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Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions

Volodymyr P. Kravchuk,1,2,* Ulrich K. Rößler,2 Oleksii M. Volkov,1,3 Denis D. Sheka,4 Jeroen van den Brink,2,5

Denys Makarov,3 Hagen Fuchs,2 Hans Fangohr,6 and Yuri Gaididei1
1Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine

2Leibniz-Institut für Festkörper- und Werkstoffforschung, IFW Dresden, D-01171 Dresden, Germany
3Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany

4Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
5Institute for Theoretical Physics, TU Dresden, 01069 Dresden, Germany

6University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 7 July 2016; revised manuscript received 2 September 2016; published 3 October 2016)

Topologically stable structures include vortices in a wide variety of matter, skyrmions in ferro- and
antiferromagnets, and hedgehog point defects in liquid crystals and ferromagnets. These are characterized
by integer-valued topological quantum numbers. In this context, closed surfaces are a prominent subject of
study as they form a link between fundamental mathematical theorems and real physical systems. Here we
perform an analysis on the topology and stability of equilibrium magnetization states for a thin spherical shell
with easy-axis anisotropy in normal directions. Skyrmion solutions are found for a range of parameters. These
magnetic skyrmions on a spherical shell have two distinct differences compared to their planar counterpart: (i)
they are topologically trivial and (ii) can be stabilized by curvature effects, even when Dzyaloshinskii-Moriya
interactions are absent. Due to its specific topological nature a skyrmion on a spherical shell can be simply
induced by a uniform external magnetic field.
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I. INTRODUCTION

Topological methods are increasingly used to describe
observed states in condensed matter systems. Prominent
examples are the description of vortex textures in superfluid
helium [1,2], band theory for topological insulators [3–5],
topological superconductivity in a helical Dirac gas [6] and in
Dirac semimetals [7], and topological defects in liquid crys-
tals [8,9], ferromagnets [10–14], and antiferromagnets [15]. In
this context, thin curvilinear films of ordered matter are in the
focus of strongly growing interest, because in these systems a
nontrivial geometry can induce topological defects in the order
parameter field [16–18] and can result in new effective inter-
actions [19–22]. Among curvilinear films the most promising
candidates for new physical effects are closed surfaces due to
the natural appearance of topological invariants in the system.
In this case the normalized vector field m defined on the surface
realizes a map of the surface into a sphere S2. The degree
Q ∈ Z of this map is an integer topological invariant [23–25],
i.e., each given distribution of the vector field m on a closed
oriented surface is characterized by an integer number Q which
is conserved for any continuous deformation (homotopy) of
the field m. Moreover, any two distributions of the field m are
topologically equivalent (homotopic), i.e., they can be matched
by means of a continuous deformation provided they have
the same Q [25–27]. Since a discontinuity in the physical
field m is usually energetically nonfavorable, two solutions
with different Q are separated by a high energy barrier. This
causes topological stability. For example, an isolated magnetic
skyrmion [28–35] in a planar film with Dzyaloshinskii-Moriya
interaction (DMI) is an excited state of the system (for the case
of low temperature and absence of external magnetic fields).
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However, this excitation is topologically stable, because the
invariant is Q = ±1 for the skyrmion [13,36], while Q = 0
for the ground state. Topological stability occurs for a variety of
defects in ordered matter, such as disclination loops, hedgehog
point defects and knots in nematic liquid crystals [8,9,37–39],
and vortices [40] and Bloch points [12,41] in ferromagnets.

Conservation of the topological index Q for a closed surface
raises two fundamental questions: (i) what is the lowest energy
equilibrium solution m(r) for a given Q, which is not neces-
sarily the ground state owing to the topological constraint,
and (ii) which Q corresponds to the ground state for a given
surface? The answers can lead to new phenomena, specific
to the physical system under consideration. In this paper we
answer these questions for the case of thin ferromagnetic
spherical shells. Even such a relatively simple model brings a
number of surprising results.

We show that for a spherical shell a skyrmion solution
exists as a topologically stable excitation above the hedgehog
ground state. An important feature is that the skyrmion may
be stabilized by curvature effects only, specifically by the
curvature-induced, exchange-driven effective DMI [21,22].
This is in contrast to the planar case, where the intrinsic DMI
is required for the skyrmion stabilization [29,42,43].

The case of the spherical shell is topologically opposite to
that of the planar film: the skyrmion has the index Q = 0,
in other words it is topologically trivial, while the ground
state is characterized by Q = ±1. This is due to a shift of the
topological index of the vector field, caused by topology of
the surface itself. Since the skyrmion solution on a spherical
shell is homotopic to a uniform state, it can be induced by
means of a uniform external magnetic field, similar to the
excitation of onion magnetic states in nanorings [44]. In a
continuous medium the switching between states with different
Q is topologically forbidden. However, in discrete spin lattices
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such a transition is possible, though it requires a strong external
influence.

II. GENERAL CASE OF AN ARBITRARY
CURVILINEAR SHELL

We first present a set of general results valid for an arbitrary
thin curvilinear shell. In the following we apply these results
to calculate the magnetic energy and topological properties of
magnetization states of spherical shells.

A. Mapping Jacobian

The degree Q of a map, realized by a normalized three-
dimensional vector field m defined on a two-dimensional
closed surface S, reads [25] Q = (4π )−1

∫
S J dS. In this partic-

ular case the mapping Jacobian J can be presented in the form
of the triple product [25] J = −εαβ m · [(∇αm) × (∇β m)]/2,
where the minus sign is introduced solely to conform with the
traditional notation used in ferromagnetic research. Here and
everywhere below the Greek indices α,β, . . . = 1,2 numerate
the curvilinear coordinates ξα , introduced on the surface, and
the vector components defined in the corresponding curvilinear
local basis eα , while the Latin indices i,j,k = 1,2,3 numerate
coordinates and vector components in the Cartesian basis
x̂i ∈ {x̂, ŷ, ẑ}. The summation over repeated dummy indices is
implied, unless stated otherwise. The local basis eα is assumed
to be orthonormal eα · eβ = δαβ ; therefore, the metric tensor
||gαβ || is diagonal. Details on the definition of the orthonormal
basis for a given surface are presented in Appendix A. The
operator ∇α ≡ (gαα)−1/2∂α , where the summation over α

is not implied and ∂α = ∂/∂ξα , denotes the corresponding
component of the surface del operator ∇ ≡ eα∇α . The surface
element reads dS = √

g dξ1dξ2, where g = det ||gαβ ||.
Since using Cartesian components of the vector field m

is not convenient for curvilinear systems, we will switch to
curvilinear coordinates m = mαeα + mnn, where n = e1 × e2

is the surface normal. Moreover, it is useful to incorporate the
constraint |m| = 1 by means of the angular parametrization
m1 + im2 = sin θ eiφ , mn = cos θ , where θ = θ (ξ1,ξ2) and
φ = φ(ξ1,ξ2) represent colatitude and longitude, the spherical
angles of the local curvilinear basis, respectively. In this case
one can show (see Appendix B) that

J ≡ Jn = − sin θ (∇θ − �) × (∇φ − �)

− cos θ [(∂φ� × ∇θ ) + nK]. (1)

Here, �(φ) = ||hαβ || · ε(φ), where ε = cos φ e1 + sin φ e2 is
the normalized projection of the vector m on the tangential
plane and ||hαβ || is a tensor known as the Weingarten map
or modified second fundamental form [45]. Vector � denotes
the spin connection and K = det ||hαβ || is the Gauß curvature.
The corresponding definitions are presented in Appendix A.

One can easily check that for the case of a plane with a
Cartesian frame of reference the expression (1) results in the
well known [10–14] formula J = ∇(cos θ ) × ∇φ.

Remarkably, for a strictly normal distribution of the vector
field m = ±n (normal Gauß map) one obtains the well
known [25,45] result J = ∓K. Applying the Gauß-Bonnet the-
orem we obtain the famous relation QG = ∓(1 − g) between
degree of the normal Gauß map QG and genus g of the surface.

Thus QG = ±1 for a normally magnetized sphere (hedgehog),
QG = 0 for a normally magnetized torus, etc. In a topological
classification of the solutions the value QG should be taken
into account as a topological charge shift, which originates
from the topology of the surface itself. To establish a link with
the well-known skyrmions in the planar geometry [28–35] one
has to introduce the skyrmion number N ≡ Q − QG [46]. In
the following, we consider skyrmions with N = ±1. However,
in the general case N can be an arbitrary integer not equal to
zero.

Note that the term “skyrmion” is used rather broadly: any lo-
calized two-dimensional structure with unit (integer) mapping
degree Q may be considered a skyrmion. However, in addition
to chiral skyrmions [28–35] and bubbles [12], this definition
includes a variety of objects with very different physical
properties, such as vortex domain walls on tubes [47–49],
hedgehog states and some vortex states on a spherical
shell [50,51], and rotating vortex dipoles [52]. It is instructive
to introduce a narrower definition which considers skyrmions
as localized solutions with the structure of a vortex [53].

The vector J is the limit for the two-dimensional case
for the gyrocoupling vector [10,12–14] (topological density,
topological current, vorticity) J, whose Cartesian components
read Ji = −εijkm · [∂j m × ∂km]/2. The gyrocoupling vector
is widely used for the topological description of a unit vector
field m defined in a three-dimensional domain. If the shell
thickness L → 0 is small enough to ensure the uniformity of
m along the normal direction: m = m(ξ1,ξ2), then J →J; see
Appendix B. In magnetism, the gyrocoupling vector J is the
key quantity to describe the dynamics of topologically nontriv-
ial solutions, such as domain walls [10,12], vortices [13,40,54],
skyrmions [36,55–57], skyrmion lines [58,59], and Bloch
points [12,58–60]. It determines important integrals of motion
in the dynamics of ferromagnetic media [13,14]. Recently,
it was shown [59,61] that J is proportional to the emergent
magnetic field, which appears due to the Hund’s coupling
between spins of the conducting electrons and localized
magnetic moments. This gives rise to the topological Hall
effect [62–64].

Let us provide physically illustrative explanations why the
topological charge or index Q is an integer number and a
conserved quantity. A direct consequence of the definition
of J with the constraint |m| = 1 is div J = −4π

∑
n cnδ(r −

Rn), where δ(r) is the Dirac delta function and the vector
Rn determines the position of a Bloch point (monopole),
mB

n , whose infinitesimal neighborhood of the center has the
structure [12] mB

n = cnR(r − Rn)/|r − Rn|. Here, R is an
arbitrary matrix of three-dimensional rotations and cn = ±1
is the monopole charge. Thus the monopoles are sources
and sinks of the gyrovector field [12]. Likewise, electrical
charges are sources and sinks of the electrical field. For
any closed surface S enclosing the volume V, the integral
Q = (4π )−1

∫
SJ·dS = (4π )−1

∫
V div J dV = −∑

n cn yields
an integer number Q ∈ Z equal to the difference of nega-
tively and positively charged monopoles inside S. Since two
monopoles with opposite charges are connected by the Dirac
string, which may be considered a skyrmion line [58,59], one
can also say that Q is the difference of outgoing and incoming
skyrmion lines [58]. Thus the only way to change Q for a given
closed S is to replace a monopole across S. When the monopole
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center crosses the surface, i.e., it is located exactly on S, the
vector field mS(r) = m(r ∈ S) is discontinuous at the point
Rn. Thus one can conclude that a continuous deformation of
the continuous field mS(r) cannot change the mapping degree
Q of S. The rigorous proof of the latter statement can be found
elsewhere; for instance, see Ref. [25].

The expression for the mapping Jacobian (1) is general: it is
the key formula for topological analysis of a normalized vector
field of an arbitrary physical nature on an arbitrary curvilinear
surface.

B. Magnetic energy of a curvilinear shell

The topological analysis is independent of the physical
nature of the vector field m. In the following, we focus on
possible equilibrium magnetization states of thin ferromag-
netic curvilinear shells. To this end, we introduce the energy
functional E = L

∫
[AEex − K(m · n)2 + D ED]dS. Here, we

take into account three magnetic interactions. The first term
of the integrand represents the exchange energy with the
energy density Eex = ∂im · ∂im and the exchange constant,
A. The second term is a uniaxial anisotropy: easy-normal
for K > 0 or easy-surface for K < 0. The presence of
this anisotropy, which conforms to the geometry, is crucial
for our model. The anisotropy forces spins to follow the
geometry which is why the spin subsystem ultimately “fills”
the geometry. This is a fundamental difference between our
approach and a number of previous studies, where soliton
solutions were found on curvilinear shells, yet anisotropy
was either neglected [49,65–67], or it was spatially uniform
lacking any correlation with the geometry [50,68,69]. Our
approach is based on the fundamental behavior of magnetically
ordered media, where spin-orbit couplings provide the vital
link between nontrivial curved geometry and the spin system.
Therefore, any realistic assessment of possible magnetization
states in curved geometries must include the geometrically
allowed anisotropic couplings.

The last term in E is the DMI with the energy den-
sity [31,70,71] ED = mn∇ · m − (m · ∇)mn and the DMI
constant, D. This kind of DMI originates from the spin-orbit
coupling and is related to the inversion symmetry breaking on
the film interface; it is typical for ultrathin films [31,70,71]
or bilayers [72]. In the curvilinear basis one can represent the
DMI density as follows:

ED = ε · ∇θ + sin θ cos θ ∂φε · (∇φ − �) − H cos2 θ, (2)

where H = tr||hαβ || is the mean curvature; see Appendix C for
details. It is clear from (2) that an effective uniaxial anisotropy
along n appears with a coefficient equal to H.

In our model we assume that the magnetostatic interaction,
which is always present in the system, can be reduced to the
easy-surface anisotropy, resulting in the shift of the anisotropy
coefficient K . This was rigorously demonstrated [73–75] for
plane films, when thickness L is substantially smaller than the
size of the system and L � √

A/(4πM2
s ). Here, we assume

that the same model is sufficient for smoothly curved shells, if
L is much smaller than the curvature radius [76].

III. CASE OF A SPHERICAL SHELL

As the simplest example we consider a thin spherical
shell with radius R. For the case of easy-normal anisotropy
(K > 0) there exists a class of azimuthally symmetric so-
lutions m = eϑ sin θ + n cos θ ; see Appendix D. The basis
vector eϑ points, tangential to the surface, towards the direction
of increasing polar angle ϑ and n is the outward normal. The
function θ = θ (ϑ) satisfies the following equation:

θ ′′ + cot ϑθ ′ − sin θ cos θ

[
cos 2ϑ

sin2 ϑ
+ R2

�2
− 4D

Dc

]

+ 2 cot ϑ sin2 θ

(
1 + D

Dc

)
= 0. (3)

Here, � = √
A/K is the characteristic magnetic length and

Dc = 2A/R is the strength of the curvature-induced effective
DMI that is solely exchange driven [22]. This geometrical
DMI contribution competes with the intrinsic spin-orbit-driven
DMI. Full compensation takes place when D = −Dc.

In the limit R → ∞ Eq. (3) is transformed [77] into the
standard equation for chiral skyrmions in a planar film [30,35].
This enables us to use the term skyrmion for a localized
solution of Eq. (3).

There are two kinds of boundary conditions (BC) possible
for Eq. (3), namely (i) θ (0) = 0, θ (π ) = (w − 1)π and (ii)
θ (0) = π , θ (π ) = wπ . Here, w ∈ Z, the helicity number, is
formally a winding number of the magnetization along a circle
loop passing through both pole points ϑ = 0 and ϑ = π .
Using the helicity number one can introduce the chirality of
the structure: C = sgn(w − 1). Thus the skyrmions shown in
Fig. 1(A) and 1(A′) have the chiralities C = −1 and C = +1,
respectively.

From the general expression for the gyrocoupling vec-
tor (1), it follows that the mapping index for an azimuthally
symmetrical solution m = m(ϑ) is

Q = − 1
2 [(m · n)|ϑ=0 + (m · n)|ϑ=π ], (4)

which implies that Q = 0,±1 for the mentioned class of
solutions. It is interesting to note that a one-dimensional
magnetization in the planar case, m = m(x), results in Q = 0.
However, in the case of a spherical shell a solution with
|Q| = 1 is possible even if m depends on one coordinate only.
According to (4) an even w results in Q = 0 for both kinds
of BC and an odd w results in Q = −1 and Q = +1 for BC
of type (i) and (ii), respectively. Note that, in contrast to the
mapping degree Q, the helicity number w is not a topological
invariant: we merely use it for the classification of solutions.
Any two solutions with different w but with the same Q belong
to the same homotopy class and they can be transformed into
each other by means of a continuous deformation of the vector
field m.

Any two solutions of (3), obtained under different kinds of
BC but for the same w, differ by sign only: m → −m. The
latter transformation does not change the energy of the system,
as the energy functional E, in the absence of external fields, is
quadratic with respect to components of vector m. However,
it changes the sign of Q because the mapping Jacobian J

is cubic in the magnetization. Thus a state with given w is
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Skyrmions on a plane
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Skyrmions on a sphere

A
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FIG. 1. Topologically trivial magnetization states on a spherical shell provide the answer to question (i) about the equilibrium (albeit
not necessarily the ground) state with topological charge Q = 0, as stated in the Introduction. Insets A and A′ demonstrate the skyrmion
solutions for different helicity numbers w. The respective skyrmion solutions for a planar film (|Q| = 1) are shown in insets B and B′ for
comparison. Case A corresponds to the absence of the DMI (D = 0). Dependences of the skyrmion radius Rs on the dimensionless DMI
constant D̃ = D/

√
AK for the case of a spherical shell (solid line) and for the case of a planar film (dashed line) are shown. The skyrmion radii

obtained from micromagnetic simulations are represented by open squares. Small insets show the magnetization distribution along the vertical
cross section of the spherical shell. All calculations are performed for the case R = 3�, where � = √

A/K is the characteristic magnetic length.
The values of the DMI constant D̃l(R) and D̃r (R) determine the region of the skyrmion existence: D̃ ∈ (D̃l, D̃r ).

doubly degenerate with respect to replacements m → −m and
Q → −Q.

A. Topologically trivial case Q = 0: Skyrmion solutions

Equation (3) can have skyrmion solutions for the cases
w = 0 and w = 2; see Figs. 1(A) and 1(A′), respectively. In
contrast to the planar case, where the skyrmion solution has
|Q| = 1, on a spherical shell the skyrmion is topologically
trivial (Q = 0). Let us define the skyrmion radius as Rs =
R sin ϑs , where mn(ϑs) = 0. For the planar case mn = mn(ρ)
with ρ being distance to the skyrmion center and Rs can be
defined analogously: mn(Rs) = 0. In planar films skyrmions
are widely studied; it is well known [29,43,78] that the
skyrmion radius strongly depends on the DMI constant D:
the skyrmion collapses, Rs → 0, when D → 0, and Rs → ∞
when D → D0 = 4

π

√
AK; see dashed line in Fig. 1. For

this type of DMI, the so called hedgehog (Néel) skyrmions
appear with zero azimuthal magnetization component; see
Figs. 1(B) and 1(B′). In planar films such type of skyrmions
have been predicted theoretically [42,43] and were observed
experimentally [32–34]. The same type of skyrmions appear on
a spherical shell with an analogous dependence Rs = Rs(D);
see the solid line in Fig. 1. There are, however, a number of
new, important features as follows.

(i) Skyrmions collapse for a finite value of the DMI
constant, D = −Dc, and as a consequence a skyrmion of finite
radius exists for the case D = 0; see point A in Fig. 1 and the
corresponding inset. The shift along the D axis is due to the
additional curvature-induced DMI (C1c), which appears as an
effective term in the exchange interaction [22].

(ii) For a given radius R of the spherical shell the skyrmion
exists for a certain range of the DMI constant, Dl(R) < D <

Dr (R); see Fig. 1 and Fig. 2. Beyond this range, at Rs = R,
see Fig. 1, the skyrmion transforms into the 3D-onion state.

(iii) In contrast to the planar case where the function Rs(D)
is even, the corresponding curve for spherical shells is highly
asymmetrical.

The analytically obtained dependence Rs(D) agrees well
with micromagnetic simulations data shown by open squares
markers in Fig. 1; for details see Appendix F.

Figure 1 shows possible equilibrium states for the case
Q = 0, answering our introductory question (i) about the
physically stable magnetization structures in topologically
different sectors.

B. Diagram of ground states

Though a continuous transition between solutions with
Q = 0 and |Q| = 1 is not possible (topological stability), a
solution with |Q| = 1 can have lower energy than the corre-
sponding solution with Q = 0 for some range of parameters.
In order to clarify this picture and answer question (ii) about
the globally stable magnetization configurations, we build the
diagram of the ground states for the class of azimuthally
symmetrical solutions determined by Eq. (3); see Fig. 2. One
can distinguish two main states: the hedgehog states with
w = 1 (|Q| = 1) and 3D-onion state with w = 0 (Q = 0).
However, for large enough sphere radii and magnitudes of the
DMI constant a variety of states with higher helicity numbers
appear. These states can be interpreted as helical structures on
a spherical shell. Similar skyrmionic structures were recently
observed in disk-shaped chiral nanomagnets [79,80].
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FIG. 2. Diagram of magnetic ground states of a spherical shell: an answer to the introductory question (ii). The diagram was created by
comparing the energies of different solutions of Eq. (3). Even and odd helicity numbers w correspond to Q = 0 and |Q| = 1, respectively. Each
state with a given w is doubly degenerate with respect to the transformation m → −m, which results in Q → −Q. Small red dots correspond
to the magnetization distributions obtained by micromagnetic simulations and shown as schematic insets (w = 0,1) or rendered visualizations
(w = −1, −2,2,3). Although skyrmion solutions do not form the ground state of the system, skyrmions with w = 0 and w = 2 can exist as
topologically stable excitations in the dashed areas S0 and S2, respectively. Line C is the line of skyrmion collapse, it is determined by the
condition D = −Dc. Critical sphere radii R0 and R1 are explained in Fig. 3. Star markers denote regions, where the elliptical instability of the
given state can occur. The other notations are the same as in Fig. 1.

Like the solitary skyrmion on a planar film, the skyrmion on
a spherical shell does not form the magnetic ground state, yet
skyrmions with w = 0 and w = 2 can exist as topologically
stable excitations; see the dashed areasS0 andS2, respectively.

The diagram of the ground states (Fig. 2) was built for
the class of azimuthally symmetrical solutions m = m(ϑ).
Hence we address the question about azimuthal stability
of these solutions. Performing a standard stability analysis,
see Appendix E, we found a number of narrow regions,
where elliptical instability [81] is possible. Remarkably, the
instability regions are in the vicinity of boundaries which
separate different magnetization states; see Fig. 2.

IV. SKYRMION FORMATION WITHOUT DMI

The results on static skyrmion state configurations on
spherical shells immediately pose the problem whether and
how these states can be realized. In the following, we discuss
in more detail an intriguing case of the skyrmion formation,
when D = 0. For this purpose, we will move along the
vertical axis of the ground states diagram (Fig. 2) starting
from small sphere radii R. When the sphere’s radius is small
enough (R < R0 ≈ 1.842�), the ground state of the system is
topologically trivial (Q = 0), and close to the uniform state,
we call it a 3D-onion state; see Fig. 2 and Fig. 3(a). The ground
state of the spheres with R > R0 is one of the hedgehog states
with Q = ±1. Due to the topological stability the 3D-onion

state survives when the sphere radii R0 < R < R1 ≈ 2.458�.
At the point R = R1 the 3D-onion state becomes unstable
resulting in a forklike bifurcation, see Fig. 3(b), where the
lines are obtained by solving Eq. (3) with the boundary
conditions θ (0) = 0, θ (π ) = −π and dots correspond to the
micromagnetic simulations. As a result of the bifurcation a
skyrmion is formed either on the north or on the south pole of
the sphere; see Fig. 3. The skyrmion exists as a topologically
stable excitation of a hedgehog state for the case R > R1;
see region S0 in Figs. 2 and 3(a). However, the radius of the
skyrmion Rs decreases rapidly when the radius of the sphere
further increases; see Fig. 3(b).

The observed behavior of this system can be explained as
follows. The 3D-onion state can be interpreted as a skyrmion
solution with the angular radius ϑs = π/2, or with lateral
radius Rs = R. However, it is well known [29,43,78] that
skyrmions on a planar film collapse when the intrinsic spin-
orbit-driven DMI vanishes, i.e., in the limit D = 0. Thus it is
natural to expect the skyrmion to collapse for the case R → ∞
when the curvature effect vanishes. That is why the instability
of the 3D-onion state appears for a certain value of R = R1 and
with a further increase of the radius of the sphere the skyrmion
collapses to either the north or the south pole; see Fig. 3(b).
However, for a sphere radius R � R1 skyrmions with finite
radii exist; see Fig. 3(b). This can be interpreted as a skyrmion
stabilization due to the curvature-induced, exchange-driven
effective DMI [21,22]. The obtained results agree very well
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(a)

(b)

0.5

1

1

0.5

FIG. 3. Formation of the skyrmion state for the case D = 0.
Inset (a) shows the dependence of the energy difference �E =
Ew=0 − Ew=1 of the solution θ (ϑ) for the case w = 0 and the
hedgehog solution θ = 0, π , when w = 1. The critical radius R0

separates two phases of the ground state: 3D-onion state for R < R0

and hedgehog state for R > R0; see Fig. 2. For R = R1 the 3D-onion
state experiences instability, which results in the skyrmion formation.
Skyrmion exists as a topologically stable excitation of the hedgehog
state for the case R > R1; see also region S0 in Fig. 2. Inset (b)
demonstrates the dependence of the skyrmion radius (angular ϑs as
well as lateral Rs) on the sphere radius R. Symbols correspond to
the results of micromagnetic simulations: disks and squares—the
magnetostatic interaction is reduced to the easy-surface anisotropy;
triangles—the full scale simulations with magnetostatics is included.

with micromagnetic simulations based on a model where
the magnetostatic interaction was reduced to the easy-surface
anisotropy; see disk- and square-shaped symbols in Fig. 3(b).
It is important that taking into account the magnetostatic
interaction does not change the physical picture, but results
in an increase of the skyrmion radius; see triangle-shaped
markers in Fig. 3(b). The increase of the skyrmion radius
appears due to the volume magnetostatic charges. Thus the
full micromagnetic simulation results vindicate our analytical
approach that neglects the dipolar stray fields to construct the
diagrams of equilibrium states.

It is noteworthy that the energy difference �E = Ew=0 −
Ew=1 of the skyrmion (3D-onion) and the hedgehog solutions
varies in the region −E0

hg < �E < EBP , where E0
hg is the

energy of the hedgehog state sphere with R → 0, and EBP

is the energy of the Belavin-Polyakov soliton [11], which is
equal to the energy of a skyrmion with infinitesimal radius;
see Fig. 3(a). It is also remarkable that E0

hg = EBP = 8πAL,

FIG. 4. Skyrmion formation by means of a uniform magnetic
field (results of micromagnetic simulations). The directed lines show
the magnetic hysteresis loop of the z component of m in an external
magnetic field along the z axis. The arrows represent the increase
(red/dashed) and subsequent decrease (blue/solid) of the magnetic
field. The field is normalized by the saturation field B0 = 4πMs .
Insets, which show the vertical cross section of the spherical shell,
trace the formation of a skyrmion.

which matches the energy of the vortex-antivortex pair with
the opposite polarities just before their annihilation [82,83].

Finally, we demonstrate how the skyrmion configuration
can be created by means of a uniform magnetic field. We
consider a spherical shell, whose radius R � R1 corresponds
to the hedgehog ground state. By means of micromagnetic
simulations (see Appendix F) we find that the adiabatically
slow increase of the external uniform magnetic field results
in the transition from the hedgehog state to the 3D-onion
state; see Fig. 4. A subsequent decrease of the field leads
to a skyrmion state formation. This transition from Q = 1
to Q = 0 is topologically forbidden for a continuous system
and appears here merely due to the discretization. However,
since real magnetic crystals have a discrete structure, one can
expect this behavior in strong enough external magnetic fields.
This mechanism of the skyrmion formation is similar to the
formation of onion magnetic states in nanorings [44].

V. CONCLUSIONS

In conclusion, we demonstrate that different types of
axially symmetrical solutions of the magnetization m =
m(ϑ) exist for a thin ferromagnetic spherical shell. These
solutions can be divided into three homotopic classes with
topological index Q = 0,±1. To calculate Q we developed
the general expression for the mapping Jacobian (1) valid for
an arbitrary curvilinear shell. Skyrmion solutions are found
in the topologically trivial class with Q = 0. Remarkably,
a skyrmion solution on a spherical shell can be stabilized
by curvature effects only, namely by the curvature-induced,
exchange-driven effective DMI [21,22]. This is in contrast
to the planar case, where the spin-orbit-driven intrinsic DMI
is required for the skyrmion stabilization [29,43,78]. Since a
skyrmion on a spherical shell is homotopic to a uniformly
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magnetized sphere, it can be induced by a strong uniform
external magnetic field.

Experimental advances in fabrications of curvilinear nano-
magnets [84] make us optimistic in forthcoming experimental
confirmation of the curvature stabilized skyrmions. Indeed,
magnetic spherical nanoshells can be prepared [85–87] by
coating of a nonmagnetic spherical core with a ferromagnetic
material. The small size (10–20 nm) of the obtained parti-
cles [85–87] allows one to expect discernible curvature effects.
Note that spherical magnetic nanocaps with normally oriented
anisotropy axis can also be created experimentally [88–91].
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APPENDIX A: INTRODUCTION OF THE
CURVILINEAR BASIS

In order to formalize the geometry of the shell we use the
parametric representation R(ξ1,ξ2,η) = �(ξ1,ξ2) + ηn(ξ1,ξ2).
Here, � = �i x̂i is the 3D position vector, which determines a
2D surface S embedded in R3 with ξα being local curvilinear
coordinates on S. The unit vector n denotes the surface normal
and the parameter η ∈ [−L/2,L/2] is the corresponding
curvilinear coordinate along the normal direction. We restrict
ourselves to the limiting case L → 0. Specifically, we assume
that the thickness L is much smaller than the curvature radius as
well as the characteristic magnetic length �. As a consequence,
we assume that the magnetization is uniform along the normal
direction: m = m(ξ1,ξ2).

The parametrization � = �(ξ1,ξ2) induces the natural tan-
gential basis gα = ∂α� with the corresponding metric tensor
gαβ = gα · gβ . Assuming that vectors gα are orthogonal,
one can introduce the orthonormal basis {e1, e2, n}, where
eα = gα/

√
gαα and n = e1 × e2. Using the Gauß-Codazzi

formula and Weingarten’s equations [92] one can obtain the
following differential properties of the basis vectors

∇αeβ = hαβn − �αεβγ eγ , ∇αn = −hαβ eβ. (A1)

Here, matrix ||hαβ || = −||eβ · (eα · ∇)n|| is a tensor, known
as the Weingarten map or modified second fundamental
form [45]. The formula ||hαβ || = ||bαβ/

√
gααgββ || with bαβ =

n · ∂β gα being components of the second fundamental form
is practically useful. The Weingarten map determines the
Gauß curvature K = det ||hαβ || and the mean curvature H =
tr||hαβ ||. Components of the spin connection vector � are
determined by the relation �γ = 1

2εαβ eα · ∇γ eβ .
In general, the basis gα need not be orthogonal. How-

ever, if the vectors g1 and g2 are not collinear then one
can always introduce the orthonormal basis {e1, ẽ2, n} in

the following way: e1 = g1/
√

g11, ẽ2 = g2/
√

g22, and n =
e1 × ẽ2, where gα = gαβ gβ is dual tangential basis with
||gαβ || = ||gαβ ||−1. However, in this case the relations (A1)
should be revised.

APPENDIX B: GYROCOUPLING VECTOR IN A
CURVILINEAR REFERENCE FRAME

We start from the Cartesian representation Ji = −εijkm ·
[∂j m × ∂km]/2. Taking into account that the magnetization is
uniform along the shell thickness, i.e., the normal coordinate,
one can replace the del operator by its surface analog ∇S =
eα∇α and represent the Cartesian derivatives via its curvilinear
counterparts ∂i = (x̂i · eα)∇α . Simple calculations result in
J = Jn, where J is the mapping Jacobian defined in the main
text. Introducing the curvilinear magnetization components
m = mαeα + mnn and taking into account differential proper-
ties of the curvilinear basis (A1), one obtains

J = −εαβεγ δ

[
mβ(∇δmα)(∇γ mn) + mn

2
(∇γ mα)(∇δmβ)

+hαγ mn(mδ∇βmn − mn∇δmβ) + hανmνmδ∇βmγ

]
+ εαβ�βmγ [mn∇αmγ − mγ ∇αmn − hαγ ] − Kmn.

(B1)

When deriving (B1) the constraint |m| = 1 is obeyed. Sub-
stituting the angular representation for the magnetization
components into (B1), one obtains formula (1).

Notice the difference between volume J and surface J
gyrocoupling vectors. J can be introduced for a vector field m
defined in a 3D region D. One can cut out from D a curvilinear
shell with small but finite thickness L. If m is uniform along
the shell thickness (otherwise J cannot be introduced), then
J = J. However, if we build a 2D surface S (L = 0) in D, then
J �= J on the surface.

APPENDIX C: MAGNETIC INTERACTIONS ON A
CURVILINEAR SHELL

Let us first consider the exchange interaction. Under the
main assumption of magnetization uniformity along the shell
thickness, one can represent the exchange energy density in its
curvilinear form,

Eex = ∇αm · ∇αm = E 0
ex + E D

ex + E A
ex, (C1a)

E 0
ex = ∇αmβ∇αmβ + ∇αmn∇αmn, (C1b)

E D
ex = 2hαβ(mβ∇αmn − mn∇αmβ)

+ 2εαβ�γ mβ∇γ mα, (C1c)

E A
ex = (hαγ hγβ + �2δαβ)mαmβ + (H2 − 2K)m2

n

+ 2εαγ hγβ�βmαmn. (C1d)

Here, E 0
ex is the “common” isotropic exchange; E D

ex and E A
ex

can be treated as an effective curvature-induced DMI and
anisotropy, respectively. In the angular representation the
exchange energy reads [21]

Eex = [∇θ − �]2 + [sin θ (∇φ − �) − cos θ ∂φ�]2. (C2)
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Applying the same procedure for the DMI energy density ED =
mn∂imi − mi∂imn one obtains

ED = E 0
D + E A

D , (C3a)

E 0
D = mn∇αmα − mα∇αmn, (C3b)

E A
D = −εαβ�βmαmn − Hm2

n, (C3c)

where an additional term E A
D can be interpreted as an ef-

fective curvature-induced anisotropy. Substituting the angular
parametrization into (C3) results in the expression (2).

In the angular representation the density of the
anisotropy energy looks particularly simple Ea = −K(m ·
n)2 = −K cos2 θ , because the anisotropy has the symmetry
of the surface.

APPENDIX D: CASE OF A SPHERICAL SHELL

In order to describe a spherical shell of
radius R we use the parametrization �(ϑ,χ ) =
R(sin ϑ cos χ x̂ + sin ϑ sin χ ŷ + cos ϑ ẑ). Here, ϑ = ξ1 ∈
[0,π ] and χ = ξ2 ∈ S1 are polar and azimuthal spherical
angles, respectively. Basis vectors are e1 = eϑ , e2 = eχ

and the normal vector n = eϑ × eχ is directed outward
of the sphere. In this case the Weingarten map is the
diagonal matrix with components hαβ = −δαβ/R, and
consequently � = −ε/R, H = −2/R, and K = 1/R2. The
spin-connection vector has only one (azimuthal) component:
� = −eχ cot ϑ/R.

Taking into account (C2) and (2) one can show that in
the case of easy-normal anisotropy (K > 0) the functions θ =
θ (ϑ,χ ) and φ = φ(ϑ,χ ), which minimize the energy functional
E, are a solution of the following Euler-Lagrange equations:

�θ − sin θ cos θ

[
(∇φ − �)2 + 1

�2
− 1

R2

(
1 + 4D

Dc

)]

+ 2

R
sin2 θ

(
1 + D

Dc

)
(∇φ − �) · ∂φε = 0, (D1a)

∇ · [sin2 θ (∇φ − �)] − 2

R
sin2 θ

(
1 + D

Dc

)
∇θ · ∂φε = 0.

(D1b)

When deriving (D1) we used that for a spherical shell � =
−ε/R and H = −2/R. In addition, we use the following
general properties of vector ε:

∇ · ε = (∇φ − �) · ∂φε, ∇ · ∂φε = −(∇φ − �) · ε. (D2)

Taking into account that the vector of spin connection is
� = e2�2(ϑ) one can see that Eqs. (D1) have a solution θ =
θ (ϑ), φ = 0, π . In this case Eq. (D1b) turns to identity and the
function θ (ϑ) can be determined as a solution of Eq. (D1a).
Since m2 ≡ 0 for the considered class of solutions, one can
consider the colatitude angle θ = θ (ϑ) as the only parameter:
m = e1 sin θ (ϑ) + n cos θ (ϑ). In this case the function θ (ϑ)
is determined by Eq. (3). For the axially symmetric solutions
θ = θ (ϑ) and φ = φ(ϑ) the gyrocoupling vector (1) for the
spherical shell can be written as follows:

J = n
R2 sin ϑ

d

dϑ
(cos θ cos ϑ − sin θ sin φ sin ϑ). (D3)

The integration over the sphere S2 results in the topological
index (4).

APPENDIX E: STABILITY ANALYSIS

Our goal is to analyze the stability of azimuthally
symmetrical solutions, shown in Fig. 2. For this purpose
we use the parametrization m = eϑ sin φ sin θ + eχ cos φ +
n sin φ cos θ . Taking into account the exchange (C1),
DMI (C3), and anisotropy, Ea = −K sin2 φ cos2 θ , contribu-
tions we can construct the energy functional E = E[θ, φ].
This functional has an extremal for φ0 = π/2, θ0 = θ0(ϑ),
where the function θ0(ϑ) is a solution of Eq. (3). We need
to check whether the solution φ0 and θ0 corresponds to
the energy minimum. For this purpose, we consider small
deviations φ = π/2 + φ̃(ϑ,χ ) and θ = θ0(ϑ) + θ̃ (ϑ,χ ). Now
the harmonic approximation of the energy reads

E ≈ E0 + AL

∫ 2π

0
dχ

∫ π

0
dϑ sin ϑ ψTĤψ. (E1)

Here, E0 = E[θ0,φ0] is stationary value of the energy func-
tional, ψ = (φ̃,θ̃ )T, and the operator Ĥ reads

Ĥ =
(−� + U1(ϑ) −W(ϑ)∂χ

W(ϑ)∂χ −� + U2(ϑ)

)
, (E2)

where � is the angular part of the Laplacian in the spherical
reference frame. The potentials are as follows:

U1 = − (θ ′
0 + 1)2 + cos2(ϑ + θ0)

sin2 ϑ
+ R2

�2
cos2 θ0

− D

Dc

[2(θ ′
0 + 1) + �],

U2 = cos 2(ϑ + θ0)

sin2 ϑ
+ R2

�2
cos 2θ0 − 2

D

Dc

�,

W = − 2
cos(ϑ + θ0)

sin2 ϑ
+ 2

D

Dc

sin θ0

sin ϑ
,

(E3)

where � = 2 cos 2θ0 + cot ϑ sin 2θ0. One can easily check
that the Euler equations with respect to small deviations φ̃ and
θ̃ (Jacobi equation) have the solutions φ̃ = ∑

μ fμ(ϑ) sin μχ

and θ̃ = ∑
μ gμ(ϑ) cos μχ , with μ ∈ Z. Introducing ψμ =

(fμ,gμ)T one can present the energy (E1) in the form

E ≈ E0 + πAL
∑

μ

∫ π

0
dϑ sin ϑ ψT

μĤμψμ, (E4)

where

Ĥμ =
(

−�ϑ + μ2

sin2 ϑ
+ U1(ϑ) μW(ϑ)

μW(ϑ) −�ϑ + μ2

sin2 ϑ
+ U2(ϑ)

)

(E5)

is a Hermitian operator in the space of functions ψμ with
the scalar product 〈ψ (1)

μ ,ψ (2)
μ 〉 = ∫ π

0 ψ (1)
μ · ψ (2)

μ sin ϑ dϑ . Here,
�ϑf = (sin ϑ)−1∂ϑ (sin ϑ∂ϑf ).

The solution φ0 and θ0 minimizes the energy functional
E iff all eigenvalues of the operator Ĥμ are positive for all
μ. Note that the sign of μ does not affect the eigenvalues
of the operator (E5). For a given pair of parameters (D,R)
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we found numerically a set of eigenvalues of operator (E5)
for the range μ = 0,10 and for the fixed boundary conditions
ψμ(0) = ψμ(π ) = 0. Using the mentioned criterion, we found
some narrow instability regions in the diagram Fig. 2 in the
vicinity of boundaries between states with different helicity
numbers w. These instabilities are found there only for modes
μ = 2; thus following Ref. [81], we call it elliptical instability.

APPENDIX F: MICROMAGNETIC SIMULATIONS

In order to verify our analytical results we performed
micromagnetic simulations with the FinMag code, which is the
successor to the Nmag tool [93]. We used the material param-
eters of cobalt: A = 1.6 × 10−11 J/m, Ms = 1.1 × 106 A/m,
and K = 1.3 × 106 J/m3, which are typical for Pt/Co/AlOx

layer structures [43]. For comparison, we also performed a
simulation neglecting the magnetostatic interaction, assuming
that it can be reduced to an effective easy-surface anisotropy,
we used Keff = 5.1 × 105 J/m3. These parameters correspond

to � = 5.6 nm. In all simulations the ratio L/R = 0.1 is kept
constant. The size of the discretization mesh is 0.1 − 0.2L.

To verify the dependence Rs(D) shown in Fig. 1 we
simulate the shell with radius R = 3� = 16.8 nm, thickness
L = 0.3� = 1.68 nm, and an average mesh size of 0.42 nm.
Since the mesh discreteness breaks the topological stability,
we are not able to obtain the skyrmions with small radii
Rs < 0.2R. The same geometrical parameters are used in
simulations for Fig. 2.

To simulate the formation of skyrmions by means of a
uniform field, see Fig. 4, we consider a spherical shell with
radius R = 15 nm and thickness L = 1.5 nm. The applied
magnetic field is increased from zero up to the value 1.5 T
with a rate of 330 mT/ns. The field is then decreased back
to zero with rate 82 mT/ns. In order to break the symmetry
and avoid the unstable equilibrium state we introduce a radial
b = b0n field with a small amplitude b0 = 5 mT. Fields in
Fig. 4 are normalized to the value B0 = 4πMs = 1.38 T. In
this numerical experiment we reduce magnetostatics to the
effective easy-surface anisotropy.

[1] P. W. Anderson and G. Toulouse, Phase Slippage Without Vortex
Cores: Vortex Textures in Superfluid 3He, Phys. Rev. Lett. 38,
508 (1977).

[2] G. Volovik, The Universe in a Helium Droplet (Oxford Univer-
sity Press, Oxford, 2003).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] J. E. Moore, The birth of topological insulators, Nature (London)
464, 194 (2010).

[5] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, A topological Dirac insulator in a quantum spin
Hall phase, Nature (London) 452, 970 (2008).

[6] S.-Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu,
M. Neupane, G. Bian, S.-H. Huang, R. Sankar, C. Fang, B.
Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth,
and M. Z. Hasan, Momentum-space imaging of Cooper pairing
in a half-Dirac-gas topological superconductor, Nat. Phys. 10,
943 (2014).

[7] S. Kobayashi and M. Sato, Topological Superconductivity in
Dirac Semimetals, Phys. Rev. Lett. 115, 187001 (2015).

[8] G. P. Alexander, B. G.-g. Chen, E. A. Matsumoto, and R. D.
Kamien, Colloquium: Disclination loops, point defects, and all
that in nematic liquid crystals, Rev. Mod. Phys. 84, 497 (2012).

[9] M. Kleman and O. D. Lavrentovich, Topological point defects
in nematic liquid crystals, Philos. Mag. 86, 4117 (2006).

[10] A. A. Thiele, Steady-State Motion of Magnetic of Magnetic
Domains, Phys. Rev. Lett. 30, 230 (1973).

[11] A. A. Belavin and A. M. Polyakov, Metastable states of a 2D
isotropic ferromagnet, Zh. Eksp. Teor. Fiz. 22, 503 (1975) [JETP
Lett. 22, 245 (1975)].

[12] A. P. Malozemoff and J. C. Slonzewski, Magnetic Domain Walls
in Bubble Materials (Academic Press, New York, 1979).

[13] N. Papanicolaou and T. N. Tomaras, Dynamics of magnetic
vortices, Nucl. Phys. B 360, 425 (1991).

[14] S. Komineas and N. Papanicolaou, Topology and dynamics
in ferromagnetic media, Physica D: Nonlin. Phenom. 99, 81
(1996).

[15] J. Barker and O. A. Tretiakov, Static and Dynamical Prop-
erties of Antiferromagnetic Skyrmions in the Presence of
Applied Current and Temperature, Phys. Rev. Lett. 116, 147203
(2016).

[16] M. J. Bowick and L. Giomi, Two-dimensional matter: order,
curvature and defects, Adv. Phys. 58, 449 (2009).

[17] V. Vitelli and A. M. Turner, Anomalous Coupling Between
Topological Defects and Curvature, Phys. Rev. Lett. 93, 215301
(2004).

[18] A. M. Turner, V. Vitelli, and D. R. Nelson, Vortices on curved
surfaces, Rev. Mod. Phys. 82, 1301 (2010).

[19] G. Napoli and L. Vergori, Extrinsic Curvature Effects on
Nematic Shells, Phys. Rev. Lett. 108, 207803 (2012).

[20] G. Napoli and L. Vergori, Effective free energies for cholesteric
shells, Soft Matter 9, 8378 (2013).

[21] Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Curvature
Effects in Thin Magnetic Shells, Phys. Rev. Lett. 112, 257203
(2014).

[22] D. D. Sheka, V. P. Kravchuk, and Y. Gaididei, Curvature effects
in statics and dynamics of low dimensional magnets, J. Phys. A:
Math. Theor. 48, 125202 (2015).

[23] N. D. Mermin, The topological theory of defects in ordered
media, Rev. Mod. Phys. 51, 591 (1979).

[24] D. J. Thouless, Topological Quantum Numbers in Nonrelativistic
Physics (World Scientific, Singapore, 1998).

[25] B. Dubrovin, A. Fomenko, and S. Novikov, Modern Geometry -
Methods and Applications: Part II: The Geometry and Topology
of Manifolds, GTM093 (Springer, New York, 1985).

[26] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Magnetic
solitons, Phys. Rep. 194, 117 (1990).

[27] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge
Monographs on Mathematical Physics (Cambridge University
Press, Cambridge, UK, 2004).

[28] A. N. Bogdanov and D. A. Yablonskiı̆, Thermodynamically
stable “vortices” in magnetically ordered crystals. The mixed
state of magnets, Zh. Eksp. Teor. Fiz. 95, 178 (1989) [Sov. Phys.
JETP 68, 101 (1989)].

144402-9

http://dx.doi.org/10.1103/PhysRevLett.38.508
http://dx.doi.org/10.1103/PhysRevLett.38.508
http://dx.doi.org/10.1103/PhysRevLett.38.508
http://dx.doi.org/10.1103/PhysRevLett.38.508
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nphys3139
http://dx.doi.org/10.1038/nphys3139
http://dx.doi.org/10.1038/nphys3139
http://dx.doi.org/10.1038/nphys3139
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/RevModPhys.84.497
http://dx.doi.org/10.1103/RevModPhys.84.497
http://dx.doi.org/10.1103/RevModPhys.84.497
http://dx.doi.org/10.1103/RevModPhys.84.497
http://dx.doi.org/10.1080/14786430600593016
http://dx.doi.org/10.1080/14786430600593016
http://dx.doi.org/10.1080/14786430600593016
http://dx.doi.org/10.1080/14786430600593016
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1016/0550-3213(91)90410-Y
http://dx.doi.org/10.1016/0550-3213(91)90410-Y
http://dx.doi.org/10.1016/0550-3213(91)90410-Y
http://dx.doi.org/10.1016/0550-3213(91)90410-Y
http://dx.doi.org/10.1016/S0167-2789(96)00130-3
http://dx.doi.org/10.1016/S0167-2789(96)00130-3
http://dx.doi.org/10.1016/S0167-2789(96)00130-3
http://dx.doi.org/10.1016/S0167-2789(96)00130-3
http://dx.doi.org/10.1103/PhysRevLett.116.147203
http://dx.doi.org/10.1103/PhysRevLett.116.147203
http://dx.doi.org/10.1103/PhysRevLett.116.147203
http://dx.doi.org/10.1103/PhysRevLett.116.147203
http://dx.doi.org/10.1080/00018730903043166
http://dx.doi.org/10.1080/00018730903043166
http://dx.doi.org/10.1080/00018730903043166
http://dx.doi.org/10.1080/00018730903043166
http://dx.doi.org/10.1103/PhysRevLett.93.215301
http://dx.doi.org/10.1103/PhysRevLett.93.215301
http://dx.doi.org/10.1103/PhysRevLett.93.215301
http://dx.doi.org/10.1103/PhysRevLett.93.215301
http://dx.doi.org/10.1103/RevModPhys.82.1301
http://dx.doi.org/10.1103/RevModPhys.82.1301
http://dx.doi.org/10.1103/RevModPhys.82.1301
http://dx.doi.org/10.1103/RevModPhys.82.1301
http://dx.doi.org/10.1103/PhysRevLett.108.207803
http://dx.doi.org/10.1103/PhysRevLett.108.207803
http://dx.doi.org/10.1103/PhysRevLett.108.207803
http://dx.doi.org/10.1103/PhysRevLett.108.207803
http://dx.doi.org/10.1039/c3sm50605c
http://dx.doi.org/10.1039/c3sm50605c
http://dx.doi.org/10.1039/c3sm50605c
http://dx.doi.org/10.1039/c3sm50605c
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0370-1573(90)90130-T


VOLODYMYR P. KRAVCHUK et al. PHYSICAL REVIEW B 94, 144402 (2016)

[29] A. Bogdanov and A. Hubert, Thermodynamically stable mag-
netic vortex states in magnetic crystals, J. Magn. Magn. Mater.
138, 255 (1994).

[30] A. Bogdanov and A. Hubert, The stability of vortex-like
structures in uniaxial ferromagnets, J. Magn. Magn. Mater. 195,
182 (1999).

[31] A. N. Bogdanov and U. K. Rößler, Chiral Symmetry Breaking
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and inertia of skyrmionic spin structures, Nat. Phys. 11, 225
(2015).

[35] A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A.
N. Bogdanov, and R. Wiesendanger, The properties of isolated
chiral skyrmions in thin magnetic films, New J. Phys. 18, 065003
(2016).

[36] S. Komineas and N. Papanicolaou, Skyrmion dynamics in chiral
ferromagnets, Phys. Rev. B 92, 064412 (2015).

[37] T. Machon and G. P. Alexander, Knots and nonorientable
surfaces in chiral nematics, Proc. Natl. Acad. Sci. USA 110,
14174 (2013).

[38] V. S. R. Jampani, M. Skarabot, M. Ravnik, S. Copar, S. Zumer,
and I. Musevic, Colloidal entanglement in highly twisted chiral
nematic colloids: Twisted loops, Hopf links, and trefoil knots,
Phys. Rev. E 84, 031703 (2011).

[39] B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T.
C. Lubensky, and I. I. Smalyukh, Topological colloids, Nature
(London) 493, 200 (2012).

[40] F. G. Mertens and A. R. Bishop, Dynamics of vortices in two-
dimensional magnets, in Nonlinear Science at the Dawn of the
21st Century, edited by P. L. Christiansen, M. P. Soerensen, and
A. C. Scott (Springer-Verlag, Berlin, 2000), p. 137.

[41] E. Feldtkeller, Mikromagnetisch stetige und unstetige Mag-
netisierungskonfigurationen, Z. Angew. Phys. 19, 530 (1965).

[42] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert,
Nucleation, stability and current-induced motion of isolated
magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8, 839
(2013).

[43] S. Rohart and A. Thiaville, Skyrmion confinement in ultrathin
film nanostructures in the presence of Dzyaloshinskii-Moriya
interaction, Phys. Rev. B 88, 184422 (2013).
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