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Zusammenfassung

Im Zusammenhang mit dem Dyson-Schwinger- und Bethe-Salpeter-Ansatz

wurde das Spektrum von Mesonen als Bindungszustände der Quantenchromo-

dynamik untersucht. In der vorliegenden Arbeit werden die Ergebnisse für

Grundzustandsmassen und die Massen radialer Anregungen von pseudoskalaren-

und Vektormesonen präsentiert. Für die Berechnungen wurde das Regenbogen-

Leiter-Trunkierungsschema mit einem modellierten Wechselwirkungskern ge-

nutzt. Die trunkierte Quark-Dyson-Schwinger-Gleichung und die trunkierte

Bethe-Salpeter-Gleichung wurden iterativ im Euklidischen Raum gelöst. Der

genutzte Formalismus wurde auf höherenergetische Bindungszustände er-

weitert, indem die auftretende Pol-Struktur explizit unter Zuhilfenahme von

Methoden der Funktionentheorie behandelt wurde. Des weiteren wurden

die Zerfallskonstante des Pions, das chirale Kondensat sowie die Regge-

Trajektorien der pseudoskalaren Bindungszustände betrachtet. Die Ergeb-

nisse wurden genutzt um Aussagen über den Parameterraum der model-

lierten Wechselwirkung machen zu können.

Abstract

Within the combined Dyson-Schwinger and Bethe-Salpeter approach the

spectrum of mesons as QCD boundstates has been investigated. In this the-

sis the results for groundstate masses and masses of radially excited states of

pseudoscalar and vector mesons are presented. For the explicit calculations

the rainbow-ladder truncation scheme has been used with a modelled inter-

action kernel. The truncated quark Dyson-Schwinger equation and the trun-

cated Bethe-Salpeter equation have been solved iteratively in the Euclidean

space. The used formalism has been extended to higher-energy boundstates

by treating the arising pole structure explicitly using methods from complex

analysis. Further it has been taken a look at the pion decay constant, the chi-

ral condensate and the Regge trajectories of the pseudoscalar boundstates.

The results are used to discuss the parameterspace of the model interaction.
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1 | Introduction

For investigating the phenomenas of small particles at high energies it is com-

mon to make use of the standard model of particle physics . It is the quantum

�eld theory which describes elementary particles best with the largest coinci-

dence compared to experimental data. It can be divided into the electroweak

theory and quantum chromodynamics (QCD). Quantum chromodynamics is

the quantum �eld theory for describing strong interaction phenomena. It

was formulated by Gell-Mann, Fritzsch and Leutwyler and can be seen as an

analogon to quantum electrodynamics (QED). Instead of leptons and pho-

tons QCD contains quarks and gluons and describes the interaction among

them. Quarks are fermions which can be divided in three families (analogue

to leptons). Each family contains two quarks, which results in six quark

�avours: up u, down d, strange s, charm c, bottom b and top t. Furthermore

QED is an Abelian gauge theory with symmetry group U(1), while QCD is

a non-Abelian gauge theory with symmetry group SU(3), which results in

eight gauge bosons, called gluons, and leads to the self interaction of them.

A consequence of the latter is the di�erent behaviour of the running coupling

compared to QED. Running coupling means, that the interaction strength

depends on the energy scale of the examined processes. In QED the in-

teraction is weak at low energies. In QCD the interaction is weak at large

energies, which is known as asymptotic freedom. In that regime processes

can be evaluated by perturbation theory very well. For low energies the in-

teraction strength of QCD becomes very large, which results in con�nement.

It can be visualised in such a manner that the force between quarks rises if

one tries to separate them and the energy of the gluon �eld increases until

it is high enough to create a new quark-antiquark pair, so the quarks will

never appear free but they are always bound into boundstates.
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1. Introduction

The boundstates of QCD are called hadrons. They are composite objects

containing two or more quarks and anti-quarks, respectively. They can con-

tain three quarks (baryons), three anti-quarks (anti-baryons), one quark

and one anti-quark (mesons) or higher numbered combinations of quarks

and anti-quarks (exotica, like tetraquarks or pentaquarks). The constituent

quarks have the introduced �avours instead of top t, which is to heavy to

form observable boundstates. Baryons and mesons can be arranged by their

quantum numbers (charge Q, spin S, hypercharge Y , isospin I, ...) and

depicted in multiplets, see Fig. 1.1.

In this thesis the interest lies on the boundstate masses of mesons. A common

categorisation of mesons is to consider the quantum numbers J = L + S

(total angular momentum), P (parity) and C (charge parity), where JPC =

0−+ denotes pseudoscalar, JPC = 0++ scalar, JPC = 1−− vector, JPC =

1+− and JPC = 1++ pseudovector and JPC = 2++ tensor mesons for all

possible combinations with angular momentum L ∈ {0, 1}. An overview of

experimental values of hadron masses is exhibited in Fig. 1.2.

Source: http://tinyurl.com/zashyop

(a)

Source: http://tinyurl.com/jhsk25x

(b)

Figure 1.1: Hadron multiplets; left panel: multiplet of pseudoscalar
mesons containing u, d, s and c quarks. The charmness C denotes the
number of c quarks, right panel: baryon octet containing u, d and s
quarks. The strangeness S denotes the number of c quarks.

The energy scale of meson boundstates is quite low compared to modern

high-energy scattering experiments and the coupling strength is large, related

to the strong interaction, which implies that naive perturbation theory is not

2
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Source: http://tinyurl.com/hmm43tq

Figure 1.2: Spectrum of light mesons and baryons. Black bars: exper-
imental values, coloured symbols: di�erent lattice calculations results.

applicable. To describe the spectrum of meson boundstate masses and other

properties, like decay constants and form factors, another method must be

chosen. A popular non-perturbativ approach is to de�ne and solve quantum

chromodynamics on a grid,which is called lattice QCD [11,19,24]. It has the

disadvantage of losing relativistic covariance and having a huge demand on

computer power. Nevertheless it can provide good results, e.g. reproducing

experimental hadron masses (see Fig. 1.2).

Another possibility is to use a recursive integral equation for evaluating prop-

agators and interaction amplitudes among quarks and gluons and extracting

the meson properties from this quantities. It is made use of a combined con-

sideration of the Dyson-Schwinger equation for quarks and gluons and the

Bethe-Salpeter equation for boundstates of two quarks which is also known as

the integral approach of QCD. This approach grants relativistic covariance.

In the past this approach has been used successful to obtain electromagnetic

properties of nuclei, like the deuteron [29, 57], and to reproduce partly the

spectrum of known meson masses. The approach is able to generate dynam-

ical masses for describing the relative high constituent quark mass compared

to their bare masses and it can describe pions in a correct way, which are

much lighter than the sum of two constituent quarks. It means that this

integral approach includes another e�ect of the strong interaction very well,

3
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1. Introduction

the dynamical chiral symmetry breaking (DCSB), which has been modeled,

e.g. by the linear sigma model.

Unfortunately inside this integral approach a couple of additional approx-

imations have to be done to solve the in�nite number of recursive steps.

This approximations must guarantee that the integral equations produce

results with good accuracy after a few steps. Usually the full integral equa-

tions were truncated at any point and this truncated Dyson-Schwinger and

Bethe-Salpeter equations are evaluated by a model interaction. A common

truncation scheme is the rainbow-ladder truncation, used in many mod-

els [2, 6, 40, 46, 49]. This parameter dependent models provide a quite good

description of masses and decay constants of several pseudoscalar and vector

meson groundstates compared to experimental values. Unfortunately the

spectrum of radially excited boundstates does not coincide with the experi-

mental data. It also turned out that within this models the propagators of

the quarks have a non-physical pole structure, which limits the evaluation

of the spectrum of meson masses by a maximal value. There are already

some attempts made to bypass this pole structure and make predictions for

higher meson boundstates [4, 34]. One goal of this thesis is to handle this

pole structure explicitly to evaluate the higher meson boundstates directly.

This seems to be possible by using methods from complex analysis and �rst

progress was made in [10]. In this thesis emphasis lies on the model of R.

Alkofer and his colleagues [2]. The model they used is simple compared to

the other models [6,40,46,49] and it seems to be outmoded for doing meson

spectroscopy with high accuracy. Otherwise this model provides a couple

of advantages concerning the technical implementation of �nding meson ob-

servables and handling the pole structure. Further, the results of the groups

who used this interaction model [2,6] seem to be very exemplary for certain

points in the four-dimensional parameter space of this model. So the second

goal of this thesis is, to go systematically through this parameter space to

give a better overview over the found meson spectrum.

In the second chapter the Dyson-Schwinger equations, the Bethe-Salpeter

equation, the truncation scheme and the used interaction model are intro-

duced. Further a few comments about Regge trajectories are made. In
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the third chapter the technical details for evaluating iterative the truncated

Dyson-Schwinger equation are discussed. It is shown how the pole structure

of the propagator functions could be found. The truncated Bethe-Salpeter

equation is expanded into a few series and it is explained how the meson

masses can be extracted without the necessity of �nding the Bethe-Salpeter

amplitudes. Further a parametrisation is introduced to bring the truncated

Bethe-Salpeter equation in a convenient form for handling the quark prop-

agator pole structure and it is explained how to do latter. In the fourth

chapter the resulting meson spectrum of pseudoscalar and vector mesons

containing u, d, s and c quarks has been compared to the results of other

groups. Mesons containing b quarks have been neglected, because in this

thesis the mesons including c quarks, D,Ds, ηc, D
∗, D∗s and J/ψ, are rep-

resentative for the problematic of describing light, heavy and heavy-light

mesons within the same interaction model. The results have been tested on

the independence of the numerical parameters. Then the model parameters

have been systematically varied to see how the meson observables change

and to �nd optimal sets of parameters for di�erent condition. The obtained

meson spectrum has been analysed in sense of �nding Regge type behaviour,

a principle of ordering eigenstates of a quantum system with its origin in

string theory. Beside meson masses the pion decay constant and the chiral

condensate for massless quarks have been calculated. At last the constraints

of the applied approximations and methods are discussed and an outlook to

improve them is given.
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2 | Dyson-Schwinger and Bethe-

Salpeter approach

2.1 The quark Dyson-Schwinger equation

The Dyson-Schwinger equations 1 (DSEs) are a couple of integral equations,

which can be seen as the integral formulation in equivalence to full quantum

chromodynamics. They connect the Green's functions of the QCD and give

expressions for the dressed quark propagator S, the dressed gluon propagator

Dµν , the quark-gluon vertex Γµ and, if needed, the ghost propagator and ver-

tices. Furthermore, two more equations exist for the gluon self-interaction,

one for the three-point function and one for the four-point function. QCD

as a non-Abelian gauge theory is treated with ghost �elds ca, which couple

to the gluon. Therefore two more Dyson-Schwinger equations appear, one

for the ghost propagator and one for the ghost-gluon vertex [54].

In the end there are seven integral equations to solve and each expression

is connected to each other expression of them, which results in an in�nite

tower of integral equations. To reach a solvable form it is inevitable till now

to cut this expressions at a suitable point and do so called truncations.

In this thesis we are going to �nd a solution of the dressed quark propagator

S. The Dyson-Schwinger equation reads

S−1(p) = S−1
0 (p)−

∫
d4k

(2π)4
[−igγν τ

a

2
]Dµν(p, k)Γµ,a(p, k)S(k), (2.1)

where S0 is the undressed quark propagator, γν are the Dirac matrices with

{γµ, γν} = 2gµν , τa are colour matrices, p and k are four-momenta and g is

1The Dyson-Schwinger equations have been introduced by F. Dyson and J. Schwinger
[12,51,52]; surveys can be found in [1, 48].
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2. Dyson-Schwinger and Bethe-Salpeter approach

the QCD coupling constant. An illustration of Eq. (2.1) is shown in Fig. 2.1.

For solving this equation, expressions for Dµν and Γµ have to be speci�ed.

�
=

�
+

�
Figure 2.1: Diagrammatic representation of the quark Dyson-Schwinger
equation. Double lines represent dressed propagators, single lines are
undressed propagators. The vertex with the shaded blob is a dressed
quark-gluon vertex and the black dot is an undressed one.

First the so called rainbow truncation [41] is applied

Γµ,a(p, k)⇒ −igγµ τ
a

2
. (2.2)

To illustrate the nomenclature of this approximation it is useful to insert Eq.

(2.1) iterative into itself. The resulting Feynman diagrams look like rainbows,

if the fermion is drawn as a straight line (i.e. all Feynman diagrams with

crossing gluon lines vanish). The rainbow approximation is applicable for

processes with low energy. Concerning qq boundstates with masses smaller

than 4 GeV this approximation is supposed to work. However, there are

also signi�cant problems associated with the rainbow approximation, like

the loss of gauge covariance and the appearance of an unphysical singularity

structure in the solution of the quark propagators [48]. The last one takes

up an important role in this thesis and is considered more in detail below.

Secondly, the gluon propagator can be written as [48]

g2Dµν(k) =

(
gµν −

kµkν
k2

)
D(k2) + α

kµkν
k4

, (2.3)

where D(k2) = 1/(k2[1+Π(k2)]) is the scalar kernel function with the gluon

self-energy Π(k2) and α is the gauge parameter. In this thesis α = 0, so

called Landau gauge, is chosen, because it is argued that the calculations in

8



2.2 Bethe-Salpeter equation for mesons

this thesis are numerically reliable in this gauge [20]. The resulting truncated

Dyson-Schwinger equation (tDSE) for the quark propagator reads [9]

S−1(p) = S−1
0 (p) +

4

3

∫
d4k

(2π)4
[g2Dµν(p− k)]γµS(k)γν (2.4)

with the undressed quark propagator

S−1
0 (p) = /p + m. (2.5)

The summation over the colour matrices contributes with the Casimir factor

CF = 4/3 for number of colours NC = 3 [48], m is the current quark mass

(also called naked quark mass or bare quark mass) and /p denotes γµpµ. Eq.

(2.5) is often denoted by gap equation. An illustration of the truncated

Dyson-Schwinger equation is shown in Fig. 2.2.

�
=

�
+

�
Figure 2.2: Diagrammatic representation for the truncated quark
Dyson-Schwinger equation in rainbow approximation. Line codes as in
Fig. 2.1.

2.2 Bethe-Salpeter equation for mesons

To �nd the mass of a quark-antiquark boundstate it is necessary to solve

the Bethe-Salpeter equation 2 (BSE). In Minkowski space the homogeneous

BSE has the general form [25]

Γ(P, p) = i

∫
d4k

(2π)4
K(P, p, k)S(k1)Γ(P, k)S(k2), (2.6)

2The Bethe-Salpeter equation has been introduced in [50] to formulate an approach to
relativistic two-body boundstates (The relativistic three-body problem is dealt with the
Faddeev equation [14]). It has been �rst used for mesons in [5]. It has been successfully
used for describing e.g. the properties of deuteron [29,57]. For a survey see [42].

9



2. Dyson-Schwinger and Bethe-Salpeter approach

where Γ(P, p) is the Bethe-Salpeter vertex function, K(P, p, k) is the inter-

action kernel and S(k) is the quark propagator from Eq. (2.5). k1 and k2 are

the quark momenta; the total momentum P and the relative momentum k

are de�ned by P = k1 + k2 and k = (k1 − k2)/2.

� =�
Figure 2.3: Diagrammatic representation of the homogeneous Bethe-
Salpeter Eq. (2.6). The blob is the Bethe-Salpeter vertex function Γ(P, p)
and the rectangle is the interaction kernel K(P, p, k).

In Fig. 2.3 the corresponding diagrammatic illustrations are exhibited.

For solving the Dyson-Schwinger equation and the Bethe-Salpeter equation

in a consistent manner for both the same interaction model with the same

truncations has to be used [47]. The introduced rainbow truncation (2.2) im-

plies the ladder approximation, justi�ed by the manifestation of the Gold-

stone theorem [3]. The rainbow-ladder truncation is consistent with the

axial-vector Ward-Takahashi identity (AVWTI) [39], which gives a relation

between the vertex functions Γ and the quark propagator S. Practically it

means that the interaction of the two quarks in the diquark boundstate is

approximated by an in�nite number of one-gluon exchanges. The interaction

kernel K(P, p, k) in rainbow-ladder truncation reads [39]

K(P, p, k) = −g2Dµν(p− k)
(
γµ
τa

2

)(
γν
τa

2

)
, (2.7)

where τa are colour matrices and g2Dµν(p − k) is given in Eq. (2.3). An

illustration of the �rst three Feynman diagrams which contribute to the

interaction kernel in rainbow-ladder truncation is shown in Fig. 2.4; in Fig.

2.5 two examples for Feynman diagrams which do not contribute in rainbow-

ladder truncation are displayed.

For solving the truncated Bethe-Salpeter equation (tBSE) it is useful to

switch from Minkowski space to the Euclidean space, because common ap-

proaches for the interaction kernel are formulated in Euclidean space [2, 40,

10



2.2 Bethe-Salpeter equation for mesons

���
Figure 2.4: A few Feynman diagrams which contribute to the interac-
tion kernel within the rainbow-ladder approximation.

��
Figure 2.5: Feynman diagrams which do not contribute to the interac-
tion kernel within the rainbow-ladder approximation.

46]. After using the simple transition rules from Appendix C and summing

up over all colour matrices the tBSE in the Euclidean space reads [10,20]

Γ(P, p) = −4

3

∫
d4k

(2π)4
γµS(k1)Γ(P, k)S(k2)γν [g2Dµν(p− k)]. (2.8)

The summation over the colour matrices again contributes with the Casimir

factor CF = 4/3. For solving both, the tDSE and the tBSE, the kernel D(k2)

has to be speci�ed. A common and often used one is introduced in [40], the

so called Maris-Tandy (MT) kernel,

DMT(k2) =

(
4π2Dk2

ω2
e−

k2

ω2 +
8π2γmF (k2)

ln[τ + (1 + k2

Λ2
QCD

)2]

)
, (2.9)

where D is a parameter for the interaction strength, ω is a parameter for

the interaction range, γm = 12/(33 − 2Nf ), Nf is the number of quark

�avours, τ = e2−1, F (k2) = [1−exp(−k2/[4m2
t ])]/k

2 and the chosen values

of the parameters are mt = 0.5 GeV, Nf = 4 and ΛQCD = 0.234 GeV.

This kernel contains two terms. The �rst term is called infrared (IR) term

and gives the main contribution for small values of k up to 2 GeV. It

is a model term which is discussed explicitly in [40]. The second term is

called ultraviolet (UV) term and contains the exact contribution for large

momenta k, calculated in perturbation theory at one-loop order. Anyway, it

11



2. Dyson-Schwinger and Bethe-Salpeter approach

is argued that this UV term does not contribute too much to the observables

of boundstates. Within the introduced rainbow approximation the focus is

already located on the low energy scale, where the UV term is less important.

It seems possible to neglect this term, which provides a few advantages in

the subsequent calculations of this thesis. Integrals related to the IR part

converge rather fast for large momenta k and the necessity of a cuto� of the

momentum integration vanishes. Further, the logarithm in the nominator

of the UV term can lead to additional singularities when calculations are

shifted to the complex momentum space. The IR part of the MT kernel is

known as Alkofer-Watson-Weigel (AWW) kernel, introduced and used in [2]:

DAWW(k2) =
4π2Dk2

ω2
e−

k2

ω2 . (2.10)

This kernel is used for the calculations in this work and has to be inserted

into Eq. (2.3); It provides several numerical advantages (e.g. expansion in

a series of harmonics) and is used by several groups [2,6]. An illustration of

the kernels 2.9 and 2.10 is given in Appendix A.

For avoiding misunderstandings here are a few words about the notion �ker-

nel�. In principle it comes from the type of integral equation which has to

be solved. For the Fredholm type tDSE (2.5) the kernel would be the combi-

nation of g2Dµν(p− k) and the Dirac matrices γµ and γν , for the Fredholm

type tBSE the kernel would be the same plus additional the two propagators

S(k1) and S(k2). According to the nomenclature of [40] the scalar kernel

functions (2.9) and (2.10) are called kernel till the end of this thesis.

2.3 Regge behaviour

Regge behaviour is a property of the eigenstates of a quantum system. They

have this property, if the eigenstates are located on a so called Regge trajec-

tory,

M(J)2 = M2(0) + βJ, (2.11)

where J is the quantum number of the angular momentum of the boundstate,

M(0) the groundstate mass and β the constant slope of the Regge trajectory.

Following the particle data group (PDG) nomenclature [44], hadrons are

characterised, besides massesM , by JPC , with P = ±1 as parity and C = ±1

12



2.3 Regge behaviour

as charge parity. For mesons in direction of J within the MT model (2.9)

Regge behaviour is explored in [34] with emphasis on light mesons (uu, us

and ss boundstates).

In the present thesis the Regge behaviour in radial direction is considered for

pseudoscalar mesons, where at least three eigenstates could be found. The

Regge trajectory for radially excited meson boundstate has been introduced

e.g. in [13] with a few comments on its origin in string theory.

13
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3 | Numerical Implementation

3.1 Solving the Dyson-Schwinger equation

The techniques used for this thesis can be found very detailed in [9]; the

main steps and some extensions are introduced in this section.

3.1.1 Solution on the positive real axis

The dressed quark propagator S depends on two functions, the renormali-

sation constant Z and the self-energy Σ(p). Instead of these functions the

propagator can be expressed via two other functions A(p) and B(p) or al-

ternatively σs(p) and σv(p). With these quantities the dressed propagator

reads [38]

S−1(p) = i/pA(p) +B(p),

S(p) = − i/pσv(p) + σs(p),
(3.1)

where the propagator functions σv(p) and σs(p) are related to the functions

A(p) and B(p) via

σv(p) =
A(p)

p2A2(p) +B2(p)
,

σs(p) =
B(p)

p2A2(p) +B2(p)
.

(3.2)

15



3. Numerical Implementation

Inserting Eq. (3.1) and the kernel (2.10) into Eq. (2.5), taking once directly

the trace and twice multiplying with /p/p and executing then the trace it

results the following coupled system of equations:

pA(p) = p +

∫∫
dkk3

3π3
dt
√

1− t2D(p, k, t)
kA(k)

k2A2(k) +B2(k)

×
(
t+ 2

(p− kt)(pt− k)

p2 + k2 − 2pkt

)
,

B(p) = mq +

∫∫
dkk3

π3
dt
√

1− t2D(p, k, t)
B(k)

k2A2(k) +B2(k)
,

(3.3)

where mq is the current quark mass and D(p, k, t) is de�ned in Eq. (2.10)

and has the argument p2 + k2− 2pkt with the hyperangle t = cos(χpk). The

propagator functions do not depend on the hyperangle so the integration over

t can be done numerically without problems and two one-dimensional integral

equations remain. They can be solved numerically by an iteration method,

which turned out to converge rather fast with practically no dependence on

the choice of the trial start functions A(p) and B(p). The three independent

parameters are mq, ω and D. The solutions of the tDSE A(p) and B(p) are

smooth, positive and �nite functions, where A(p) converges to 1 and B(p)

converges to mq for p → ∞. In Appendix E the propagator functions of

Eq. (3.1) are exemplary shown for ω = 0.5 GeV, D = 16 GeV−2 and several

quark masses mq.

3.1.2 Solution in the complex plane

In the previous section the propagator functions have been found for positive

real momenta p. From Eq. (2.6) it can be seen that the integration domain,

where the propagator functions are needed, is bounded by a parabola and

k1 and k2 in Euclidean space read

k̃2
1/2 = k̃2 − η2

1,2M
2
qq ± 2iη1,2Mqqk̃ cosχ, (3.4)

where η1,2 is the momentum partitioning parameter with η1 + η2 = 1) and k̃

is the modulus of an Euclidean four-vector kE = (k4,~k) with k̃ =

√
k2

4 + ~k 2.

Therefore the propagator functions (3.1) must be found for complex argu-

ments. Di�erent methods exist for evaluating the tDSE in the whole complex

plane [26]. Here, a selection is listed, but only the relevant ones which are
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3.1 Solving the Dyson-Schwinger equation

needed in this thesis are precisely described.

The most straight forward way is to use the method introduced in [2], called

"brute force". In Eq. (3.3) the propagator functions A(k) and B(k) on the

right side only depend on the real internal (under the integral) momentum

k. It follows that for complex arguments p the real solutions of A(p) and

B(p) can be used to solve Eq. (3.3) everywhere in the complex plane. Al-

though this method seems to provide the propagator functions everywhere in

a simple way it has some disadvantages. First it works only for kernels with

an innocent structure like the AWW kernel (2.10). The full MT kernel (2.9)

is an example where the �brute force� method does not work at all in the

complex plane (see Appendix A). However, in this thesis calculations are re-

stricted to the AWW kernel. Secondly, if the imaginary part of the argument

p becomes too large, the numerical integration gets worse caused by oscilla-

tions of the integrand. The oscillating term is located in the kernel (2.10)

and is studied more closely in Appendix B. Thirdly, the method includes

two numerical integrations, which costs some computing time. Especially

for the mentioned problem with higher imaginary parts of the arguments

the accuracy of the calculation has to be improved, which means that the

number of mesh points increases continuous, see again Appendix B.

A method for �nding the solution of the propagator functions in the complex

plane is to solve Eq. (3.3) once along a closed contour C with the �brute force�
method and then using Cauchy's theorem

A(z) =
1

2πi

∮
C

A(ξ)

ξ − z
dξ (3.5)

to calculate the needed quantities at any point inside this contour [17]. Com-

pared to Eq. (3.3) this method is practically reduced by one numerical in-

tegration and therefore much faster than the �brute force� method. The

initialising computation on the contour C is negligibly short if the number of

evaluated points inside the contour is adequately high. The contour is shown

in Fig. 3.1 (violet parabola with vertical boarder), the numerical integration

is done with a mapped Gaussian mesh; the number of integration points on

each branch and on the vertical line depend on the size of the contour C.
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Re k̃2

Im k̃2

k̃2
Ck̃2

UV−η2M2

C

Figure 3.1: Integration domain of the tBSE (2.8) in the complex k̃2

plane in Euclidean space (black parabola, compare Eq. (3.4)). For mo-
menta smaller than k̃2UV Cauchy's theorem (3.5) is applied using the vio-

let parabolic contour. For momenta larger than k̃2UV the parametrisation
(3.6) is used.

Another possibility to determine the propagator functions in the complex

plane is to use a parametrisation. If an appropriate choice of such a parametri-

sation is found, the solution on the real axis will be �tted to it with a suitable

algorithm and then the �t can be used to �nd the solution for complex argu-

ments. Of course, such a �t can not re�ect the exact analytically continua-

tion. But it has been found that for �good �t functions� and moderately large

imaginary parts the �tted results are almost identical with the values found

with the �brute force� method. To improve the quality of the parametrisa-

tion in the deep complex plane (for larger imaginary parts) it is useful to use

not only the solution on the real axis for �tting, but also several points in

the complex domain, where the �t will be applied.

One advantage of such a �t is, to avoid the above mentioned oscillations

(Appendix B). As seen from Eq. (3.4) for larger values of k̃ the imaginary

part of k̃1/2 raises linearly and it is inevitable to use a convenient �t function.

For smaller values of k̃ where Re(k̃1/2) ≤ 0 it is useful to use the Cauchy's

theorem method with a parabolic contour like the one exhibited in Fig. 3.1.
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3.1 Solving the Dyson-Schwinger equation

In this thesis the parametrisation function is chosen as in [53]:

σκ(k̃2) =

3∑
i

( αi(κ)

k̃2 + β2
i (κ)

+
α∗i (κ)

k̃2 + β∗2i (κ)

)
, (3.6)

where κ ∈ [s, v] and αi and β
2
i are complex parameters. In contrast to [53],

each of the propagator functions σs,v(k̃
2) has its own set of parameters. The

number of parameters is the same as in [53], but in principle chosen at will.

Only using two of each parameters αi and βi seems to be insu�cient. With

three parameters the reproduced propagator functions are precise enough

for the necessary subsequent calculations in the tBSE. An advantage of this

parametrisation is that it re�ects the homogeneity regarding to the complex

conjugation of the propagator functions σs,v(p) by de�nition, i.e. the prop-

erty σs,v(z
∗) = σ∗s,v(z). Another important fact is that this �tting structure

can be used to do all angular integrations in the tBSE analytically as will

be shown below.

3.1.3 Appearance of poles

To make use of Eq. (3.5) the necessary function must be analytically every-

where inside the integration contour C. To check this the Cauchy integral

1

2πi

∮
C
A(p2)dp2 (3.7)

is used. If A(p2) is analytically, the contour integral (3.7) must be zero.

Calculations of σs(p
2) and σv(p

2) for certain model parameters ω and D and

quark mass parameters mq had shown that, depending on the integration

contour C, the Cauchy integral is zero or not, and if not it has discrete

values. This indicates the appearance of poles in the propagator functions,

hence [p2A2(p2) + B2(p2)] becomes zero at certain points p2
i . Expression

(3.7) can be written as

1

2πi

∮
C
σs/v(p

2)dp2 =

Npoles∑
i

res[σs/v(p
2
i )] (3.8)
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3. Numerical Implementation

and, if the positions of the singularities are precisely known, Eq. (3.5) can

be rewritten as

σs/v(k
2) =

1

2πi

∮
C

σs/v(p
2)

p2 − k2
dp2 +

Npoles∑
i

res[σs/v(p
2
i )]

k2 − p2
i

(3.9)

= σ̃s/v(k
2) +

Npoles∑
i

res[σs/v(p
2
i )]

k2 − p2
i

, (3.10)

where σ̃s/v(k
2) is an analytical function and res[σs/v(p

2
i )] is the residue of

σs/v(p
2) at p2 = p2

i . The sums are over all poles inside the integration

contour and vanish automatically if no singularities are located inside.

To locate the poles numerically exactly it is useful to apply the argument

principle of complex analysis (also referred as Rouché's integral [9, 10]),

1

2πi

∮
C

f ′(z)

f(z)
dz = NZ −Npoles, (3.11)

where Npoles is the number of poles and NZ the number of roots. If the

function f(p2) = [p2A2(p2) + B2(p2)] is analytically everywhere inside the

integration contour C, which can be checked with∮
C
[p2A2(p2) +B2(p2)]dp2 = 0, (3.12)

the number of poles Npoles is zero and only NZ remains.

Eq. (3.8), (3.9) and (3.11) can be evaluated for any closed contour C and, if
Rouché's integral is nonzero, this contour can be systematically scaled down.

The procedure has been described in [9,10,26]. Worth to mention is that all

poles are located in the region Re(p2) < 0. This can be shown by rotating

the integration variable k of the system of equations (3.3) with a phase eiφ

where φ ∈ [−π/2, π/2] (see [9, 26]).

With Eq. (3.4), the parabolic integration domain of the tBSE is speci�ed.

After �nding the �rst poles k̃2
0,i with the introduced procedure they can be

inserted in Eq. (3.4) to �nd the corresponding parabolas

k̃2
0,i = k̃2 − χ2

i ± 2iχik̃, (3.13)
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3.2 Solving the Bethe-Salpeter equation

where χi = Mqqηi with the partitioning parameter ηi of quark qi, i ∈ {1, 2}.
That means Eq. (3.13) describes the parabola on which the pole k̃2

0,i is

located. Comparing Eq. (3.4) and (3.13) leads to an upper limit for the

product ηMqq. That means, to make sure that the propagator functions

σs(p
2) and σv(p

2) are analytically everywhere inside the integration region

of the tBSE, the lowest χi ≡ χ has to be found and then η and Mqq must

be chosen in such a way that

ηMqq ≤ χ. (3.14)

The quantity χi of a pole k̃2
0,i can be calculated by

χi =

√√√√−Re(k̃2
0,i)

2
+

√(
Re(k̃2

0,i)

2

)2

+

(
Im(k̃2

0,i)

2

)2

. (3.15)

Worth to mention is that each pole of σs(p
2) and σv(p

2) in the complex plane

arises as pair of poles, i.e. if k̃2
0,i is a pole, than k̃

2∗
0,i is a pole, too, due to the

fact that σs,v(p
2∗) = σ∗s,v(p

2).

3.2 Solving the Bethe-Salpeter equation

In general the solving procedure for the tBSE of this thesis follows mainly

[10]; the main steps with some important details and some necessary exten-

sions are introduced in this section.

3.2.1 Spin-angular harmonics

The Bethe-Salpeter vertex functions Γ, introduced in Eq. (2.6), are 4×4 ma-

trices in Dirac space. For spinor particles the general structure of them for

boundstates has been investigated, for example, in [33]. So the vertex func-

tion Γ can be expanded into so called spin-angular harmonics, i.e. functions

which are determined by parity and angular momentum of the corresponding

meson [10]:

Γ(p) =
∑
α

Γα(p) =
∑
α

gα(p) Tα(~p). (3.16)
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3. Numerical Implementation

The functions gα ful�l the orthogonality relation

gα(p) =

∫
dΩ~p Tr[ Γ(p)T †α (~p) ]. (3.17)

For pseudoscalar mesons (JPC = 0−+), the number of independent spin-

angular harmonics αmax is reduced to four and the set is chosen as [10]

T1(~p) =
1√
16π

γ5 = T †1 (~p),

T2(~p) =
1√
16π

γ0γ5 = − T †2 (~p),

T3(~p) = − 1√
16π

/n~pγ
0γ5 = T †3 (~p),

T4(~p) = − 1√
16π

/n~pγ
5 = T †4 (~p),

(3.18)

and for vector mesons (JPC = 1−−, αmax is reduced to eight)

T1(~p) =

√
1

16π
/ξM = − T †1 (~p),

T2(~p) = −
√

1

16π
γ0/ξM = T †2 (~p),

T3(~p) = −
√

3

16π
(n~p ξM) = T †3 (~p),

T4(~p) =

√
3

32π
γ0[−(n~pξM) + /n~p /ξM] = − T †4 (~p),

T5(~p) =

√
1

32π
[/ξM + 3(n~p ξM)/n~p] = − T †5 (~p),

T6(~p) =

√
1

32π
γ0[/ξM + 3(n~p ξM)/n~p] = T †6 (~p),

T7(~p) = −
√

3

16π
γ0(n~p ξM) = T †7 (~p),

T8(~p) =

√
3

32π
[−(n~p ξM) + /n~p /ξM] = − T †8 (~p).

(3.19)

All the scalar products are written here in Minkowski space; n~p is the unit

vector de�ned as n~p = (0, ~p/|~p|), ξM is the polarisation vector ξM = (0, ~ξM)

�xed by ~ξ+1 = −(1, i, 0)/
√

2, ~ξ−1 = (1,−i, 0)/
√

2, ~ξ0 = (0, 0, 1) and slashed

quantities /x represent γµxµ.
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3.2 Solving the Bethe-Salpeter equation

3.2.2 The hyperspherical decomposition

For reducing the dimension of the integral in Eq. (2.8) the partial ampli-

tudes Γα(p) and the interaction kernel (2.10) are decomposed over the basis

of spherical harmonics Ylm(θ, φ) and normalised Gegenbauer polynomials

Xnl(χ) of the hyperangle χ [10]. The usual hyperharmonic basis reads

Znlm = Xnl(χ)Ylm(θ, φ) (3.20)

=

√
22l+1

π

(n+ 1)(n− 1)!l!2

(n+ l + 1)!
sinl χGl+1

n−l(cosχ)Ylm(θ, φ), (3.21)

with the familiar Gegenbauer polynomials Gl+1
n−l(cosχ). The hyperangle χ

is de�ned by cosχ = p4/p̃ and sinχ = |~p|/p̃, where p̃ =
√
p2

4 + ~p 2 is the

modulus for an Euclidean four-vector p = (p4, ~p). The partial decomposition

of Γα(p) and DAWW (p− k) read as

Γα(p) =
∑
n

ϕnα,lα(p̃)Xnlα(χp)Tα(~p), (3.22)

D(p− k) = 2π2
∑
κλµ

1

κ+ 1
Vκ(p̃, k̃)Xκλ(χp)Xκλ(χk)Yλµ(Ωp)Y

∗
λµ(Ωk), (3.23)

where Vκ(p̃, k̃) are the partial kernels and ϕnα,lα(p̃) are the expansion coe�-

cients of the partial amplitudes. Actually lα is restricted by the correspond-

ing orbital momentum encoded in Tα(~p). For T1,2(~p) from Eq. (3.18) lα = 0,

while for T3,4(~p) lα = 1. In analogy for vector mesons (see (3.19)), lα = 0 for

T1,2(~p), lα = 1 for T3,4,7,8(~p) and lα = 2 for T5,6(~p).

After changing the integration variables to the hyperspace,

d4k = k̃3 sin2 χk sin θkdk̃dχkdθkdφk, (3.24)

inserting Eq. (3.22) and (3.23) into (2.8) and performing the necessary an-

gular integration a system of integral equations for the expansion coe�cients

ϕnα,lα(p̃) remains:

ϕnα,lα(p̃) =
∑
β

∞∑
m=1

∫
dk̃k̃3Sαβ(p̃, k̃,m, n)ϕmβ,lβ (k̃). (3.25)

23



3. Numerical Implementation

The explicit expressions for Sαβ(p̃, k̃,m, n) read

Sαβ(p̃, k̃,m, n) =
∑
κ

∫
sin2 χkdχkXmlβ (χk)Xκλ(χk)σs,v(k̃

2
1)σs,v(k̃

2
2)

×Aαβ(p̃, k̃, κ, χk, n),

(3.26)

where k̃2
1,2 is given in Eq. (3.4). The expressions Aαβ(p̃, k̃, κ, χk, n) result

from calculations of traces and angular integrations and have the form

Aαβ(p̃, k̃, κ, χk, n) =

∫
sin2 χpdχpdΩpdΩkVκ(p̃, k̃)

×Xnlα(χp)Xκλ(χp)Yλµ(Ωp)Y
∗
λµ(Ωk)

×Tr[dµν((p− k)2)γµ...Tα(~p)...Tα(~p)γν ].

(3.27)

They are separated in Eq. (3.26), because all angular integrations in Eq.

(3.27) can be done analytically.

In explicit calculations, the sum over m in Eq. (3.25) is cut at a �nite

value Ngegbau, which means that relativistic covariance is broken. It must

be checked whether the series converges and how large Ngegbau has to be

chosen to obtain meaningful results. This may be a disadvantage of the hy-

perspherical decomposition. A big advantage is the reducing of at least three

numerical angle integrations, which means explicitly for the calculations of

this thesis a reduced computing time by a factor between 150 and 1200.

3.2.3 Extracting the meson mass eigenstates

In the previous section, the tBSE has been expanded into partial integral

equations, which have to be solved. As mentioned above, Eq. (3.27) can

be integrated analytically. Eq. (3.26) can be integrated numerically, where

a Gauss-Chebyshev quadrature is used to provide all numerical angular in-

tegrations in this thesis. Later on in this chapter a method is introduced,

where the integration over χk can be done analytically, too. The integration

over k̃ in Eq. (3.25) is performed by a Gauss-Legendre quadrature, mapped

over the interval [0,∞]. Using numerical Gauss quadrature methods e�ects

that the integral is replaced by a sum over well de�ned integration mesh
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3.2 Solving the Bethe-Salpeter equation

points p̃i, determined by the size of the mesh NG. Taking this into account

Eq. (3.25) can be seen as a matrix equation of the form

X = SX. (3.28)

The vector X is the sought solution and reads as

XT = ([{ϕn1 (p̃i)}NGi=1]
Ngegbau
n=1 , ... , [{ϕnαmax(p̃i)}NGi=1]

Ngegbau
n=1 ). (3.29)

It has the total dimension N . The matrix S is of dimension N × N and

is determined by Eq. (3.26), the Gaussian weights and the Jacobian of the

mapping. The total dimension N depends on the number of spin-angular

harmonics αmax (Equations (3.18) and (3.19)), the number of Gegenbauer

polynomials Ngegbau and the size of the Gaussian integration mesh NG with

N = αmax ×Ngegbau ×NG.
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Figure 3.2: Smooth determinant function det(S − 1) as a function
of Mqq for the pion (mu = 0.005 GeV). For ω = 0.3 GeV and D =
205.761 GeV−2. The arrows denote the masses of groundstate (g.s.), �rst
excited state (1st), second excited state (2nd), third and fourth excited
state (3rd, 4th).
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Figure 3.3: Smooth determinant function det(S − 1) as a function
of Mqq for the Ds meson (ms = 0.115 GeV, mc = 1.130 GeV). For
ω = 0.4 GeV and D = 48.828 GeV−2. The �rst local minimum is above
the x-axis (dashed arrow), the �rst root near Mqq = 2.5 GeV belongs
systematically to the second excited state (2nd).

To obtain the boundstate mass Mqq the condition

det(S − 1) = 0 (3.30)

is used, which can be applied since the system of equations (3.28) is homoge-

neous. For �nding the determinant of condition (3.30) a LU decomposition

function was implemented combined with a pivoting method. The deter-

minant det(S − 1) as a function of Mqq is a smooth function, exemplary

exhibited in Fig. 3.2 and Fig. 3.3 for particular model parameters. The

roots of this function correspond to the condition (3.30) and represent the

boundstate masses and excited states. That means, the leftmost root is the

groundstate mass and the right-hand following roots are the �rst excited

state, the second excited state and so on. The form of this determinant

function depends on the model parameters D,ω,mq1 and mq2 , and, if they

are slightly varied, the peaks and roots of the determinant function change

their positions continuously. It can happen that two roots suddenly vanish
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3.2 Solving the Bethe-Salpeter equation

or arise because one peak of the determinant function moves across the x-

axis, as depicted in 3.3. In such a case the following root is by convention

counted as second excited state, to sort all boundstates in this thesis in a

systematically way in dependence of the model parameters.

The obtained boundstate masses Mqq can be used to solve iterative Eq.

(3.25). For evaluating the meson mass spectrum this is not necessary, but

for calculating e.g. decay constants and form factors of mesons. In Appendix

E exemplary the solution of Eq. (3.25) for ω = 0.5 GeV, D = 16 GeV−2 and

mq1 = mq2 = 5 MeV (Mqq = 0.137 GeV) is depicted.

The arguments of the determinant function are limited by the appearance

of poles (see Eq. (3.14)). If these poles are not taking into account yet the

determinant function is a good indicator for the existence of them. Up to

Mqq = Mqq,max = min(χi/ηi) the determinant function is smooth, as in Fig.

3.2 and Fig. 3.3. For larger values of Mqq the determinant function is no

longer smooth and has parts with asymptotic behavior and jumps. This is

reasoned by the applied numerical methods, which, if possible, have to be

be adjusted at the pole positions. In the next two sections methods are in-

troduced, to increase the value of Mqq,max.

For completeness it should be mentioned that another common method ex-

ists for �nding the boundstate masses [4, 15]. It is known as exhausting

method or depletion method. The equation system (3.28) is solved as the

eigenvalue problem

X = λ(Mqq)SX, (3.31)

where λ(Mqq) is the eigenvalue as a function of the boundstate mass Mqq.

The groundstate mass Mqq,gr can be found at λ(Mqq,gr) = 1.

3.2.4 The momentum partitioning method

A good introduction for the topic of this section can be found in [26].

As long as no additional schemes have been introduced for handling the

poles the integration domain of the tBSE is restricted by condition (3.14),

that means for given partitioning parameter η it exists a maximal massMqq.

Because the tBSE depends on two quarks there are two conditions, one with
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Re k̃2

Im k̃2

Figure 3.4: Parabolas (curves) and poles (symbols) for asymmetric
partitioning (red and blue) in case of di�erent quark masses. The dotted
line is for η = 0.5 and includes three poles of the light quark in the
integration domain of the tBSE.

χmq1 and one with χmq2 . To calculate the matrix S of Eq. (3.28) for given

Mqq it is important to check whether both conditions are ful�lled.

Generally it is of interest to �nd the largest massMqq,max for which the poles

are outside of the integration domain of the tBSE. Converting condition

(3.14) for χmq1 and χmq2 ,

η1Mqq ≤ χmq1 , (3.32)

η2Mqq = (1− η1)Mqq ≤ χmq2 , (3.33)

leads to

Mqq,max = χmq1 + χmq2 , (3.34)

η1 =
χmq1

χmq1 + χmq2
, (3.35)

η2 =
χmq2

χmq1 + χmq2
. (3.36)
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The partitioning parameter de�ned in Eq. (3.35) will be called optimal η,

ηopt, in this thesis. If the constituent quarks have equal masses, the pole

structure is the same for both and therefore χmq1 = χmq2 . This means ηopt

is 0.5 and the maximal mass is just �xed by Mqq,max ≤ 2χ. For non-equal

quark masses the pole structure of each quark is di�erent and for larger

quark masses χ becomes larger. Therefore it is possible to increase η to

catch higher masses up to Mqq,max as de�ned in Eq. (3.34), see Fig. 3.4.

The limit of the tBSE calculations is not determined by the lighter quark,

but by the combination of both quarks. This procedure is called momentum

partitioning method and has two important applications in this thesis. On

the one hand side the calculated groundstate masses and excited states of the

mesons must not depend on the momentum partitioning parameter η, other-

wise Poincaré covariance will be violated [2]. Especially, the hyperspherical

decomposition from Section 3.2.2 for �nite Ngegbau violates relativistic co-

variance [2]. To check whether this is the case and how large Ngegbau has

to be chosen the boundstate masses are calculated for di�erent η ∈ [0, 1]

and the variations of the results are considered. On the other hand side it

turned out that χmu/d ≤ 0.65 GeV in the considered parameter space of

this thesis, which corresponds to a maximal mass of Mqq,max = 1.3 GeV for

η = 0.5. To �nd masses and excited states of D mesons it is necessary to

evaluate the tBSE at masses in the region of 2 GeV (MD = 1.870 GeV [44]).

With χmc ≥ 1.5 GeV and the momentum partitioning method it is possible

to �nd the required boundstates. The same problem appears for s quarks

(χms ≈ 0.75 GeV) and Ds mesons (MDs = 1.968 GeV [44]).

3.2.5 Catching poles of the quark propagator

One of the goals of this thesis is to �nd the excited state spectrum of the

considered mesons beyond the limitation of the quark propagator poles.

In [4, 15] a procedure is introduced to �nd excited states in the pole region.

For �nding the meson masses the exhausting method (3.31) is used up to

the maximal mass Mqq,max limited by the poles. The eigenvalues λ are

smooth functions of Mqq. If they are plotted over M2
qq they are almost

linear functions. It is possible to extrapolate this functions beyond the pole

limit, to �nd the intersection with λ = 1 and to obtain the sought masses

of the excited meson states. The procedure seems to work well for mesons

with equal quark masses. But there are some disadvantages of this method.
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First, the linear behavior of λ vanishes for unequal quark masses. Secondly,

the extrapolation method is a�icted by uncertainties, which are small just

behind the pole limit, but become larger in the deep pole region (i.e. at

higher energies). Thirdly, in general it is not clear whether the calculations

continue in a linear form when poles appear in the integration domain.

In this thesis, it is tried to catch the poles explicitly and �nd a method to

integrate over them, following substantially [10]. To apply this, the form

of the propagator functions σs,v(k̃
2) is important. As introduced in Section

3.1.2 the necessary propagator functions for the tBSE are calculated with

two di�erent methods (Eq. (3.6) and (3.9)) in two di�erent areas (see Fig.

3.1). Looking at these two equations it can be seen that the summands of

the second term in Eq. (3.9) have the same structure 1 as the summands in

Eq. (3.6). The �rst term of Eq. (3.10), σ̃s,v(k̃
2), is a smooth function which

can be parametrised easily in the same way as Eq. (3.6). Now all propagator

functions σs,v(k̃
2) can be expressed as a sum over components of the form

ai

k̃2 − b2i
, (3.37)

where ai and b
2
i are either the residues and the positions of the propagator

poles k̃2
0,i or the parameters αi and β2

i of the introduced parametrisation

(3.6).

In the tBSE the propagator functions appear solely pairwise, which results

in a sum over products of two expressions of the form (3.37) and can be cast

in the following form:

ai

k̃2
1 − b2i

aj

k̃2
2 − b2j

=

[
ai

Re(k̃2
1) + 2η1iMqq k̃t− b2i

][
aj

Re(k̃2
2)− 2η2iMqq k̃t− b2j

]
=

aiaj

4η1η2 Mqq
2 k̃2

×
[

1

t− i(Re(k̃2
1)− b2i )/(2η1 Mqq k̃)

][
1

t− i(−Re(k̃2
2) + b2j )/(2η2 Mqq k̃)

]
=

aiaj

i∆zij4η1η2 Mqq
2 k̃2

[
1

t− iz(1)
i

− 1

t− iz(2)
j

]
,

(3.38)

1It is worth to remember that the poles appear only as pair with a self-conjugated
partner which means σ(k̃2) =

∑
i

ai
k̃2+b2i

+ c.c.
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3.2 Solving the Bethe-Salpeter equation

with Re(k̃2
1,2) = −Mqq

2 /4 + k̃2, t = cosχk, ∆zij = z
(1)
i − z

(2)
j and z

(1,2)
i,j =

(±Re(k̃2
1,2) ∓ b2i,j)/(2η1,2 Mqq k̃). The angular integration over χk in Eq.

(3.26) can be done explicitly with the main integral

Lλmn(z) =

∫ 1

−1
dt(1− t2)λ−

1
2Gλm(t)Gλn(t)

1

t− iz

=
2
√
π

Γ(λ)2λ−
1
2

e( 1
2
−λ)iπ(−z2 − 1)

2λ−1
4 Gλmin(iz)Q

λ− 1
2

max+λ+ 1
2

(iz),

(3.39)

where Γ(λ) is the gamma function, Gλm(t) are the usual Gegenbauer poly-

nomials and Qλm(t) are the Legendre functions of the second kind. The

integral (3.39) is smooth and continuous as long as the nominator does

not vanish. The nominator vanishes for certain t, if iz becomes purely

real and iz ∈ [−1, 1]. Compared to the de�nition of z this is the case,

if Re(k̃2
1,2) = Re(b2i,j) and 2ηMqq k̃ ≥ Im(b2i ). It can be shown that this

constraint is equivalent to the condition for the maximal parabolic inte-

gration region of the tBSE (3.14) if b2i,j represents one of the propagator

singularities k̃2
0. In contrast to the above introduced numerical integra-

tion procedure the integral (3.39) is well de�ned by a principal value for

k̃2 = η2 Mqq
2−Re(k̃2

0) =: k̃2
crit. Worth to mention is that the crossing from

k̃2
crit − ε to k̃2

crit + ε is not continuous, but has a �nite jump, that means

to the left and to the right of k̃2
crit the integral (3.39) yields two di�erent

�nite values. Numerically, this is treated by splitting the Gaussian mesh of

k̃ into two parts, one from 0 to k̃crit and the other from k̃crit to ∞. With

such a splitting for each pole k̃2
0,i located inside the integration domain the

integration over all singularities can be done well controlled and correctly.

One special case appears if z
(1)
i = z

(2)
j and therefore ∆zij = 0 (for ex-

ample, if mq1 = mq2 and η1 = η2 = 0.5). Equation (3.38) has no longer an

integrable form if 2ηMqq k̃ ≥ Im(b2i,j) (the case when poles are present in

the integration domain of the tBSE). To avoid this problem the partition-

ing parameters η has to be chosen unequal 0.5 for mesons with two equal

constituent quarks.
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4 | Results

From Eq. (2.10), (2.5) and (2.8) it is seen, that the approach of the interac-

tion model introduces four parameters, ω, D, mq1 and mq2, which must be

adjusted. That set of parameters must be found which reproduces experi-

mental values as good as possible. For realising this in a well structured way,

at �rst ω and D have to be �xed at a benchmark, and afterwards mq1 and

mq2 are chosen in such a way to compare the obtained results for the meson

masses with results from other groups. Then the quark masses mq1 and mq2

were varied continuous. After �nishing this we de�ned paths in the ω - D

parameter space, on which several meson masses are obtained. Finally, it is

attempted to expand the calculations to a continual �nite part of the para-

meter space �nding meson masses and other observables for certain quark

masses.

4.1 Meson spectrum at common benchmark

To check the numerical implementation of the techniques from the previous

chapter it is highly recommend to recalculate values from other groups, which

were using the same model. A convenient set of parameters is ω = 0.5 GeV

and D = 16 GeV−2, which has been used by di�erent groups, e.g. [2, 26].

The quark masses are set to mu = md = 5 MeV, ms = 115 MeV and

mc = 1130 MeV. In the following always the relation mu = md is used and

when speaking on u quarks it is also concerned to d quarks. The obtained

results for groundstate masses and excited-state masses for pseudoscalar and

vector mesons are summarised in Tab. 4.1 and Tab. 4.2.

The chiral condensate 〈qq〉mq=0 = 〈qq〉0 was found with

〈qq〉mq=0 = (−251GeV)3, (4.1)
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4. Results

Table 4.1: Mass spectrum of pseudoscalar boundstates, JPC = 0−+,
for the parameter set ω = 0.5 GeV, D = 16 GeV, mu = md = 5 MeV,
ms = 115 MeV and mc = 1130 MeV, corresponding references of other
groups and experimental values, in units of GeV. �g.s.�,�1st� and �2nd�
stand for groundstate, the �rst and the second radial excitations. The
��� for the D groundstate means that no boundstate for the employed
parameters could be found; accordingly, there is also no solution for the
radial excitations.

Results Reference Exp. [44]

Mπ,g.s. 0.137 0.137 [2] 0.140
Mπ,1st 0.986 1.300
Mπ,2nd 1.369 1.812

MK,g.s. 0.492 0.492 [2] 0.494
MK,1st 1.162 1.460

Mss,g.s. 0.693
Mss,1st 1.278
Mss,2nd 1.572

MD,g.s. � 1.870

MDs,g.s. 2.075 1.968
MDs,1st 2.313

Mηc,g.s. 2.984 2.984
Mηc,1st 3.278 3.639
Mηc,2nd 3.557

which is in agreement with [26] and also with [43]. It has been calculated

with Eq. (4.6) from Section 4.4.

Another quantity which has been examined in this thesis is the pseudoscalar

decay constant of the pion fπ. With the found groundstate mass Mπ,0 Eq.

(3.25) can be used to �nd iterative the solution of the truncated Bethe-

Salpeter equation. This solution has been normalised as described in [2,40].

The normalised solution has been inserted into formula (16) of [2] to obtain

the decay constant fπ. The obtained value is

fπ = 0.133 GeV, (4.2)

which is in agreement with [2]. Unfortunately for kaons no meaningful and

comparable values of fK could be obtained.

34



4.1 Meson spectrum at common benchmark

Table 4.2: As Tab. 4.1 but for vector states, JPC = 1−−.

Results Reference Exp. [44]

Mρ,g.s. 0.758 0.758 [2] 0.775
Mρ,1st 1.041 1.465
Mρ,2nd 1.287 1.720

MK∗,g.s. 0.945 0.946 [2] 0.894
MK∗,1st 1.264 1.414

Mφ,g.s. 1.077 1.072 [2] 1.019
Mφ,1st 1.402 1.680
Mφ,2nd 1.598 2.175

MD∗,g.s. � 2.010

MD∗
s ,g.s. � 2.112

MJ/ψ,g.s. 3.136 3.097

MJ/ψ,1st 3.346 3.686

MJ/ψ,2nd 3.593 3.773

With the values ofMπ,0, 〈qq〉mq=0 and fπ it can be checked if the Gell-Mann-

Oakes-Renner (GMOR) relation [39],

f2
πM

2
π,0 = −2mq〈qq〉mq = −2mq〈qq〉mq=0 +O(m2

q) (4.3)

is ful�lled (respecting the di�erent de�nition of fπ in [39] which di�ers by a

factor
√

2 from the de�nition in [2]). The value of 〈qq〉mq obtained with Eq.

(4.3) is (−0.255 GeV)3, which is close to the calculated value for 〈qq〉mq=0.

That means the expression O(m2
q)/[2mq〈qq〉mq=0] = 0.016 is small, as it is

supposed for small values of mq. Therefore it can be said that the GMOR

relation is ful�lled.

The calculations in general are not restricted to discrete values of mq1 and

mq2 . If the parameters ω and D are determined (like above), mq1 and mq2

can be seen as continuous parameters to obtain meson masses and excita-

tions. This has been done in [10] with one �xed quark mass and one running

quark mass for groundstates of pseudoscalar mesons and in [2] with two run-

ning quark masses and the condition mq1 = mq2 for groundstates of mesons

with di�erent JPC . In Fig. 4.1, the pseudoscalar meson groundstates are

plotted for two running quark masses mx,y from 0 GeV to 1.2 GeV. In Fig.
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Figure 4.1: Contour plot of pseudoscalar meson groundstate massMxy

in units of GeV for varying quark masses mx and my. Parameters ω =
0.5 GeV, D = 16 GeV−2.

4.2, the corresponding �rst excitations are plotted. In Fig. 4.3, the vector

meson groundstates are plotted for the same interval of quark masses, in

Fig. 4.4 the �rst excitations of vector mesons are exhibited. All calculations

have been done with optimal partitioning parameter ηopt (see Section 3.2.4

and Eq. (3.35)). The values of Fig. 4.1 and 4.3 on the diagonal mx = my

are conform with [2]. All meson masses and excited states are smooth func-

tions in mx and my. In the white areas of the plots where no contour lines

are located no meson eigenstates could be found, that means the determi-

nant function of Eq. (3.30) has a minimum in the region of Mqq where the

boundstate is expected, but no root. An interesting observation is that in

some regions the groundstate mass Mqq rises in a non-intuitive way in de-
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Figure 4.2: Contour plot of pseudoscalar meson 1st excited state mass
Mxy in units of GeV for varying quark masses mx and my. Parameters
ω = 0.5 GeV, D = 16 GeV−2.

pendence of the quark masses mx,y. In particular, if one quark mass is hold

constant at mx ≥ 0.8 GeV for pseudoscalar mesons and the other quark

mass my is varied in [0, 0.2] GeV, then the minimum of Mqq is not located

at my = 0 GeV (or the smallest possible quark mass where boundstates are

found), but somewhere in [0, 0.2] GeV. This means that mesons with lighter

constituent quark masses can have a larger boundstate mass. Especially if

the c quark mass mc is chosen in such a way to obtain groundstate masses

for D and Ds mesons it yields MD > MDs . This stands in contrast to the

plotted values in [10] and [26], which may belong to some considerations

illustrated in Appendix D.

The �rst excited states of pseudoscalar mesons (Fig. 4.2) show smooth be-
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Figure 4.3: Contour plot of vector meson groundstate mass Mxy in
units of GeV for varying quark masses mx and my. Parameters ω =
0.5 GeV, D = 16 GeV−2. Outside of the grey region, a solution of the
tBSE could not be found.

haviour in dependence of mx and my without irregular e�ects. In the white

area without contour lines again no Mqq which ful�lls condition (3.30) could

be found (which is clear if a local minimum is located above the real x-axis

then two roots are missing, compare Fig. 3.3). For vector mesons (Fig. 4.3)

the white area, where no groundstates could be found, is larger than in the

other two plots. This is due to the fact that the boundstates are located

beyond the pole limit and they are no longer smooth functions in mx and

my (more about problems in the pole region below in Section 4.6). As in

the pseudoscalar case again the irregular behaviour can be observed near the

upper left and lower right boarder line, where the contour lines �turn back�,

that means for increasing mx,y the boundstate mass Mqq decreases. The
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Figure 4.4: Contour plot of vector meson 1st excited state mass Mxy

in units of GeV for varying quark masses mx and my. Parameters ω =
0.5 GeV, D = 16 GeV−2. Outside of the grey region, a solution of the
tBSE could not be found.

plot for the �rst radially excitations of vector mesons (Fig. 4.4) looks similar

compared to the plot of pseudoscalar excitations, but with a larger white

area where no boundstates have been found (with the same argumentation

as made for the vector meson groundstates).

The mentioned irregular or unphysical behaviour seems to be model depen-

dent concerning to the used kernel (2.10), because with similar interaction

kernels (like kernel (2.9) used in [22]) this e�ect does not appear.

While one can attempt an optimisation of the parameters ω,D,mu,ms and

mc to �nd the best reproduction of masses of π,K,D,Ds and ηc as lowest

boundstates of ud and mixture, us, uc, sc and cc in the pseudoscalar channel
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Figure 4.5: Contour plot of vector meson groundstate mass Mxy in
units of GeV for varying quark masses mx and my in logarithmic rep-
resentation. Parameters ω = 0.5 GeV, D = 16 GeV−2. The coloured
bullets denote the experimental values (see Tab. 4.2) of meson ground-
states (red: ρ, green: φ, violet: Jψ; all located on the diagonalmx = my.)
which could be used for extracting the bare quark masses (vertical and
horizontal thin lines, labeled by the corresponding quark �avour); the
corresponding value of mc (1.110 GeV) can be compared with one sug-
gested in the pseudoscalar channel, see Fig. 4.6, which was found there
as 1.130 GeV.

as well as ρ,K∗, φ,D∗, D∗s and J/ψ as lowest boundstates of ud and mix-

ture, us, ss, uc, sc and cc in the vector channel, some survey on the achieved

accuracy is provided by the following procedure:

(i) Since a pure pseudoscalar ss state does not exist in nature start with

the vector channel and display in the contour plot, Fig. 4.3, a diagonal
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Figure 4.6: Contour plot of pseudoscalar meson groundstate massMxy

in units of GeV for varying quark masses mx and my in logarithmic rep-
resentation. Parameters ω = 0.5 GeV, D = 16 GeV−2. The coloured
bullets denote the experimental values (see Tab. 4.1) of meson ground-
states (red: pion, green: kaon, violet: ηc) which were used for extracting
the bare quark masses (vertical and horizontal thin lines, labeled by the
corresponding quark �avour). Pion and ηc must be located on the diag-
onal mx = my.

with symbols at the crossings with contour curves at the respective

meson masses. Read o� the required masses mu,s,c.

(ii) Make a grid of horizontal and vertical lines emerging from each of the

symbols determined in item (i). The crossings of these lines �predict�

the masses of further mixed-quark meson states: us, uc and sc.

The comparison of the found meson masses with experimental values is not

overwhelming since the uc and sc states are in the white region where the
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4. Results

employed kernel (2.10) with parameters D = 16 GeV−2 and ω = 0.5 GeV

does not deliver boundstates, see Fig. 4.5. The �predicted� K∗ mass is

0.914 GeV, to be compared with the experimental value of 0.894 GeV.

One may proceed with the same strategy in the pseudoscalar channel, which,

however, delivers in step (i) only mu and mc. A comparison with the quark

masses from the vector channel shows small di�erences: in the vector channel

the quark masses aremu = 10 MeV andmc = 1110 MeV, in the pseudoscalar

channel the quark masses are as given in the caption of Tab. 4.1. The mass

of the predicted uc state has to be compared with the D groundstate mass

of 1.870 GeV. As in the vector channel with the same parameters ω and D

this uc state is in the white region where no boundstates are delivered. One

can then extract from the crossing of either a �c line� or a �u line� with the

contour curve of either 1.968 GeV (Ds) or 0.494 GeV (K) the needed value

of ms. Fig. 4.6 exhibits that the crossing of the �c line� with a 1.968 GeV

contour curve is missed, i.e. the crossing of the �u line� is to be used to

construct additionally the �s lines� and inspect the �predicted� masses at sc

crossing: 2.075 GeV.

Various mixtures of such simple cross checks are considerable; go with the

quark masses determined in one channel into the other channel and compare

the �predictions� with experimental values. The overall impression is that

the kernel delivers a quite good description of the groundstate meson masses

in both considered channels. This is, of course, not a surprise hence the

kernel has been originally designed just to do such a job.

The literature reports some notorious di�culties for other channels and

sometimes remarks are made the kernel (2.10) is less appropriate for excited

states, but the information is spare, cf. [2]. In fact, inspecting the contour

plot in Fig. 4.2 for the �rst radial excitation of the pseudoscalar channel

or the contour plot in Fig. 4.4 for the �rst radial excitation of the vector

channel one becomes aware of severe deviations of predicted and experimen-

tal values. Therefore, now it is turned to the question whether variations of

the partitioning parameter η or variations of D and ω of the kernel (2.10)

remedy the discrepancy.
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4.2 Dependency of the partitioning parameter

4.2 Dependency of the partitioning parameter

In principle, the results must be independent of the partitioning parameter

η. Anyway, the hyperspherical decomposition with truncation at a �nite

value of Ngegbau causes a violation of relativistic covariance, which could

result in η dependent observables. It is important to check whether such

a dependence appears and how large the deviations are. In Fig. 4.7 the

groundstate masses of pions and ρ mesons are plotted in dependence on η

for di�erent numbers Ngegbau. Clearly, the curves are symmetric, because

the quark masses are equal. In Fig. 4.8 the groundstate masses of kaons and

Ds mesons are plotted. All these curves are smooth. It is well seen that the

higher the number Ngegbau the smaller are the variations of the individual

graphs. It appears that Ngegbau ≥ 3 is required to obtain meaningful values

for convenient values of η (i.e. ηopt, compare Eq. (3.35)).

Table 4.3: Variation of groundstate meson masses (in units of MeV) for
η ∈ [0, 1] for various values of Ngegbau

Ngegbau ∆Mπ ∆Mρ ∆MK ∆MDs

1 8.8 13.6 60.1 133.0
2 0.11 5.8 26.4 63.0
3 0.009 1.9 3.5 33.4
4 0.009 0.3 0.4 7.2
5 0.03 e-3 0.04 0.07 1.2
6 0.03 e-3 0.02 0.03 0.24
7 0.03 e-3 0.02 0.03 0.22

In Tab.4.3 the variations deduced from the plots in Fig. 4.7 and 4.8 are

exhibited. The values for ρ and Ds, in principle, have to be larger, because

the considered range of η was reduced by the appearance of the propagator

poles. Looking at the numbers shows that the deviations are smaller for light

mesons with light quarks and for mesons with nearly equal-mass quarks. It

also shows that it is preferable to use at least Ngegbau = 6 to be sure getting

results with MeV precision. Especially in the pion column it seems that there

is a limit (here at Ngegbau = 5), at which the results do not become better

with further increasing number of harmonics. This comes from the other

numerical parameters and routines and does not play a role, since it is not

our goal to improve the precision beyond a few MeVs.
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Figure 4.7: Dependency of pion (upper panel) and ρ meson (lower
panel) groundstate mass (in units of GeV) on the partitioning parame-
ter η for di�erent numbers of included Gegenbauer polynomials Ngegbau:
dashed-dashed violet: Ngegbau = 1, dashed-dotted blue: Ngegbau = 2,
dashed green: Ngegbau = 3, solid orange: Ngegbau = 4, dotted red:
Ngegbau = 5. The black dashed-dot-dotted curves represent the limi-
tation by the pole structure (see Fig. 3.4).
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4.3 Variations of the parameters ω and D
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Figure 4.9: Variations of pion groundstate masses (�lled violet boxes)
and radially excited states (empty green boxes) as a function of ω for
a = 0.5 GeV3. The dashed violet line represents the experimental value
of the pion groundstate and the blue bar represents the experimental
value of the �rst excitation of the pion. The dashed-dot-dotted curve
depicts the limitation by the pole structure, i.e. for higher masses the
poles are inside the integration domain (see Fig. 3.4).

The previous section has evidenced that the groundstates of π, K, ρ, K∗,

φ, ηc and J/ψ could be described fairly accurately with the benchmark pa-

rameters ω and D. That is the description of seven groundstate masses by

the adjustment of the �ve parameters ω, D, mu/d, ms and mc. The excited

states of these mesons are all too small compared to the experimental values.

For the heavy-light mesons either no values of groundstates are found (e.g.

D, D∗, D∗s) or they are too large (e.g. Ds).
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Figure 4.10: As Fig. 4.9 for di�erent pseudoscalar mesons (left column)
and vector mesons (right column).
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Figure 4.11: As Fig. 4.10 but for a = 1 GeV3. The quark masses
were �xed at ω = 0.5 GeV to mu = 0.004 GeV,mu = 0.095 GeV,mu =
1.043 GeV.
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In [32, 37] it was found that the groundstates of pseudoscalar and vector

mesons are nearly constant within the MT model (2.9) for ωD hold at a

constant value in the interval ω ∈ [0.3, 0.5] GeV. D = ω4D is an equivalent

and often used de�nition for D with [D] = GeV2. It is expected that the

AWW kernel (2.10) provides this property, too. Therefore a new quantity is

introduced:

a = ωD = ω5D. (4.4)

For the above benchmark, a has the value 0.5 GeV3. If a is hold constant, one

model parameter remains, where ω is treated as a variable and D is respec-

tively adjusted. In Fig. 4.9, 4.10 and 4.11 the results for quark combinations

uu, us, ss and cc for di�erent values of a are exhibited. The quark masses

were �xed at ω = 0.5 to obtain the experimental values for the groundstate

masses of pion, kaon and ηc. For a = 0.5 GeV3 the groundstate masses are

nearly constant with only less variations. The deviation of the groundstate

masses to their experimental values are small and the relative deviations are

smaller than ten per cent. The radially excited states of the pseudoscalar

mesons (left column of Fig. 4.10 and 4.11) are well arranged in separable

trajectories. For the vector mesons (right column of Fig. 4.10 and 4.11) the

excited states are also arranged in trajectories, but with a few gaps, espe-

cially for φ. The di�erence between the �rst and the second radially excited

states of ρ and K∗ and the di�erence between the second and third radially

excited states of J/ψ are very small compared to the distances between all

other boundstates. All trajectories are rising for increasing ω. For ηc the

�rst radially excitation coincides with the experimental value (blue dashed

lines) at about ω = 0.75 GeV, the gap between groundstate and �rst excited

state of J/ψ coincides with the experimental value near ω = 0.8 GeV. Be-

sides the cc states all radially excitations are smaller than their experimental

values. The trajectories are limited by the propagator pole structure, which

is represented in several plots by the black dashed-dot-dotted line. With the

method introduced in Section 3.2.5 the boundstates beyond the pole limit

could be determined, but they are not stable enough under variations of the

partitioning parameter η (see Section 4.6).
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The trajectories for groundstates and radially excited states have been stud-

ied for di�erent values of a, Fig. 4.11 shows exemplary the results for

a = 1 GeV3. The structure is in principle similar to Fig. 4.10: the ground-

states are more or less constant for varying ω and the radially excited states

are located on trajectories. The range of ω and M where boundstates could

be found is enhanced due to the fact that the pole structure is di�erent and

the pole limit is shifted to higher values of χ, compare Eq. (3.15). The �rst

excitation of the pion is close to the experimental value for ω = 0.65 GeV.

Concerning the vector mesons the deviations between groundstates and ex-

perimental values are enlarged compared to the case of a = 0.5 GeV3. The

relative deviation rises up to 30 per cent for the φ meson. It turned out

that for a ≈ 0.5 GeV3 at least the groundstates of the considered mesons

in Fig. 4.10 and 4.11, pseudoscalar and vector mesons, can be described best.

In Fig. 4.12 the results for D and Ds mesons are exhibited, in the upper

panel (Fig. 4.12a) for a = 0.5 GeV3 and in the lower panel (Fig. 4.12b)

for a = 1 GeV3. In Fig. 4.12a boundstates for D meson could be found

only for a small interval of ω. All the found groundstates are larger than

the groundstate masses of the Ds meson, they have the irregular behaviour

as mentioned in Section 4.1. The Ds groundstates for ω > 0.42 GeV form a

smooth trajectory which is more or less closed to the experimental value with

a deviation between 50 and 150 MeV. The groundstates for ω ≤ 0.42 GeV

form another trajectory with continuous slope. They are obtained by �nding

the �rst root of the determinant function (3.30), but in principle they belong

to the trajectory of the second radially excitations (compare Fig. 3.3). Fig.

4.12b concerning a = 1 GeV3 is similar to Fig. 4.12a: the two trajectories

in the upper left region, one for D and one for Ds groundstate, correspond

systematically to the trajectories of the second radially excitations. The

groundstate masses for Ds for ω > 0.44 GeV are not as closed to the exper-

imental value as in the case a = 0.5 GeV3. For D meson, more boundstates

are found, and in the interval ω ∈ [0.54, 0.75] GeV the irregular behaviour

MD > MDs is reversed.
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Figure 4.12: Variations of D (�lled blue circles) and Ds (�lled vio-
let boxes) groundstate masses and radially excited states (empty yel-
low circles for D and empty green boxes for Ds) as a function of ω for
a = 0.5 GeV3 in the upper panel and a = 1 GeV3 in the lower panel.
Dashed blue line: experimental value of D groundstate mass, dashed
violet line: experimental value of Ds groundstate mass.
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Figure 4.13: Selected regions concerning D and Ds mesons as function
of ω and a. White: no D groundstate, grey: D groundstate with MD >
MDs

, red: D groundstate with MD < MDs

The existence of aD groundstate and the reversing of the irregular behaviour

can be analysed a bit more in the parameter space of a and ω , see Fig. 4.13.

In the white region no groundstate for the D meson could be found. In the

grey region D groundstates are found, but the mass MD is smaller than the

Ds meson mass MDs . Only in the red region both, D and Ds groundstates

could be found and the relation MD < MDs is ful�lled. With this obser-

vation it is better to say the irregular or unphysical behaviour is parameter

dependent and not model dependent at all, as mentioned in the �rst section

of this chapter. For obtaining the quark masses mu,ms and mc the pro-

cedure introduced in Section 4.1 and illustrated in Fig. 4.6 has been used.

52



4.3 Variations of the parameters ω and D

In [27] 1 the masses of D and Ds have been calculated at ω = 0.6 and a = 0.6

with the relation MD < MDs , which seems to be in contrast to the result

depicted in Fig. 4.13. It must be taken into account that in [27] the c quark

mass mc is adjusted with the experimental value of the D mass MD instead

of using ηc. This example shows that with di�erent procedures for �xing

and optimising the model parameters ω,D,mu,ms and mc the results and

conclusions can be di�erent.

Anyway, no set of parameters ω and a could be found, where the ground-

states of pion, kaon and ηc could be used for �xing the quark masses mu,

ms and mc to obtain a good description of the D and Ds states close to

their experimental data. Also no boundstates of D∗ and D∗s mesons could

be found without increasing Mqq to be beyond the pole limit.

An interesting idea has been picked up in [56] and used e.g. in [28]: The

parameters ω and D are not unique, but can depend on the energy scale of

the meson masses. That means, for each quark-antiquark combination, the

parameters are a little bit di�erent. This represents the scale dependency of

αQCD, which is implicitly included in the interaction kernel [56].

To �nd for each meson a own set of parameters, which can make useful �pre-

dictions�, it is necessary to have more experimental boundstates for com-

paring, that means more JPC channels must be included. In the present

thesis only pseudoscalar and vector mesons are considered. But anyway, it is

possible to use three of the four cc states ηc,0, ηc,1, J/ψ0 and J/ψ1, to �x the

model parameters ω, D and mc, take a look at the fourth radially excited

boundstate and then apply these parameters to the light mesons containing

u and s quarks.

In an explicit calculation, mc and ω are �xed at the experimental values of

ηc,0 and ηc,1 from PDG [44]. Then, a was varied to minimise the variance

between calculated and experimental values of J/ψ0 and J/ψ1. The result

is

ω = 0.779GeV, a = 0.495GeV3 (D = 1.726GeV−2), mc = 1.120GeV.

(4.5)

1As an additional check all the results from [27] which are calculated with the AWW
kernel have been recalculated with the implementation of this thesis and they coincide.
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Figure 4.14: Pseudoscalar and vector meson cc boundstates for the
optimised parameters ω, a and mc of Eq. (4.5). Two parameters have
been used to �x the masses of the groundstate and the �rst radially
excited state of ηc to the experimental values, the third parameter was
varied to minimise the variance between the J/ψ boundstates and their
experimental values.

The corresponding meson masses are plotted in Fig. 4.14. The di�erence

between the vector states and their experimental reference [44] is around 18

MeV, which is quite low. Applying this parameters to the heavy-light mesons

it was possible to �nd a Ds groundstate at about 2 GeV for ms ≥ 65 MeV; a

D boundstate has not been found. Searching for light mesons has been done

with less success, not even one boundstate could be found for quark masses

mu,ms ≤ 200 MeV. For understanding this observation the next section will

be helpful.

The conclusion of this section is that the groundstates of pseudoscalar and

vector mesons can be reproduced best for the choice a = (0.5±0.005) GeV3.

With this �xation of the parameter a the other model parameter ω can

be varied over a large range obtaining stable groundstate results which are

close to the experimental values within a deviation smaller than 100 MeV.

For pions, kaons, ρ, K∗, φ and the cc meson groundstates the range of

ω is only limited by the pole structure, for Ds meson the range is ω ∈
[0.5, 0.8] GeV. The parameter ω could be adjusted to obtain the experimental

mass of the �rst radially excited state of the mesons. Unfortunately, only
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for the cc mesons the �rst radially excitation can be found without passing

the pole limit. It only can be guessed that the virtual extension e.g. of

the trajectory of the �rst pion excitations crosses the experimental value at

ω ≈ 0.7...0.8 GeV. It is also of value to think about the idea that not every

theoretical boundstate is found in experiment, but for example each second

state. If the second radially excitation corresponds to the experimental �rst

radially excitation, the chosen value of ω for the cc mesons would be ω ≈
0.56 GeV. It could be guessed that one trajectory of pion, ρ and φ meson

crosses the experimental value of the �rst radially excitation in the region of

this value of ω. Nevertheless a good statement about the adjustment of ω

can be only done if the higher radially excitations of all mesons are calculated

explicitly and this will be continued in Section 4.6. Beside the Ds meson it

turned out that the boundstate masses of the heavy-light pseudoscalar and

vector mesons can not be described very well regardless of the choice of the

model parameters. It seems that the chosen model is limited in this point

and only for mesons where the di�erence of the current quark masses is not

to large a good description of the mass spectrum could be found. This is not

too much amazing, because the model underlies the introduced truncation

scheme and it could be expected that it exists a limit, up to which it works

quite good and beyond this limit it works not so well.

4.4 Chiral condensate 〈qq〉0

The chiral condensate 〈qq〉0 is nothing else than the trace over the propagator
of a massless quark,

〈qq〉0 = − 3

2π2

∫
k3σs(k)dk. (4.6)

Fig. 4.15 shows the chiral condensate in dependence of the model parameters

ω and D. The violet dashed curve depicts a renormalisation point indepen-

dent reference calculated in [43]. This curve is very nearby the often used

value of a = 0.5 GeV3 in the interval ω ∈ [0.3, 0.5] GeV. The green dotted

curve depicts another reference [21], which is a current lattice QCD value.

In the red coloured area for larger values of ω the condensate is more and

more vanishing. A vanishing chiral condensate indicates that DCSB is not

longer ful�lled and it could not be expected to get trustable results for light
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Figure 4.15: Contour plot of the chiral condensate (〈qq〉0)1/3 in units
of GeV for m = 0 MeV as a function of ω and a. The coloured curves
represent calculated values from the literature (long-dashed violet: [43],
short-dashed green: [21])

meson states in this region. For larger ω and constant value of a the peak

in the scalar kernel function (2.10) becomes wider and more �at, which is

unfavourable for forming boundstates. Comparing with Fig. 4.10 it can be

seen that, in the region where the chiral condensate vanishes, the pole struc-

ture comes closer to small quantities of ηMqq and constrains the localisation

of boundstates. In contrast, heavy mesons can be good described in the

region where the condensate 〈qq〉0 vanishes. It could be found groundstates

and radially excitations, even with the right gap between the �rst excitation

and the groundstate (see the latter section). The pole structure does not

change in a manner that it disturbs the calculations of cc masses. It can be
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4.5 Regge behaviour

argued that DCSB does not a�ect heavy mesons as much as light mesons.

The bare mass of the c quarks is larger than the dynamical generated mass

in cc boundstates. The important role of DCSB is to explain the masses of

light mesons, especially the pion.

4.5 Regge behaviour

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3

M
2
/

G
eV

2

n

Figure 4.16: Regge trajectory for pion boundstates, ω = 0.32 GeV, a =
0.5 GeV3. The blue empty boxes represent the boundstates, n is the
number of radially excitation. The blue line depicts the �tted Regge
trajectory.

If at least three boundstates for a meson are found they can be used to �t a

Regge trajectory (2.11). In particular, a function M2(n) = a+βn+ cn2 can

be �tted to the squared boundstate masses (see Fig. 4.16), where a is the

intercept, β represents the slope of the Regge trajectories and c is a measure

for the quality of them, quantifying the deviation from a linear trajectory.

In Fig. 4.17 the quadratic masses of the pseudoscalar boundstates from Fig.

4.10 and the corresponding Regge coe�cients are plotted. For all considered

mesons the coe�cients β are much larger than the coe�cients c which means

that Regge behaviour can be asserted. For every meson, a value of ω exists,

where the ratio c/β becomes minimal. For the pion it is ω = 0.33 GeV, for
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the kaon ω = 0.31 GeV, for the hypothetical ss state ω = 0.36 GeV and

for ηc ω = 0.52 GeV. The same considerations have been done for the pseu-

doscalar boundstates of Fig. 4.11, see Fig. 4.17. In the case of a = 1 GeV3

the range of ω, where at least three boundstates can be found, is larger than

in the case of a = 0.5 GeV3. The values of ω, where the ratio c/β becomes

minimal are as follows: For pions ω = 0.39 GeV, for kaons ω = 0.4 GeV,

for the hypothetical ss state ω = 0.41 GeV and for ηc ω = 0.63 GeV. The

trend is, for mesons with larger quark masses mq1,2 the value of ω with the

best regge trajectory becomes larger.

For the vector meson boundstates from Fig. 4.10 and 4.11 it is also possible

to calculate the Regge coe�cients a, β and c. As mentioned in Section 4.3

for ρ, φ and J/ψ the di�erence between two boundstates is much smaller

than the di�erence between the other boundstates. Therefore the ratio |c/β|
becomes much larger than in the pseudoscalar case which means that Regge

behaviour can not be asserted.

It is hard to decide how accurately Regge behaviour is implemented in the

experimental values of pseudoscalar mesons. Only for pions at least three

boundstates are known with Mπ0 = 0.140 GeV, Mπ1 = (1.300± 0.100) GeV

and Mπ2 = (1.812 ± 0.012) GeV [44]. Because of the large uncertainty of

Mπ1 it is possible to �nd a Regge trajectory for this boundstates.
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Figure 4.17: Regge behaviour for a = 0.5 GeV3 and varying ω; left
column: squared masses of boundstates in units of GeV2, right column:
Regge coe�cients β (empty violet), c (empty green) and |c/β| (�lled
blue); a is identical to M2

0 .
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Figure 4.18: As Fig. 4.17 but for a = 1 GeV3.
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4.6 Unstable results beyond the pole limit

4.6 Unstable results beyond the pole limit

One of the goals in this thesis it was to handle the pole structure explicitly.

As mentioned at some places in the last sections, some unstable results ap-

peared in the sense of varying values of meson masses for di�erent choices

of the partitioning parameter η. In the following, two examples are given

where these unstable results have been observed.
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Figure 4.19: Comparing the calculated boundstates (groundstates: vi-
olet �lled boxes, excited states: empty green boxes) of K = us, us for
di�erent partitioning parameter η. Beyond the pole limits (black dashed-
dot-dotted curves) the structure is completely di�erent. In the right
panel, the pole limit is determined by the u quark poles, in the left panel
the limit is determined as described in Subsection 3.2.4.

In Fig. 4.19, again the groundstate masses and the �rst few radial excitations

of the kaon in dependence on the model parameter ω are plotted (the left side

is for optimal η = ηopt and the right side for constant η = 0.5). It can be seen

that below the pole limit (black dashed-dot-dotted curves) the trajectories

of the boundstates are identical except numerical deviations smaller than

0.1 MeV. But beyond the pole limit the trajectories suddenly change. Their

straight-line behaviour vanishes and the further trend is completely di�erent

in both plots.

In Fig. 4.20, the determinant function (3.30) of the pion for di�erent η at

the common benchmark from Section 4.1 is plotted. The logarithmic scale

is chosen because for boundstate masses Mqq > 1 GeV the value of the

determinants has a completely di�erent scale. The roots can be identi�ed at

the sharp peaks which point in direction of the x-axis. It can be seen that the

curves are on top of each other in the region without poles (Mqq < 0.9 GeV).
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Figure 4.20: Determinant function (3.30) of pions for di�erent parti-
tioning parameter η in the range Mqq ∈ [0.5, 1.5] GeV at the benchmark
from section 4.1. Black curve: η = 0.5, violet curve: η = 0.55, blue
curve: η = 0.6

Then, going to larger values of Mqq the curve for η = 0.6 is separated, exactly

at the mass Mqq which corresponds, via relation (3.13), to the �rst pole of

the u quark. The curve continues smoothly without roots in the considered

region. Just behind the �rst excitation of the other both curves the curve

for η = 0.55 is separated analogously. The roots for the second excitation

are completely di�erent for η = 0.55 and η = 0.5.

The above examples give an indication for an incorrectness of the done calcu-

lations in the pole region. The method introduced in Section 3.2.5 reproduces

the boundstate spectrum of all considered mesons accurately in the region

without poles, no matter how many poles are taken into account, compared

to the calculations without poles. Even the propagator functions σs,v(p
2) for

arbitrary complex arguments, which are consistent with the considerations

in Appendix B, coincide, independently of whether they are calculated di-

rectly with the �brute force� method or with Eq. (3.10). The analytically

properties of Eq. (3.39) are well known and the corresponding numerical

parameters and routines are tested more than adequate, so the method from

Section 3.2.5 works.
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4.6 Unstable results beyond the pole limit

For �nding the reason of the unusual behaviour in Fig. 4.19 and 4.20 it is

helpful to go back to Eq. (2.6). After the introduced truncations are done,

the BSE has been transformed into the Euclidean space by using Equations

(C.1)-(C.4) to obtain the tBSE (2.8). This is the usual procedure which

is found in many publications (e.g. [7, 8]) concerning to tDSE and tBSE;

often the tBSE in Euclidean space is taken for granted without derivation

(e.g. [16, 31]). After applying and implementing Eq. (3.11) for the prop-

agator functions σs,v(p
2) it is known, that they have poles in the region

Re(p2) < 0. For the calculations in this thesis only a �nite number of poles

is important, but in principle it can not be said that the number of poles is

�nite and it could be guessed that there is an in�nite number of poles. But

anyway, the poles k̃2
0,i can be sorted systematically by the value of χi (3.13).

In the following, only the poles of one quark are considered. The poles are

located in the complex k̃2 plane of the Euclidean vector kE . Translated into

the complex k0 plane,

k̃2
0,i = −(k0 + η1 Mqq)2 + ~k2 (4.7)

k0 + η1 Mqq =
√
~k2 − k̃2

0,i (4.8)

k0 = −η1 Mqq±
√
~k2 − k̃2

0,i ≡ kI,II0,i , (4.9)

a pole at k̃2
0,i results into two poles k

I
0,i and k

II
0,i. The argument of the square

root in Eq. (4.9) has a positive real part, because ~k2 is positive and Re(k̃2
0,i)

is always negative. From Section 3.1.3 it is known that each pole arises as

pair of poles together with k̃2∗
0,i. The corresponding poles in the k0 plane are

k0 = −η1 Mqq±
√
~k2 − k̃2∗

0,i (4.10)

= −η1 Mqq±
√
~k2 − k̃2

0,i

∗
≡ kIII,IV0 , (4.11)

where kIII0,i = kI∗0,i and k
IV
0,i = kII∗0,i .

The couple of four poles k
(I−IV )
0,i in the k0 plane correspond to the pair of

poles k̃2
0,i and k̃

2∗
0,i in the Euclidean k̃2 plane. For �xed ~k2 = 0 this couple

is illustrated in Fig. 4.21. The structure is similar to a cross (square root

terms) with the crossing point on the real axis, shifted by −η1 Mqq.

If ~k2 6= 0, the position of the poles k
(I−IV )
0,i changes, see Fig. 4.22. It can be

seen that for rising ~k2 the absolute value of the square root
√
~k2 − k̃2

0,i rises
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Re k0

Im k0

Figure 4.21: Couple of four poles in the complex k0 plane. The black
dotted lines represent the contribution of the square root terms in Eq.
(4.9) and (4.11). The red arrow depicts the shift of the crossing by
−η1 Mqq.

Re k0

Im k0

Figure 4.22: Trajectories of one couple of poles in the complex k0
plane for rising ~k2 from 0 to∞. For large ~k2 each trajectory stays in one
quadrant and does not cross an axis of the coordinate system.

and the phase angle of the argument arctan[Im(arg)/Re(arg)] decreases and

goes to zero for ~k2 ⇒∞.

As mentioned above, the number of poles can be arbitrary large, so each

pair of complex conjugated poles k̃2
0,i gives a couple of four poles in the k0
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4.6 Unstable results beyond the pole limit

Re k0

Im k0

C

Figure 4.23: Integration contour for Wick's rotation in the complex k0
plane with an arbitrary number of couples of poles (crosses).

plane, as illustrated in Fig. 4.23 by di�erent colours for di�erent couples.

In Fig. 4.23 also the integration contour C for Wick's rotation is depicted

in red, for details see Appendix C. Each pole, which is located inside the

contour C, gives a contribution to the integral
∫
dk0 or

∫
dk4. It has to be

shown that the contributions of two k0 poles of the same couple, which are

located in two opposite (diagonal) quadrants, cancel each other. It is intu-

itive that they cancel each other and practically it turned out that there are

no contributions, because almost η independent results are obtained. The

other two poles of each couple are outside the integration contour and do not

contribute to Wick's rotation. Therefore, if the poles are located in such a

way, that for each ~k2 each of the four poles is located in a di�erent quadrant,

the transition rule (C.1) is correct and hence (2.8) applies.

Although it is not proven exactly that the contributions in the above case

cancel each other, a systematically di�erent case occurs if the couple of

poles is shifted as far as two of them cross the imaginary axis, see Fig. 4.24.

That means, it exists a χcrit = η1 Mqq, where two poles are located on the

imaginary axis (for ~k2 = 0) and for χ > χcrit it exists a ~k
2
crit, where in the

range ~k2 ∈ [0,~k2
crit] the two considered poles are across the imaginary axis

(in this case, where we consider the poles of the �rst quark, two poles are

located in the upper left quadrant and two poles are located in the lower left
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Re k0

Im k0

C

Figure 4.24: Integration contour for Wick's rotation in the complex k0
with one couple of poles (crosses) for χ > χcrit.

quadrant). It can be shown that χcrit = χi, where χi is the characteristically

quantity of the pole k̃2
0,i, and

~k2
crit is given by

~k2
crit = χ2

crit + Re(k̃2
0,i). (4.12)

For this pole structure the contributions to Wick's rotation change. The

upper right pole leaves the contour C and the lower right pole enters the

contour. It can be supposed that the contributions of the two poles in the

lower left quadrant do not cancel each other anymore.

For the above considerations the assumption has been made that the sin-

gularities found in the Euclidean propagator functions can be transformed

into Minkowski space by using k2
M = −k2

E . In principle, to be sure that the

propagator functions in Minkowski space have a corresponding pole structure

as found in the Euclidean space, the Dyson-Schwinger equation has to be

solved directly in Minkowski space or an analytically continuation has to be

found [48]. For solving the Dyson-Schwinger equation directly in Minkowski

space, the kernel (2.10) has to be transformed into Minkowski space, which

means that the exponent in the exponential function becomes positive and

the integral diverges. Until yet many attempts have been made to �nd an an-

alytically continuation of the propagator functions (e.g. by using Nakanishi
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4.6 Unstable results beyond the pole limit

representation [42]), which are not completely successful. Anyway, to justify

the assumption as an example the undressed propagator in Minkowski space

DM (p2) =
1

p2
M −M2

(4.13)

is considered. It has a pole at p2
M = M2 → p0 = ±

√
M2 + ~p2. The Wick-

rotated propagator in the Euclidean space reads

DE(p2) =
−1

p2
E +M2

, (4.14)

and has a pole at p2
E = −M2 → p4 = ±i

√
M2 + ~p2 = ip0. The propagators

are di�erent in Minkowski space and in Euclidean space, but the poles can

be transformed with the use of k2
M = −k2

E .

Up to here only the poles of the �rst quark propagator are considered, but

each pair of conjugated poles of the second quark propagator leads also to

a couple of four poles in the complex k0 plane. Their positions can be de-

scribed with Eq. (4.9) and (4.11), replacing η1 Mqq by −η2 Mqq and the

corresponding pole positions. That means in the case of equal quark masses

mq1 = mq2 and η1 = η2 the structure of poles in the k0 plane of the second

quark is similar to the one depicted in Fig. 4.21 but the �cross� is shifted to

the right and not to the left. When raising the value of χ = η1 Mqq = η2 Mqq

above χcrit two poles of the �rst quark cross the imaginary axis from the

right to the left at the same point when two poles of the second quark cross

from the left to the right. In this case the contributions to Wick's rotation

cancel each other, because both propagators have the same pole structure

with the same residues. It seems that in the equal mass case with η1 = η2

the value of Mqq could be raised arbitrarily large without getting problems

caused by pole contributions from Wick's rotation. But exactly this case has

been excluded for the calculations in this thesis because of the argumenta-

tion made in the last paragraph of Section 3.2.5 (also discussed in [10]).
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4. Results

At last here is a short idea what to do if such a couple of poles adds a

contribution to the Bethe-Salpeter equation. The resulting system would

not have the simple form of Eq. (3.28), but could read

X1 = S11X1 + S12X2 (4.15)

X2 = S21X1 + S22X2, (4.16)

where X1 is similar to X from Eq. (3.29) (if the hyperspherical decomposi-

tion is applicable) with dimension N = N1 = αmax×Ngegbau×NG and X2 is

the reduced tBSE solution with p0 = kI0, which means X1 has the dimension

N2 = αmax×NG. Therefore S11 is of dimension N1×N1, S12 is of dimension

N1 ×N2, S21 is of dimension N2 ×N1 and S22 is of dimension N2 ×N2. A

comparable solving structure can be found in [35], concerning poles of a vari-

ous kernel (a few additional comments can be found in [23], a classi�cation of

poles and their behaviour within Wick's rotation is exemplary given in [45]).
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5 | Summary and Outlook

In this thesis, the non-perturbative formalism of Dyson-Schwinger equations

and Bethe-Salpeter equation for �nding mesonic QCD boundstates has been

presented. The quark Dyson-Schwinger equation has been used for �nding

the solution of the quark propagator. The Bethe-Salpeter equation has been

used as a gap equation for �nding the boundstate masses of pseudoscalar

and vector mesons with u/d, s and c quarks as constituent quarks.

In the �rst part of this thesis a model interaction has been recalled to solve

both, the Dyson-Schwinger equation and the Bethe-Salpeter equation con-

sistently with taking care of the axial-vector Ward-Takahashi identity and

the Goldstone theorem. This model contains three parameters for the trun-

cated Dyson-Schwinger equation (current quark mass, interaction strength

and interaction range) and an additional parameter in the truncated Bethe-

Salpeter equation (current quark mass of second quark). In the second part

the implementation of the two integral equations has been illustrated. All

technical relevant steps have been explained. The appearance of the pole

structure of the propagator functions was emblazed and a new method for

handling the singularities has been commented. All numerical implementa-

tions have been reapplied, that means while already Fortran implementations

exist for solving tDSE and tBSE a new C++ implementation has been estab-

lished. In the main part of this thesis the results are presented. First, the

model parameters were set to values other groups used previously to check

the correct implementation of the solving procedure. The concordance of

the extracted values for meson boundstates indicates that the implementa-

tion has been done correctly. Then the model parameters have been varied

systematically. The variation of the current quark masses leads to a smooth

function of the boundstate masses of groundstates and excited states. In

some regions some unphysical e�ects appeared which are in contrast to ob-
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5. Summary and Outlook

servations of other groups and which are speci�c for the chosen parameters

of the interaction model. The variation of the two remaining model parame-

ters showed that one parameter could be �xed to obtain stable groundstate

results for mostly all considered mesons. The parameter of the interaction

range then could be varied to obtain the radially excited states of certain

mesons. For adding an additional constraint to the parameter space the

chiral condensate has been introduced and calculated for massless quarks.

It appeared a region in the parameter space, where the chiral condensate

vanished. This is an indicator that chiral symmetry is restored and these

parameters are not suitable for describing light mesons like the pion. The

spectrum of mesons has been tested for Regge behaviour, and the interaction

range parameter has been �xed for di�erent pseudoscalar mesons to obtain

a preferably linear Regge trajectory. It could be shown that the introduced

method for handling the pole structure of the propagator functions works

only in the region without poles and leads to unstable results in the region

of poles. It could be argued that the method itself is correct, but the ini-

tial truncated Bethe-Salpeter equation in Euclidean space is incomplete in

the presence of poles. It turned out that, with respect to the meson mass

spectrum, the chiral condensate and the Regge trajectories for each case a

di�erent set of parameters was necessary to obtain reasonable results. Fur-

ther, all these sets of parameters could not reproduce the meson spectrum

of the heavy-light mesons with the correct arrangement. Therefore it can be

said that the considered AWW kernel [2] is able to reproduce certain ground-

state masses of pseudoscalar and vector mesons, but is not able to describe

the whole meson spectrum with radially excitations by using an unique set

of parameters.

In future (and even present) studies the simple AWW kernel has to be re-

placed by a more reliable kernel like the MT kernel [36] or the Qin-Chang

kernel [46] for �nding a more detailed and accurate meson spectrum. This

kernels provide the correct behaviour for large momenta, which was neglected

in the AWW approach. The rainbow approximation is also a very simple ap-

proach, which can be replaced by the Ball-Chiu vertex, which ful�lls the

full Ward-Takahashi identity [48]. But the AWW kernel should not be dis-

carded at all. The simpleness of this kernel is also the power to gain access

for handling the pole structure explicitly. Whenever a truncation scheme

is applied to the Dyson-Schwinger and Bethe-Salpeter formalism unphysical
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singularities will appear in the solutions of the quark propagators. In the

last section of the main part of this thesis an idea has been introduced, which

could solve the pole problem and the AWW kernel is the most convenient

starting point for exploring the applicability of this procedure. As a next

step it has to be proven to which extent this method can be applied and

then an implementation must show if it provides reasonable results and how

stable these results are.
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A | Di�erent interaction ker-

nels
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Figure A.1: Scalar kernel function (2.10) for di�erent values of the
parameters D and ω with Dω5 = 0.5 (solid violet: ω = 0.3 GeV, long-
dashed green: ω = 0.5 GeV, short-dashed blue: ω = 0.7 GeV).

In Fig. A.1 the Alkofer-Watson-Weigel kernel (2.10) is plotted for di�erent

parameters D and ω with a = Dω5 = 0.5 GeV3. The shape of the scalar

kernel function (2.10) is similar for di�erent choices of the model parameters.

The interaction range parameter ω determines the location of the peak, while

the interaction strength parameter D acts only as an overall constant factor.

In Fig. A.2 the AWW kernel (solid) is compared to other common used
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Figure A.2: Di�erent scalar kernel functions (solid curve: AWW kernel
(2.10), long-dashed curve: MT kernel (2.9), short-dashed curve: QC
kernel [46]) for D = 16 GeV−2 and ω = 0.5 GeV.

kernels, the Maris-Tandy kernel (2.9) (long-dashed) and the Qin-Chang(QC)

kernel [46] (short-dashed). These two kernels (MT and QC) di�er from

the AWW kernel both for large k2 and for k2 → 0. For large k2 the MT

kernel and the QC kernel have the same form dominated by the UV term

(see Eq. (2.9)) obtained from perturbative calculations at one-loop order.

With this kernels the integrand in Eq. (2.8) does not converge fast enough

and therefore renormalisation constants and a cut-o� in the integral of the

truncated Bethe-Salpeter equation (2.8) have to be introduced, which is not

necessary in case the AWW kernel is used. Further the logarithm in the

UV term leads to additional singularities, so called branch points [1], if it

is tried to use the �brute force� method from Section 3.1.2 for �nding the

propagator functions (3.2) and (3.1) in the complex plane. For k2 → 0 the

MT kernel and the QC kernel do not vanish but converge to a �nite value.

This can lead to troubles when calculating the partial kernels Vκ(p̃, k̃) in Eq.

(3.23). A attempt to avoid this troubles has been made in [18,26] by shifting

the integration variable k̃ in Eq. (2.8) to p̃ − k̃ to integrate over real gluon

momenta.
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B | Limits of the brute force

method

As mentioned above in calculating the propagator functions in the complex

plane, problems appear if the imaginary part of the argument becomes large.

The critical expression is located in the AWW kernel (2.10), especially the

exponential function inside. At a closer look it reads

e−(p−k)2/ω2
= e−[p2+k2−2pkt]/ω2

(B.1)

= e−[Re(p)2−Im(p)2+2iRe(p)Im(p)+k2−2Re(p)kt−2iIm(p)kt]/ω2
(B.2)

= e−[Re(p)2−Im(p)2)]/ω2
e−[(k2−2Re(p)kt)]/ω2

e−2iIm(p)[Re(p)−kt]/ω2
.

(B.3)

The last line contains three exponential terms. The �rst one is a constant real

factor, which does not depend on the integration variables k and t = cosχk,

t ∈ [−1, 1]. The second term is also real, but depends on k and t. The

third term has a purely imaginary exponent which can be considered as a

phase. This phase can be split into a constant phase −2Im(p)Re(p)/ω2 and

a variable phase 2Im(p) kt/ω2, which leads to oscillations of the integrand.

What does this mean for the calculation of the propagator functions? The

integration in Eq. (3.3) is done numerically with a �nite mesh of integra-

tion points. The general rule for choosing the density of this mesh is to use

more points where the function su�ers larger variations. For an oscillating

function it has turned out that it is appropriate to use at least two integra-

tion points per oscillation with a Gaussian quadrature method [30]. That

means, if we hold one integration variable constant the di�erence between

75



B. Limits of the brute force method

two neighbouring points of the other variable must not be larger than the

phase di�erence becomes larger than π:

|2Im(p) ∆k t| ≤ π, (B.4)

|2Im(p) k∆t| ≤ π. (B.5)

For the inequality of Eq. (B.4), the maximum of the left side is reached if

t = ±1. This leads to the condition

|Im(p) ∆k| ≤ ω2

2
π. (B.6)

It can be seen that Im(p) can not be chosen arbitrarily large. To check

whether both inequalities are ful�lled in the present calculations the quanti-

ties have to be speci�ed. For all k ≤ 2 GeV, ∆k is at most 0.0163 GeV with

respect to a Gaussian mesh with 96 points in an interval [0, 1]. k itself is

also at most 2 GeV; for larger values a parametrisation method is used. All

calculations have been done for meson masses Mqq ≤ 4 GeV. A consequence

of this is that the maximal Im(p) is ± 2 GeV. It follows that condition (B.6)

is ful�lled for ω ≥ 0.1441 GeV. The other condition depends on ∆t, which

depends on the number of points of the Chebyshev mesh,

nch = 16 ⇒ ∆tmax = 0.1845 ⇒ ω ≥ 0.6854 GeV, (B.7)

nch = 32 ⇒ ∆tmax = 0.0952 ⇒ ω ≥ 0.4924 GeV, (B.8)

nch = 64 ⇒ ∆tmax = 0.0483 ⇒ ω ≥ 0.3507 GeV. (B.9)

These numbers show that the numerical calculations must be controlled very

carefully.
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C | Wick's rotation

To transform functions from Minkowski space to Euclidean space the follow-

ing rules [48] can be used:

∫ M

d4kM ⇒ i

∫ E

d4kE , (C.1)

/k ⇒ iγEkE , (C.2)

kµq
µ ⇒ −kEqE , (C.3)

kµx
µ ⇒ kExE , (C.4)

where kM = (k0,~k) and kE = (k4,~k).

Re k0

Im k0

C

Figure C.1: Integration contour for Wick's rotation in the complex k0
plane without poles.
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C. Wick's rotation

The transformations are de�ned via Wick's rotation [55]. For a function

f(kM ) = f(~k, k0) the zeroth component k0 of the Minkowskian four vector

kM is continued from the real axis to the complex plane and a closed integra-

tion contour is speci�ed, see the red curve in Fig. C.1. Applying Cauchy's

integral (3.7) leads to

0 =

∮
C
f(z)dz =

(∫ +∞

−∞
+

∫
arch,up

+

∫ −i∞
i∞

+

∫
arch,down

)
f(z)dz. (C.5)

The two contributions from the the upper right arch
∫
arch,up and the lower

left arch
∫
arch,down vanish, if the integrand vanishes for in�nite large momenta

|z| → ∞ (which is the case for the tDSE and tBSE in this thesis). It follows∫
dk0 ⇒ i

∫
dk0 = −

∫
dk4 (C.6)

with ik0 = k4. In the presence of poles k0,pole the transformation has to be

Re k0

Im k0

C

Figure C.2: Integration contour for Wick's rotation in the complex k0
plane with two poles (red crosses).

done more carefully. The upper pole in Fig. C.2 does not contribute to the

contour integral, the lower one is located inside the integration contour C
and gives, referring to Eq. (3.8) a contribution to Eq. (C.5) and (C.6):∫

dk0f(k0) ⇒ i

∫
dk0f(ik0) + 2πi res[f(k0 = k0,pole)], (C.7)
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where res[f(k0 = k0,pole)] is the residue of f(k0 at k0 = k0,pole. It is not

possible to change the integration contour C in a simple way to omit the

poles and the corresponding residues.
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D | Determinant function with

complex arguments

For �nding the determinant of a matrix An×n of dimension n � 3 it is not

convenient anymore to use simply Leibniz formula. Instead a more e�cient

algorithm must be chosen. Then it has to be implemented or a good im-

plementation has to be found. In this thesis the LU -decomposition 1 has

been chosen and has been implemented for complex arguments. The exist-

ing C++ routines are either much too slow or they are written only for real

arguments. The implemented routine has been tested with a couple of the

existing routines and the results coincide.

Practical calculations show that some meson masses can be obtained with

high accuracy even if the arguments of the determinant function are chosen

to be real (i.e. the imaginary parts of the entries of Eq. (3.26) are neglected).

Fig. D.1 illustrates that for quarkonia with mq1 = mq2 it does not make a

di�erence whether the determinant function (3.30) has complex arguments

or only the real parts of them. Even for kaons with mq1 = 5 MeV and

mq2 = 115 MeV the di�erence of both cases is only around 1 MeV. Of

course, it is not exact to neglect the imaginary parts in S, but someone could

guess that the meson mass results are independent of these imaginary parts

by observing a couple of values in the expectable region and continues the

calculations with the real parts, which may be more comfortable. Looking

at the heavy-light mesons (D,Ds) shows that this does not hold anymore.

For D mesons with mq1 = 5 MeV and mq2 ≈ 1000 MeV the di�erence is

about 100 MeV. It is interesting to note that with this �wrong� method the

1Each regular matrix A can be decomposed into A = LU , where L is a lower triangular
matrix with diag(L) = (1, 1, ..., 1, 1) and U is an upper triangular matrix. This decom-
position is useful because det(A) = det(LU) = det(L) · det(U) = 1 · det(U) and det(U) is
just the product of the elements on the diagonal of U .
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Figure D.1: Contour plot of the di�erence of pseudoscalar meson
groundstate mass Mxy in units of GeV calculated once with complex
arguments (see Fig. 4.1) and once only with the real parts of S from Eq.
(3.28) for varying quark masses mx and my. Parameters ω = 0.5 GeV,
D = 16 GeV−2.

e�ect MD > MDs can not be observed, whether the quark masses mq1,2 are

a little bit di�erent or not. Also the values of D and Ds meson masses are

closer to their experimental values. Hence, if somebody starts calculations

in this manner it is hard to �nd out that the results are not correct if they

are not explicitly tested.
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E | tDSE solutions and tBSE

expansion coe�cients
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