frydrych, E. J. Gamboa, M. Gauthier, S. Goede, E. Granados, G. Gregori, N. Hartley, B. Kettle, H. J. Lee, B. Nagler, P. Neumayer, M. M. Notley, A. Ortner, A. Otten, A. Ravasio, D. Riley, F. Roth, G. Schaumann, D. Schumacher, W. Schumaker, K. Siegenthaler, C. Spindloe, F. Wagner, K. Wuensch, S. H. Glenzer, M. Roth, R. W. Falcone
    The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering
    Physics of Plasmas 22, 056307 (2015)

  • D. Kraus, J. Vorberger, D. O. Gericke, V. Bagnoud, A. Blazevic, W. Cayzac, A. Frank, G. Gregori, A. Ortner, A. Otten, F. Roth, G. Schaumann, D. Schumacher, K. Siegenthaler, F. Wagner, K. Wünsch, M. Roth

    Probing the complex ion structure of liquid carbon at 100 GPa
    Physical Review Letters 111, 255501 (2013)

  • A. Frank, A. Blazevic, V. Bagnoud, M. M. Basko, M. Börner, W. Cayzac, D. Kraus, T.  Heßling, D. H. H. Hoffmann, A. Ortner, A. Otten, A. Pelka, D. Pepler, D. Schumacher, An. Tauschwitz, M. Roth
    Energy Loss and Charge Transfer of Argon in a Laser-Generated Carbon Plasma
    Physical Review Letters 110, 115001 (2013)   
  • T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson, M. Roth, A. Otten, D. Kraus, R. B. Stephens, H. S. McLean, E. M. Giraldez, M. S. Wei, D. C. Gautier, F. N. Beg
    Focusing of short-pulse high-intensity laser-accelerated proton beams
    Nature Physics 8, 139–142 (2012)


Dr. Dominik Kraus
Helmholtz Young Investigator Group leader
High Energy Density
Phone: +49 351 260 - 3657