Personal web page of Katja Schmeide

Scientific/Professional career

  • Since 1996:
    Research Associate at the Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology
  • 1995-1996:
    Master of Business Administration at the City University of Seattle, USA, European Programs in Dresden. Master thesis: "Analysis of the organizational structure of areas related to materials management of a middle-sized company of the chemical industry, including an analysis of material and information flow and its optimization".
  • 1992-1995:
    PhD at the Technische Universität Dresden / Technische Universität Clausthal. PhD thesis: "Study of the radical co- and terpolymerization of acceptor-, donor- and neutral monomers".
  • 1989-1992:
    Mikroelektronik und Technologie Gesellschaft mbH, Dresden
  • 1984-1989:
    TU Bergakademie Freiberg, Diploma in chemistry

Research work

  • Redox chemistry of actinides (U, Np, Pu) and fission products (Tc) in the presence of natural organic matter or iron(II)-containing mineral phases
  • Complexation of actinides/lanthanides with organic ligands (humic and fulvic acids, small organic molecules) and their effect on actinide/lanthanide sorption and transport in geological systems
  • Retention of radionuclides on host rock (clay rock, crystalline rock) and buffer material (bentonite), cementitious materials and oxides – Effect of evolving geochemical conditions
  • Calixarenes as organic extraction agents for actinides and lanthanides

Projects

Publications

2023

Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8)

Dettmann, S.; Huittinen, N. M.(6); Jahn, N.; Kretzschmar, J.(7); Kumke, M. U.; Kutyma, T.; Lohmann, J.; Reich, T.; Schmeide, K.(8); Shams Aldin Azzam, S.; Spittler, L.; Stietz, J.

Involved research facilities

Related publications


Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC – An Improved Approach to More Robust Thermodynamics

Friedrich, S.(12); Sieber, C.; Drobot, B.(13); Tsushima, S.(14); Barkleit, A.(15); Schmeide, K.(16); Stumpf, T.(17); Kretzschmar, J.(18)


2022

2-Phosphonobutane-1,2,4,-Tricarboxylic Acid (PBTC): pH-Dependent Behavior Studied by Means of Multinuclear NMR Spectroscopy

Kretzschmar, J.(20); Wollenberg, A.; Tsushima, S.(21); Schmeide, K.(22); Acker, M.

Related publications


Effect of Ca(II) on U(VI) and Np(VI) retention on Ca-bentonite and clay minerals at hyperalkaline conditions – New insights from batch sorption experiments and luminescence spectroscopy

Philipp, T.; Huittinen, N. M.(25); Shams Aldin Azzam, S.; Stohr, R.; Stietz, J.; Reich, T.; Schmeide, K.(26)


New insights into U(VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength

Stockmann, M.; Fritsch, K.; Bok, F.(28); Marques Fernandes, M.; Baeyens, B.; Steudtner, R.(29); Müller, K.(30); Nebelung, C.; Brendler, V.(31); Stumpf, T.; Schmeide, K.(32)


2021

Technetium immobilization by chukanovite and its oxidative transformation products: Neural network analysis of EXAFS spectra

Schmeide, K.(34); Roßberg, A.; Bok, F.(35); Shams Aldin Azzam, S.; Weiß, S.; Scheinost, A.(36)

Involved research facilities

Related publications


Uranium and neptunium retention mechanisms in Gallionella ferruginea / ferrihydrite systems for remediation purposes

Krawczyk-Bärsch, E.; Scheinost, A. C.; Roßberg, A.; Müller, K.; Lehrich, J.; Bok, F.(40); Hallbeck, L.; Schmeide, K.(41)

Involved research facilities

Related publications


Dimeric and Trimeric Uranyl(VI)–Citrate Complexes in Aqueous Solution

Kretzschmar, J.(45); Tsushima, S.(46); Lucks, C.; Jäckel, E.; Meyer, R.; Steudtner, R.(47); Müller, K.(48); Roßberg, A.; Schmeide, K.(49); Brendler, V.(50)

Involved research facilities

Related publications


2020

Trimeric uranyl(VI)–citrate forms Na+, Ca2+, and La3+ sandwich complexes in aqueous solution

Kretzschmar, J.(56); Tsushima, S.(57); Drobot, B.(58); Steudtner, R.(59); Schmeide, K.(60); Stumpf, T.

Related publications


Signatures of Technetium Oxidation States: A New Approach

Bauters, S.(64); Scheinost, A.(65); Schmeide, K.(66); Weiß, S.; Dardenne, K.(67); Rothe, J.; Mayordomo, N.(68); Steudtner, R.(69); Stumpf, T.; Abram, U.; Butorin, S.(70); Kvashnina, K.(71)

Involved research facilities

Related publications


2019

U(VI) sorption on Ca-bentonite at (hyper)alkaline conditions – Spectroscopic investigations of retention mechanisms

Philipp, T.; Shams Aldin Azzam, S.; Rossberg, A.; Huittinen, N.; Schmeide, K.(75); Stumpf, T.

Involved research facilities

Related publications


Cm(III) retention by calcium silicate hydrate (C-S-H) gel and secondary alteration phases in carbonate solutions with high ionic strength: A site-selective TRLFS study

Wolter, J.-M.; Schmeide, K.(79); Huittinen, N. M.(80); Stumpf, T.


Multidentate extracting agents based on calix[4]arene scaffold – UVI/EuIII separation studies

Bauer, A.; Jäschke, A.; Shams Aldin Azzam, S.; Glasneck, F.; Ullmann, S.; Kersting, B.; Brendler, V.; Schmeide, K.(82); Stumpf, T.


Stability of U(VI) doped calcium silicate hydrate gel in repository-relevant brines studied by leaching experiments and spectroscopy

Wolter, J.-M.; Schmeide, K.(84); Weiss, S.; Bok, F.; Brendler, V.(85); Stumpf, T.


2018

Uranium(VI) complexes with a calix[4]arene-based 8-hydroxyquinoline ligand: Thermodynamic and structural characterization based on calorimetry, spectroscopy, and liquid-liquid extraction

Bauer, A.; Jäschke, A.(87); Schöne, S.(88); Barthen, R.; März, J.(89); Schmeide, K.(90); Patzschke, M.(91); Kersting, B.(92); Fahmy, K.(93); Oertel, J.; Brendler, V.(94); Stumpf, T.


Selenium(IV) sorption onto γ-Al2O3: a consistent description of the surface speciation by spectroscopy and thermodynamic modeling

Mayordomo, N.; Foerstendorf, H.; Lützenkirchen, J.; Heim, K.; Weiss, S.; Alonso, U.; Missana, T.; Schmeide, K.(96); Jordan, N.


2015

Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

Xiong, Q.; Joseph, C.; Schmeide, K.; Jivkov, A. P.


2014

Interaction of U(VI) with Äspö diorite: A batch and in situ ATR FT-IR sorption study

Schmeide, K.; Gürtler, S.; Müller, K.; Steudtner, R.; Joseph, C.; Bok, F.; Brendler, V.


2013

Spectroscopic study of americium(III) complexes with nitrogen containing organic model ligands

Raditzky, B.; Sachs, S.; Schmeide, K.; Barkleit, A.; Geipel, G.; Bernhard, G.


Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid

Joseph, C.; van Loon, L. R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G.


Sorption of U(VI) onto Opalinus Clay: Effects of pH and humic acid

Joseph, C.; Stockmann, M.; Schmeide, K.; Sachs, S.; Brendler, V.; Bernhard, G.


2012

Uranyl(VI) Complexation by Sulfonate Ligands: A Relativistic Density Functional and TRLFS Study

Kremleva, A.; Zhang, Y.; Shor, A. M.; Krüger, S.; Joseph, C.; Raditzky, B.; Schmeide, K.; Sachs, S.; Bernhard, G.; Rösch, N.


Np(V) reduction by humic acid: Contribution of reduced sulfur functionalities to the redox behavior of humic acid

Schmeide, K.; Sachs, S.; Bernhard, G.


2011

Ternary uranium(VI) carbonato humate complex studied by cryo-TRLFS

Steudtner, R.; Sachs, S.; Schmeide, K.; Brendler, V.; Bernhard, G.


Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water

Joseph, C.; Schmeide, K.; Sachs, S.; Brendler, V.; Geipel, G.; Bernhard, G.


Binary and Ternary Uranium(VI) Humate Complexes Studied by Attenuated Total Reflection Fourier-transform Infrared Spectroscopy

Steudtner, R.; Müller, K.; Schmeide, K.; Sachs, S.; Bernhard, G.


Luminescence properties of uranium(VI) citrate and uranium(VI) oxalate species and their application for the determination of complex formation constants

Günther, A.; Steudtner, R.; Schmeide, K.; Bernhard, G.


2010

Sorption of Np(V) and Np(IV) onto kaolinite: Effects of pH, ionic strength, carbonate and humic acid

Schmeide, K.; Bernhard, G.


Interaction of uranium(VI) with nitrogen containing model ligands studied by laser-induced fluorescence spectroscopy

Raditzky, B.; Schmeide, K.; Sachs, S.; Geipel, G.; Bernhard, G.


2009

Redox stability of neptunium(V) and neptunium(IV) in the presence of humic substances of varying functionality

Schmeide, K.; Bernhard, G.


2008

The relationship of monodentate and bidentate coordinated uranium(VI) sulfate in aqueous solution

Hennig, C.; Ikeda, A.; Schmeide, K.; Brendler, V.; Moll, H.; Tsushima, S.; Scheinost, A. C.; Skanthakumar, S.; Wilson, R.; Soderholm, L.; Servaes, K.; Görrler-Walrand, C.; van Deun, R.


2007

EXAFS investigation of U(VI), U(IV) and Th(IV) sulfato complexes in aqueous solution

Hennig, C.; Schmeide, K.; Brendler, V.; Moll, H.; Tsushima, S.; Scheinost, A.

  • Inorganic Chemistry 46(2007)15, 5882-5892
  • Poster
    Actinide XAS 2006, 18.-20.09.2006, Karlsruhe, Germany
  • Contribution to proceedings
    Actinide XAS 2006, 18.-20.09.2006, Karlsruhe, Germany
    Speciation Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources: OECD, 978-92-64-99006-7, 219-224

2006

Plutonium(III) complexation by humic substances studied by X-ray absorption fine structure spectroscopy

Schmeide, K.; Reich, T.; Sachs, S.; Bernhard, G.

  • Inorganica Chimica Acta 359(2006)1, 237-242

2005

EXAFS Study on the Neptunium(V) Complexation by Various Humic Acids under Neutral pH Conditions

Sachs, S.; Schmeide, K.; Reich, T.; Brendler, V.; Heise, K. H.; Bernhard, G.

  • Radiochimica Acta 93(2005), 17-25

Neptunium(IV) complexation by humic substances studied by X-ray absorption fine structure spectroscopy

Schmeide, K.; Reich, T.; Sachs, S.; Brendler, V.; Heise, K. H.; Bernhard, G.

  • Radiochimica Acta 93(2005), 187-196

2004

Uranium(VI) separation from aqueous solution by calix[6]arene modified textiles

Schmeide, K.; Heise, K.-H.; Bernhard, G.; Keil, D.; Jansen, K.; Praschak, D.

  • Journal of Radioanalytical and Nuclear Chemistry 261(2004)1, 61-67

2003

Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy

Schmeide, K.; Sachs, S.; Bubner, M.; Reich, T.; Heise, K. H.; Bernhard, G.

  • Inorganica Chimica Acta 351, 133-140 (2003)

2002

Humic Colloid-Borne Migration of Uranium in Sand Columns

Artinger, R.; Rabung, T.; Kim, J. I.; Sachs, S.; Schmeide, K.; Heise, K. H.; Bernhard, G.; Nitsche, H.

  • Journal of Contaminant Hydrology 58 (2002) 1-12.

Carbon-13 NMR Spectroscopic Studies on Chemically Modified and Unmodified Synthetic and Natural Humic Acids

Sachs, S.; Bubner, M.; Schmeide, K.; Choppin, G. R.; Heise, K. H.; Bernhard, G.

  • Talanta, 57, 999-1009 (2002)

2000

Investigation of Humic Acid Complexation Behavior with Uranyl Ions Using Modified Synthetic and Natural Humic Acids

Pompe, S.; Schmeide, K.; Bubner, M.; Geipel, G.; Heise, K.-H.; Bernhard, G.; Nitsche, H.

  • Radiochimica Acta 88 (2000) 553-558

Uranium(VI) Sorption onto Phyllite and Selected Minerals in the Presence of Humic Acid

Schmeide, K.; Pompe, S.; Bubner, M.; Heise, K. H.; Bernhard, G.; Nitsche, H.

  • Radiochimica Acta 88, 723-728 (2000)

1998

The influence of charge-transfer complexes on the copolymerization behavior of cyclic maleic acid derivatives with donor monomers

Schmidt-Naake, G.; Drache, M.; Leonhardt, K.

  • Macromolecular Chemistry and Physics 199(1998)3, 353-361


Content from Sidebar

Contact

Dr. Katja Schmeide

k.schmeideAthzdr.de
Phone: +49 351 260 2436
+49 351 260 2513


URL of this article
https://www.hzdr.de/db/Cms?pOid=49807


Links of the content

(1) https://www.hzdr.de/db/Cms?pOid=61763
(2) https://www.hzdr.de/db/Cms?pOid=61258
(3) https://www.hzdr.de/db/Cms?pOid=51168
(4) https://www.hzdr.de/db/Cms?pOid=51164
(5) https://www.hzdr.de/db/Cms?pOid=51165
(6) https://orcid.org/0000-0002-9930-2329
(7) https://orcid.org/0000-0001-5042-8134
(8) https://orcid.org/0000-0002-6859-8366
(9) https://doi.org/10.1107/S1600577520014265
(10) https://doi.org/10.1107/S1600577520014265
(11) https://doi.org/10.3389%2Ffnuen.2023.1124856
(12) https://orcid.org/0009-0007-3878-0734
(13) https://orcid.org/0000-0003-1245-0466
(14) https://orcid.org/0000-0002-4520-6147
(15) https://orcid.org/0000-0003-3241-3443
(16) https://orcid.org/0000-0002-6859-8366
(17) https://orcid.org/0000-0002-4505-3865
(18) https://orcid.org/0000-0001-5042-8134
(19) https://doi.org/10.3390%2Fmolecules28124881
(20) https://orcid.org/0000-0001-5042-8134
(21) https://orcid.org/0000-0002-4520-6147
(22) https://orcid.org/0000-0002-6859-8366
(23) https://www.hzdr.de/publications/Publ-35617
(24) https://doi.org/10.3390%2Fmolecules27134067
(25) https://orcid.org/0000-0002-9930-2329
(26) https://orcid.org/0000-0002-6859-8366
(27) https://doi.org/10.1016%2Fj.scitotenv.2022.156837
(28) https://orcid.org/0000-0002-6885-2619
(29) https://orcid.org/0000-0002-3103-9587
(30) https://orcid.org/0000-0002-0038-1638
(31) https://orcid.org/0000-0001-5570-4177
(32) https://orcid.org/0000-0002-6859-8366
(33) https://doi.org/10.1016%2Fj.scitotenv.2021.150653
(34) https://orcid.org/0000-0002-6859-8366
(35) https://orcid.org/0000-0002-6885-2619
(36) https://orcid.org/0000-0002-6608-5428
(37) https://doi.org/10.1107/S1600577520014265
(38) https://doi.org/10.1107/S1600577520014265
(39) https://doi.org/10.1016%2Fj.scitotenv.2021.145334
(40) https://orcid.org/0000-0002-6885-2619
(41) https://orcid.org/0000-0002-6859-8366
(42) https://doi.org/10.1107/S1600577520014265
(43) https://doi.org/10.1107/S1600577520014265
(44) https://doi.org/10.1007%2Fs11356%2D020%2D09563%2Dw
(45) https://orcid.org/0000-0001-5042-8134
(46) https://orcid.org/0000-0002-4520-6147
(47) https://orcid.org/0000-0002-3103-9587
(48) https://orcid.org/0000-0002-0038-1638
(49) https://orcid.org/0000-0002-6859-8366
(50) https://orcid.org/0000-0001-5570-4177
(51) https://doi.org/10.1107/S1600577520014265
(52) https://www.hzdr.de/publications/Publ-32805
(53) https://doi.org/10.1107/S1600577520014265
(54) https://www.hzdr.de/publications/Publ-35617
(55) https://doi.org/10.1021%2Facs.inorgchem.1c00522
(56) https://orcid.org/0000-0001-5042-8134
(57) https://orcid.org/0000-0002-4520-6147
(58) https://orcid.org/0000-0003-1245-0466
(59) https://orcid.org/0000-0002-3103-9587
(60) https://orcid.org/0000-0002-6859-8366
(61) https://www.hzdr.de/publications/Publ-32805
(62) https://www.hzdr.de/publications/Publ-35617
(63) https://doi.org/10.1039%2FD0CC05460G
(64) https://orcid.org/0000-0001-5484-8857
(65) https://orcid.org/0000-0002-6608-5428
(66) https://orcid.org/0000-0002-6859-8366
(67) https://orcid.org/0000-0003-1286-1855
(68) https://orcid.org/0000-0003-4433-9500
(69) https://orcid.org/0000-0002-3103-9587
(70) https://orcid.org/0000-0003-3242-5305
(71) https://orcid.org/0000-0003-4447-4542
(72) https://doi.org/10.1107/S1600577520014265
(73) https://doi.org/10.1107/S1600577520014265
(74) https://doi.org/10.1039%2FD0CC03905E
(75) https://orcid.org/0000-0002-6859-8366
(76) https://doi.org/10.1107/S1600577520014265
(77) https://doi.org/10.1107/S1600577520014265
(78) https://doi.org/10.1016%2Fj.scitotenv.2019.04.274
(79) https://orcid.org/0000-0002-6859-8366
(80) https://orcid.org/0000-0002-9930-2329
(81) https://doi.org/10.1038%2Fs41598%2D019%2D50402%2Dx
(82) https://orcid.org/0000-0002-6859-8366
(83) https://doi.org/10.1016%2Fj.seppur.2018.12.041
(84) https://orcid.org/0000-0002-6859-8366
(85) https://orcid.org/0000-0001-5570-4177
(86) https://doi.org/10.1016%2Fj.chemosphere.2018.11.074
(87) https://orcid.org/0000-0003-0622-0306
(88) https://orcid.org/0000-0002-0723-7778
(89) https://orcid.org/0000-0003-4960-3745
(90) https://orcid.org/0000-0002-6859-8366
(91) https://orcid.org/0000-0003-3125-1278
(92) https://orcid.org/0000-0001-5386-2809
(93) https://orcid.org/0000-0002-8752-5824
(94) https://orcid.org/0000-0001-5570-4177
(95) https://doi.org/10.1002%2Fopen.201800085
(96) https://orcid.org/0000-0002-6859-8366
(97) https://doi.org/10.1021%2Facs.est.7b04546
(98) https://doi.org/10.1039%2Fc5cp05243b
(99) https://doi.org/10.1016%2Fj.apgeochem.2014.05.003
(100) https://doi.org/10.1016%2Fj.poly.2013.08.047
(101) https://doi.org/10.1016%2Fj.gca.2013.01.027
(102) https://doi.org/10.1016%2Fj.apgeochem.2013.06.016
(103) https://doi.org/10.1002%2Fejic.201200207
(104) https://doi.org/10.1016%2Fj.scitotenv.2011.12.052
(105) https://doi.org/10.1524%2Fract.2011.1861
(106) https://doi.org/10.1016%2Fj.chemgeo.2011.03.001
(107) https://doi.org/10.1039%2Fc1dt11089f
(108) https://doi.org/10.1524%2Fract.2011.1847
(109) https://doi.org/10.1016%2Fj.apgeochem.2010.05.008
(110) https://doi.org/10.1016%2Fj.poly.2009.08.010
(111) https://doi.org/10.1524%2Fract.2009.1661
(112) https://doi.org/10.1524%2Fract.2008.1543