Personal web page of Emil Fridman

Dr. Emil Fridman

e.fridmanAthzdr.de
Phone: +49 351 260 2167

pOid=49770 / Sprache: en / Aktive Version (Content-ID: 385405) Originaler Quelltext des Contents ohne Interpretation dynamischer Inhalte: --------------------------------------------------------------------------

Scientific career

  • Since 2015:
    Senior Scientist, Reactor Safety Division, Institute of Resource Ecology, HZDR.
  • 2012-2014:
    Head, Junior Research Group Reactor Physics, Institute of Resource Ecology, HZDR.
  • 2008-2011:
    Research Assistant, Institute of Safety Research, HZDR.
  • 2004-2008:
    Ben-Gurion University, Ph.D. in Nuclear Engineering.

Research fields

  • Reactor physics and engineering,
  • Advanced nuclear fuel cycles,
  • Safety analysis of nuclear reactors,
  • Nuclear waste management.

Projects

Publications

2024

Analysis of loss of flow without scram test in the FFTF reactor – Part II: System thermal hydraulics with point neutron kinetics

Ponomarev, A.(9); Nikitin, E.(10); Fridman, E.(11)

Related publications


Analysis of loss of flow without scram test in the FFTF reactor – Part I: preparation of neutronics data

Nikitin, E.(18); Fridman, E.(19); Ponomarev, A.(20)

Related publications


2023

CEFR control rod drop transient simulation using RAST-F code system

Tran, T. Q.; Huo, X.; Fridman, E.(24); Lee, D.

Related publications


Coupled 3D neutronics/thermal-hydraulics analysis of Superphénix start-up tests with DYN3D/ATHLET code system

Ponomarev, A.(28); Nikitin, E.(29); Fridman, E.(30)


Definition of the neutronics benchmark of the NuScale-like core

Fridman, E.(32); Bilodid, Y.(33); Valtavirta, V.

Related publications


Impact of Thermal-Hydraulic Feedback and Differential Thermal Expansion on European SFR Core Power Distribution

Lindley, B.; Álvarez Velarde, F.; Baker, U.; Bodi, J.; Cosgrove, P.; Charles, A.; Fiorina, C.; Fridman, E.(37); Krepel, J.; Lavarenne, J.; Mikityuk, K.; Nikitin, E.(38); Ponomarev, A.; Radman, S.; Shwageraus, E.; Tollit, B.

Related publications


Extension of the DYN3D/ATHLET code system to SFR applications: models description and initial validation

Fridman, E.(41); Nikitin, E.(42); Ponomarev, A.(43); Di Nora, A.; Kliem, S.(44); Mikityuk, K.

Related publications


2022

Superphénix Benchmark Part II: Transient Results

Ponomarev, A.; Mikityuk, K.; Fridman, E.(48); Di Nora, V. A.; Bubelis, E.; Schikorr, M.

Related publications


Decay heat characterization for the European Sodium Fast Reactor

Jiménez-Carrascosa, A.; García-Herranz, N.; Krepel, J.; Margulis, M.; Davies, U.; Shwageraus, E.; Fridman, E.(51); Gregg, R.

Related publications


Superphénix Benchmark Part I: Results of Static neutronics

Ponomarev, A.; Mikityuk, K.; Zhang, L.; Nikitin, E.(54); Fridman, E.(55); Álvarez-Velarde, F.; Romojaro-Otero, P.; Jiménez-Carrascosa, A.; García-Herranz, N.; Lindley, B.; Davies, U.; Seubert, A.; Henry, R.

Related publications


Neutronic analysis of the European Sodium Fast Reactor: Part II - burnup results

Fridman, E.(58); Álvarez-Velarde, F.; Romojaro-Otero, P.; Tsige-Tamirat, H.; Jiménez-Carrascosa, A.; García-Herranz, N.; Bernard, F.; Gregg, R.; Krepel, J.; Massara, S.; Poumerouly, S.; Girardi, E.; Mikityuk, K.

Related publications


Neutronic analysis of the European Sodium Fast Reactor: Part I - fresh core results

Fridman, E.(61); Álvarez-Velarde, F.; Romojaro-Otero, P.; Tsige-Tamirat, H.; Jiménez-Carrascosa, A.; García-Herranz, N.; Bernard, F.; Gregg, R.; Krepel, J.; Massara, S.; Poumerouly, S.; Girardi, E.; Mikityuk, K.

Related publications


2021

Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part II: methodology application

Di Nora, V. A.; Fridman, E.(64); Nikitin, E.(65); Bilodid, Y.(66); Mikityuk, K.

Related publications


Neutronic Modelling of the FFTF Control Rod Worth Measurements with Diffusion Codes

Nikitin, E.(69); Fridman, E.(70); Mikityuk, K.(71); Radman, S.(72); Fiorina, C.(73)

Related publications


Evaluation of the ESFR End of Equilibrium Cycle State: Spatial Distributions of Reactivity Coefficients

Baker, U.; Margulis, M.; Shwageraus, E.; Fridman, E.(76); Jiménez-Carrascosa, A.; García-Herranz, N.; Cabellos, O.; Gregg, R.; Krepel, J.

Related publications


Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration

Di Nora, V. A.; Fridman, E.(79); Nikitin, E.; Bilodid, Y.(80); Mikityuk, K.

Related publications


Modelling ASTRID-Like Sodium-Cooled Fast Reactor with Serpent DYN3D Code Sequence

Rydlewicz, W.; Fridman, E.(83); Shwageraus, E.

Related publications

  • Contribution to proceedings
    Physics of Reactors PHYSOR 2020, 29.03.-02.04.2020, Cambridge, United Kingdom, 978-1-5272-6447-2
  • Open Access Logo European Physical Journal Web of Conferences 247(2021), 02028
    DOI: 10.1051/epjconf/202124702028(85)

Evaluation of the ESFR End of Cycle State and Detailed Spatial Distributions of Reactivity Coefficients

Davies, U.; Margulis, M.; Shwageraus, E.; Fridman, E.(86); Garcia-Herranz, N.; Jimenez-Carrascosa, A.; Cabellos, O.; Gregg, R.

Related publications


2020

Dynamic simulation of the CEFR control rod drop experiments with the Monte Carlo code Serpent

Fridman, E.(89); Huo, X.

Related publications


X2 VVER-1000 benchmark revision: fresh HZP core state and the reference Monte Carlo solution

Bilodid, Y.(92); Fridman, E.(93); Lötsch, T.

Related publications


Nuclear Data Sensitivity and Uncertainty Analysis of Critical VENUS-F Cores with the Serpent Monte Carlo Code

Fridman, E.(96); Valtavirta, V.; Aufiero, M.


Neutronic analyses of the FREYA experiments in support of the ALFRED LFR core design and licensing

Sarotto, M.; Firpo, G.; Kochetkov, A.; Krása, A.; Fridman, E.; Cetnar, J.; Domanska, G.


2019

Modeling of the FFTF isothermal physics tests with the Serpent and DYN3D codes

Nikitin, E.; Fridman, E.(99)


Applying the Serpent-DYN3D Code Sequence for the Decay Heat Analysis of Metallic Fuel Sodium Fast Reactor

Pereira, G.; Johnson, A. E.; Bilodid, Y.; Fridman, E.(101); Kotlyar, D.


2018

Explicit decay heat calculation in the nodal diffusion code DYN3D

Bilodid, Y.(103); Fridman, E.(104); Kotlyar, D.(105); Shwageraus, E.(106)


Extension of the reactor dynamics code DYN3D to SFR applications – Part III: validation against the initial phase of the Phenix EOL natural convection test

Nikitin, E.; Fridman, E.


Extension of the reactor dynamics code DYN3D to SFR applications – Part II: validation against the Phenix EOL control rod withdrawal tests

Nikitin, E.; Fridman, E.


Extension of the reactor dynamics code DYN3D to SFR applications – Part I: thermal expansion models

Nikitin, E.; Fridman, E.


2017

Modeling of FREYA Fast Critical Experiments with the Serpent Monte Carlo Code

Fridman, E.; Kochetkov, A.; Krása, A.


2016

Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code

Leppanen, J.; Pusa, M.; Fridman, E.


The reactor Dynamics code DYN3D – models, Validation and applications

Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Holt, L.; Grahn, A.; Kozmenkov, Y.; Mittag, S.


Hybrid microscopic depletion model in nodal code DYN3D

Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.


High Conversion Th–U233 fuel for current generation of PWRs: Part III – Fuel availability and utilization considerations

Baldova, D.; Fridman, E.; Shwageraus, E.


2015

Feasibility assessment of the once-through Thorium fuel cycle for the PTVM LWR concept

Rachamin, R.; Fridman, E.; Galperin, A.


On the use of the SPH method in nodal diffusion analyses of SFR cores

Nikitin, E.; Fridman, E.; Mikityuk, K.


Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.


Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems

Nikitin, E.; Fridman, E.; Mikityuk, K.


Investigations on in-vessel melt retention by external cooling for a generic VVER-1000 reactor

Tusheva, P.; Altstadt, E.; Willschütz, H.-G.; Fridman, E.; Weiß, F.-P.


One-Group Cross-Section Generation for Monte Carlo Burnup Codes: Multigroup Method Extension and Verification

Kotlyar, D.; Fridman, E.; Shwageraus, E.


2014

High Conversion Th-U233 fuel for current generation of PWRs: Part II – 3D full core analysis

Baldova, D.; Fridman, E.; Shwageraus, E.


High Conversion Th-U233 fuel for current generation of PWRs: Part I – assembly level analysis

Baldova, D.; Fridman, E.; Shwageraus, E.


Sensitivity study on Xe depletion in the high burn-up structure of UO2

Holt, L.; Schubert, A.; van Uffelen, P.; Walker, C. T.; Fridman, E.; Sonoda, T.


Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code

Leppanen, J.; Aufiero, M.; Fridman, E.; Rachamin, R.; van der Marck, S.


Extension and application of the reactor dynamics code DYN3D for Block-type High Temperature Reactors

Baier, S.; Fridman, E.; Kliem, S.; Rohde, U.


2013

Axial discontinuity factors for the nodal diffusion analysis of high conversion BWR cores

Fridman, E.; Duerigen, S.; Bilodid, Y.; Kotlyar, D.; Shwageraus, E.


Design and analysis of an innovative pressure tubes light water reactor with variable moderator control

Rachamin, R.; Fridman, E.; Galperin, A.


Serpent Monte-Carlo Code: An Advanced Tool for Few-Group Cross Section Generation

Fridman, E.

  • atw - International Journal for Nuclear Power 58(2013)3, 156-157

Neutronic analysis of SFR core with HELIOS-2, SERPENT, and DYN3D codes

Rachamin, R.; Wemple, C.; Fridman, E.


Modeling of SFR cores with Serpent-DYN3D codes sequence

Fridman, E.; Shwageraus, E.


2012

The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D

Duerigen, S.; Fridman, E.

  • Kerntechnik 4(2012), 226-229

Development and verification of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR

Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Kliem, S.; Merk, B.


Use of Zirconium-Based Moderators to Enhance Feedback Coefficients in a MOX-Fueled Sodium-Cooled Fast Reactor

Merk, B.; Weiß, F.-P.; Fridman, E.; Kliem, S.

  • Nuclear Science and Engineering 171(2012)2, 136-149

2011

Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system

Kotlyar, D.; Shaposhnik, Y.; Fridman, E.; Shwageraus, E.


Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR

Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Kliem, S.; Merk, B.

  • Kerntechnik 76(2011)3, 166-173

On the use of the Serpent Monte Carlo code for few-group cross section generation

Fridman, E.; Leppänen, J.


Pu recycling in a full Th-MOX PWR core: Part I - steady state analysis

Fridman, E.; Kliem, S.


On the use of a moderation layer to improve the safety behavior in sodium cooled fast reactors

Merk, B.; Fridman, E.; Weiß, F.-P.

  • Annals of Nuclear Energy 38(2011)5, 921-929

2010

Comparison among MCNP-based depletion codes applied to burnup calculations of pebble-bed HTR lattices

Bomboni, E.; Cerullo, N.; Fridman, E.; Lomonaco, G.; Shwageraus, E.

  • Nuclear Engineering and Design 240(2010), 918-924

2009

The use of Th in HTR: state of the art and implementation in Th/Pu fuel cycles

Mazzini, G.; Bomboni, E.; Cerullo, N.; Fridman, E.; Lomonaco, G.; Shwageraus, E.

  • Open Access Logo Science and Technology of Nuclear Installations 2009(2009), 749736

Preliminary evaluation of a nuclear scenario involving innovative gas cooled reactors

Vezzoni, B.; Cerullo, N.; Forasassi, G.; Fridman, E.; Lomonaco, G.; Romanello, V.; Shwageraus, E.

  • Open Access Logo Science and Technology of Nuclear Installations 2009(2009), 940286


URL of this article
https://www.hzdr.de/db/Cms?pOid=49770


Contact

Dr. Emil Fridman

e.fridmanAthzdr.de
Phone: +49 351 260 2167


Links of the content

(1) https://mcsafer-h2020.eu/
(2) https://www.iaea.org/projects/crp/i32011
(3) https://www.iaea.org/projects/crp/i31032
(4) http://esfr-smart.eu/
(5) http://cordis.europa.eu/project/rcn/110082_en.html
(6) https://www.iaea.org/newscenter/news/crp-t12026-on-near-term-and-promising-long-term-options-for-deployment-of-thorium-based-nuclear-energy-2011-2016
(7) https://cordis.europa.eu/project/id/269665
(8) http://www.cp-esfr.eu/
(9) https://orcid.org/0000-0001-7146-1777
(10) https://orcid.org/0000-0002-5695-4220
(11) https://orcid.org/0000-0002-4468-5238
(12) https://www.hzdr.de/publications/Publ-37345
(13) https://www.hzdr.de/publications/Publ-38370
(14) https://www.hzdr.de/publications/Publ-38758
(15) https://doi.org/10.14278/rodare.2640
(16) https://doi.org/10.14278/rodare.2741
(17) https://doi.org/10.1016%2Fj.pnucene.2024.105130
(18) https://orcid.org/0000-0002-5695-4220
(19) https://orcid.org/0000-0002-4468-5238
(20) https://orcid.org/0000-0001-7146-1777
(21) https://www.hzdr.de/publications/Publ-37346
(22) https://www.hzdr.de/publications/Publ-38370
(23) https://doi.org/10.1016%2Fj.pnucene.2023.105018
(24) https://orcid.org/0000-0002-4468-5238
(25) https://www.hzdr.de/publications/Publ-31104
(26) https://doi.org/10.14278/rodare.354
(27) https://doi.org/10.1016%2Fj.net.2023.08.017
(28) https://orcid.org/0000-0001-7146-1777
(29) https://orcid.org/0000-0002-5695-4220
(30) https://orcid.org/0000-0002-4468-5238
(31) https://doi.org/10.1016%2Fj.nucengdes.2023.112456
(32) https://orcid.org/0000-0002-4468-5238
(33) https://orcid.org/0000-0002-7810-1245
(34) https://www.hzdr.de/publications/Publ-35855
(35) https://doi.org/10.14278/rodare.2208
(36) https://doi.org/10.1016%2Fj.net.2023.06.029
(37) https://orcid.org/0000-0002-4468-5238
(38) https://orcid.org/0000-0002-5695-4220
(39) https://www.hzdr.de/publications/Publ-36609
(40) https://doi.org/10.1115%2F1.4056930
(41) https://orcid.org/0000-0002-4468-5238
(42) https://orcid.org/0000-0002-5695-4220
(43) https://orcid.org/0000-0001-7146-1777
(44) https://orcid.org/0000-0001-6654-6434
(45) https://www.hzdr.de/publications/Publ-35779
(46) https://doi.org/10.14278/rodare.2007
(47) https://doi.org/10.1016%2Fj.anucene.2022.109619
(48) https://orcid.org/0000-0002-4468-5238
(49) https://www.hzdr.de/publications/Publ-32430
(50) https://doi.org/10.1115%2F1.4051877
(51) https://orcid.org/0000-0002-4468-5238
(52) https://www.hzdr.de/publications/Publ-32432
(53) https://doi.org/10.1115%2F1.4051798
(54) https://orcid.org/0000-0002-5695-4220
(55) https://orcid.org/0000-0002-4468-5238
(56) https://www.hzdr.de/publications/Publ-32433
(57) https://doi.org/10.1115%2F1.4051449
(58) https://orcid.org/0000-0002-4468-5238
(59) https://www.hzdr.de/publications/Publ-31102
(60) https://doi.org/10.1115%2F1.4048765
(61) https://orcid.org/0000-0002-4468-5238
(62) https://www.hzdr.de/publications/Publ-31102
(63) https://doi.org/10.1115%2F1.4048905
(64) https://orcid.org/0000-0002-4468-5238
(65) https://orcid.org/0000-0002-5695-4220
(66) https://orcid.org/0000-0002-7810-1245
(67) https://www.hzdr.de/publications/Publ-31706
(68) https://doi.org/10.1016%2Fj.anucene.2021.108541
(69) https://orcid.org/0000-0002-5695-4220
(70) https://orcid.org/0000-0002-4468-5238
(71) https://orcid.org/0000-0002-4101-9221
(72) https://orcid.org/0000-0001-7613-9808
(73) https://orcid.org/0000-0001-9857-5037
(74) https://www.hzdr.de/publications/Publ-32446
(75) https://doi.org/10.1051%2Fepjconf%2F202124710017
(76) https://orcid.org/0000-0002-4468-5238
(77) https://www.hzdr.de/publications/Publ-31102
(78) https://doi.org/10.1115%2F1.4052121
(79) https://orcid.org/0000-0002-4468-5238
(80) https://orcid.org/0000-0002-7810-1245
(81) https://www.hzdr.de/publications/Publ-31706
(82) https://doi.org/10.1016%2Fj.anucene.2021.108183
(83) https://orcid.org/0000-0002-4468-5238
(84) https://www.hzdr.de/publications/Publ-32353
(85) https://doi.org/10.1051%2Fepjconf%2F202124702028
(86) https://orcid.org/0000-0002-4468-5238
(87) https://www.hzdr.de/publications/Publ-31102
(88) https://doi.org/10.1051%2Fepjconf%2F202124702001
(89) https://orcid.org/0000-0002-4468-5238
(90) https://www.hzdr.de/publications/Publ-31104
(91) https://doi.org/10.1016%2Fj.anucene.2020.107707
(92) https://orcid.org/0000-0002-7810-1245
(93) https://orcid.org/0000-0002-4468-5238
(94) https://www.hzdr.de/publications/Publ-30009
(95) https://doi.org/10.1016%2Fj.anucene.2020.107558
(96) https://orcid.org/0000-0002-4468-5238
(97) https://doi.org/10.1016%2FJ.ANUCENE.2019.107196
(98) https://doi.org/10.1115%2F1.4044000
(99) https://orcid.org/0000-0002-4468-5238
(100) https://doi.org/10.1016%2Fj.anucene.2019.06.058
(101) https://orcid.org/0000-0002-4468-5238
(102) https://doi.org/10.1016%2Fj.anucene.2018.11.020
(103) https://orcid.org/0000-0002-7810-1245
(104) https://orcid.org/0000-0002-4468-5238
(105) https://orcid.org/0000-0002-5581-7400
(106) https://orcid.org/0000-0002-7309-4920
(107) https://doi.org/10.1016%2Fj.anucene.2018.07.045
(108) https://doi.org/10.1016%2Fj.anucene.2018.05.017
(109) https://doi.org/10.1016%2Fj.anucene.2018.05.016
(110) https://doi.org/10.1016%2Fj.anucene.2018.05.015
(111) https://doi.org/10.1016%2Fj.anucene.2017.04.045
(112) https://doi.org/10.1016%2Fj.anucene.2016.06.007
(113) https://doi.org/10.1016%2Fj.pnucene.2016.02.013
(114) https://doi.org/10.1016%2Fj.anucene.2016.02.012
(115) https://doi.org/10.1016%2Fj.anucene.2015.10.006
(116) https://doi.org/10.1016%2Fj.anucene.2015.07.030
(117) https://doi.org/10.1016%2Fj.anucene.2015.06.007
(118) https://doi.org/10.1016%2Fj.anucene.2015.03.030
(119) https://doi.org/10.1016%2Fj.anucene.2014.08.054
(120) https://doi.org/10.1016%2Fj.anucene.2014.07.044
(121) https://doi.org/10.13182%2FNSE14%2D59
(122) https://doi.org/10.1016%2Fj.anucene.2014.05.018
(123) https://doi.org/10.1016%2Fj.anucene.2014.05.017
(124) https://doi.org/10.1016%2Fj.jnucmat.2014.05.009
(125) https://doi.org/10.1016%2Fj.anucene.2013.10.032
(126) https://doi.org/10.1016%2Fj.nucengdes.2013.12.013
(127) https://doi.org/10.1016%2Fj.anucene.2013.06.006
(128) https://doi.org/10.1016%2Fj.anucene.2013.05.011
(129) https://doi.org/10.1016%2Fj.anucene.2012.11.030
(130) https://doi.org/10.1016%2Fj.anucene.2012.08.006
(131) https://doi.org/10.1016%2Fj.nucengdes.2011.09.051
(132) https://doi.org/10.1016%2Fj.nucengdes.2011.07.028
(133) https://doi.org/10.1016%2Fj.anucene.2011.01.032
(134) https://doi.org/10.1016%2Fj.nucengdes.2010.10.036