Personal web page of Juliane März

Scientific career

  • Since 05/2022: Group leader "Metal organic actinide chemistry"
  • 2014-2022:
    Research associate at the Helmhotz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology
  • 2014:
    Ph.D.: "Carboxamide: Synthese, Komplexbildung und Struktur" TU Dresden, Chair of Inorganic Coordination Chemistry
  • 2009/09-11:
    Research associate at the University of Sydney
  • 2009:
    Diploma thesis: "Kationen- und Anionenkomplexe von β-Ketoamiden" TU Dresden, Chair of Special Inorganic Chemistry/ Coordination Chemistry

Research fields

  • Coordination chemistry low valent actinides (Th-Pu) with organic ligands
  • Investigation of isostructural complex series in solution and in solid state
  • Bonding analyses of the actinide complexes 

Projects

Teaching

  • Since 2021: Supervision of the PhD Theses of Tamara Duckworth and Boseok Hong
  • Since 2017/18: Supervision of research internships and Master theses
  • Since 2016: Supervision of PhD students:

Publications

2023

Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5f Orbitals

Takeyama, T.(5); Tsushima, S.(6); Gericke, R.(7); Kaden, P.(8); März, J.(9); Takao, K.(10)


Gold-based Coronands as Hosts for M3+ Metal ions: Ring Size Matters

Sucena, S. F.; Demirer, T. I.; Baitullina, A.; Hagenbach, A.; Grewe, J.; Spreckelmeyer, S.(12); März, J.(13); Barkleit, A.(14); Maia, P. I. D. S.(15); Nguyen, H. H.; Abram, U.(16)


Selective crystallization of a highly radiation-resistant isonicotinic acid-based metal-organic framework as a primary actinide waste form

Lv, K.; Patzschke, M.(18); März, J.(19); Kvashnina, K.(20); Schmidt, M.(21)

Involved research facilities

Related publications


Neptunyl(VI) Nitrate Coordination Polymer with Bis(2-pyrrolidone) Linkers Highlighting Crystallographic Analogy and Solubility Difference in Actinyl(VI) Nitrates

Takeyama, T.(25); März, J.(26); Ono, R.(27); Tsushima, S.(28); Takao, K.(29)


Crystal Structures of Ce(IV) Nitrates with Bis(2-pyrrolidone) Linker Molecules Deposited from Aqueous Solutions with Different HNO3 Concentrations

Ono, R.; Kazama, H.; März, J.(31); Tsushima, S.(32); Takao, K.


2022

Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry

Bansal, D.; Kaden, P.(34); Patzschke, M.(35); März, J.(36); Schmidt, M.(37)


MOFs with 12-coordinate 5f-block metal centers

Lv, K.; Urbank, C.; Patzschke, M.(39); März, J.(40); Kaden, P.(41); Weiß, S.; Schmidt, M.(42)

Related publications


Insights into the Electronic Structure of a U(IV) Amido and U(V) Imido Complex

Köhler, L.(45); Patzschke, M.(46); Bauters, S.(47); Vitova, T.(48); Butorin, S. M.; Kvashnina, K.(49); Schmidt, M.(50); März, J.(51); Stumpf, T.

Related publications


2021

How 5f electron polarizability drives covalency and selectivity in actinide N-donor complexes

Köhler, L.(54); Patzschke, M.(55); Schmidt, M.(56); Stumpf, T.; März, J.(57)

Related publications


An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application

Lyu, K.(61); Fichter, S.(62); Gu, M.; März, J.(63); Schmidt, M.(64)


Coordination of Trivalent Lanthanum and Cerium, and Tetravalent Cerium and Actinides (An = Th(IV), U(IV), Np(IV)) by a 4-Phosphoryl 1H-Pyrazol-5-olate Ligand in Solution and the Solid State

Zhang, J.; Wenzel, M.; Schnaars, K.; Hennersdorf, F.(66); Schwedtmann, K.; März, J.(67); Roßberg, A.; Kaden, P.(68); Kraus, F.(69); Stumpf, T.; Weigand, J. J.(70)

Involved research facilities

Related publications


2020

Bonding Trends in Tetravalent Th–Pu Monosalen Complexes

Radoske, T.(75); März, J.(76); Patzschke, M.(77); Kaden, P.(78); Walter, O.(79); Schmidt, M.(80); Stumpf, T.

Related publications


A Molecular Octafluoridoneptunate(IV) anion in (NH₄)₄[NpF₈] and Theoretical Investigations of the [MF₈]₄-System (M = Th - Bk)

Scheibe, B.(83); Patzschke, M.(84); März, J.(85); Conrad, M.; Kraus, F.(86)


Series of Tetravalent Actinide Amidinates: Structure Determination and Bonding Analysis.

Kloditz, R.(88); Fichter, S.(89); Kaufmann, S.; Brunner, T. S.; Kaden, P.(90); Patzschke, M.(91); Stumpf, T.; Roesky, P. W.(92); Schmidt, M.(93); März, J.(94)

Related publications


Enantiomerically pure Tetravalent Neptunium Amidinates: Synthesis and Characterization

Fichter, S.(97); Kaufmann, S.; Kaden, P.(98); Brunner, T. S.; Stumpf, T.; Roesky, P. W.(99); März, J.(100)

Related publications


Synthesis and crystal structures of transition metal(II) fluoridometallate(IV) hydrates of neptunium and plutonium: AIIMIVF₆∙3H₂O (AII = Mn, Zn; MIV = Np, Pu)

Scheibe, B.; März, J.(103); Schmidt, M.(104); Stumpf, T.; Kraus, F.


Synthesis, Structural, and Electronic Properties of K2PuVIO2(CO3)3(cr): An Environmentally Relevant Plutonium Carbonate Complex

Pidchenko, I.; März, J.(106); Hunault, M. O. J. Y.; Bauters, S.(107); Butorin, S. M.; Kvashnina, K.(108)

Involved research facilities

Related publications


Systematic comparison of the structure of homoleptic tetradentate N₂O₂-type Schiff base complexes of tetravalent f-elements (M(IV) = Ce, Th, U, Np, and Pu) in solid state and in solution

Radoske, T.(113); Kloditz, R.(114); Fichter, S.(115); März, J.(116); Kaden, P.(117); Patzschke, M.(118); Schmidt, M.(119); Stumpf, T.; Walter, O.; Ikeda, A.


Crystallization of colourless hexanitratoneptunate(IV) with anhydrous H+ countercations trapped into hydrogen bond polymer with diamide linkers

Takao, K.(121); März, J.(122); Matsuoka, M.; Mashita, T.; Kazama, H.; Tsushima, S.(123)


2019

Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups

Götzke, L.; Schaper, G.; März, J.(125); Kaden, P.(126); Huittinen, N.(127); Stumpf, T.; Kammerlander, K. K. K.; Brunner, E.; Hahn, P.; Mehnert, A.; Kersting, B.; Henle, T.; Lindoy, L. F.; Zanoni, G.; Weigand, J. J.


Mixed-valent neptunium oligomer complexes based on cation-cation interactions

Schöne, S.(129); März, J.; Stumpf, T.; Ikeda-Ohno, A.(130)


2018

Synthesis and Characterization of Heterometallic Iron–Uranium Complexes with a Bidentate N-Donor Ligand (2,2′-Bipyridine or 1,10-Phenanthroline)

Schöne, S.(132); Radoske, T.; März, J.; Stumpf, T.; Ikeda-Ohno, A.(133)


The {Np38} clusters: The missing link in the largest poly-oxo cluster series of tetravalent actinides

Martin, N. P.(135); Volkringer, C.(136); Roussel, P.; März, J.; Hennig, C.(137); Loiseau, T.(138); Ikeda-Ohno, A.(139)


Synthesis and structural characterization of the first neptunium based metal-organic frameworks incorporating {Np6O8} hexanuclear cluster

Martin, N. P.(141); März, J.; Feuchter, H.; Duval, S.; Roussel, P.; Henry, N.; Petricek, V.; Ikeda-Ohno, A.(142); Loiseau, T.(143); Volkringer, C.(144)


Uranium(VI) complexes with a calix[4]arene-based 8-hydroxyquinoline ligand: Thermodynamic and structural characterization based on calorimetry, spectroscopy, and liquid-liquid extraction

Bauer, A.; Jäschke, A.(146); Schöne, S.(147); Barthen, R.; März, J.(148); Schmeide, K.(149); Patzschke, M.(150); Kersting, B.(151); Fahmy, K.(152); Oertel, J.; Brendler, V.(153); Stumpf, T.


2017

[UO2Cl2(phen)2], a Simple Uranium(VI) Compound with a Significantly Bent Uranyl Unit (phen = 1,10-phenanthroline)

Schöne, S.(155); Radoske, T.; März, J.; Stumpf, T.; Patzschke, M.; Ikeda-Ohno, A.(156)


Synthesis of coordination polymers of tetravalent actinides (U and Np) with phthalate or mellitate ligand in aqueous medium

Martin, N. P.; März, J.; Volkringer, C.; Henry, N.; Hennig, C.; Ikeda-Ohno, A.(158); Loiseau, T.


2016

Self-assembly of [2+2] Co(II) metallomacrocycles and Ni(II) metallogels with novel bis(pyridylimine) ligands

Kelly, N.; Gloe, K.; Doert, T.; Hennersdorf, F.; Heine, A.; März, J.; Schwarzenbolz, U.; Weigand, J. J.; Gloe, K.



Content from Sidebar

Contact

Dr. Juliane März

Group lea­der "Metal organic actinide chemistry"
Actinid chemistry of metall organics
j.maerzAthzdr.de
Phone: +49 351 260 3209
+49 351 260 2506


URL of this article
https://www.hzdr.de/db/Cms?pOid=50188


Links of the content

(1) https://www.hzdr.de/db/Cms?pOid=63251
(2) https://www.hzdr.de/db/Cms?pOid=49802
(3) https://www.hzdr.de/db/Cms?pOid=50229
(4) https://www.hzdr.de/db/Cms?pOid=50121
(5) https://orcid.org/0000-0001-6827-2799
(6) https://orcid.org/0000-0002-4520-6147
(7) https://orcid.org/0000-0003-4669-0206
(8) https://orcid.org/0000-0002-9414-2936
(9) https://orcid.org/0000-0003-4960-3745
(10) https://orcid.org/0000-0002-0952-1334
(11) https://doi.org/10.1002%2Fchem.202302702
(12) https://orcid.org/0000-0003-1348-0309
(13) https://orcid.org/0000-0003-4960-3745
(14) https://orcid.org/0000-0003-3241-3443
(15) https://orcid.org/0000-0003-4699-9481
(16) https://orcid.org/0000-0002-1747-7927
(17) https://doi.org/10.3390%2Fmolecules28145421
(18) https://orcid.org/0000-0003-3125-1278
(19) https://orcid.org/0000-0003-4960-3745
(20) https://orcid.org/0000-0003-4447-4542
(21) https://orcid.org/0000-0002-8419-0811
(22) https://doi.org/10.1107/S1600577520014265
(23) https://doi.org/10.1107/S1600577520014265
(24) https://doi.org/10.1021%2Facsmaterialslett.2c01087
(25) https://orcid.org/0000-0001-6827-2799
(26) https://orcid.org/0000-0003-4960-3745
(27) https://orcid.org/0000-0002-6854-4894
(28) https://orcid.org/0000-0002-4520-6147
(29) https://orcid.org/0000-0002-0952-1334
(30) https://doi.org/10.3390%2Finorganics11030104
(31) https://orcid.org/0000-0003-4960-3745
(32) https://orcid.org/0000-0002-4520-6147
(33) https://doi.org/10.1021%2Facs.inorgchem.2c03554
(34) https://orcid.org/0000-0002-9414-2936
(35) https://orcid.org/0000-0003-3125-1278
(36) https://orcid.org/0000-0003-4960-3745
(37) https://orcid.org/0000-0002-8419-0811
(38) https://doi.org/10.1021%2Facs.inorgchem.2c01405
(39) https://orcid.org/0000-0003-3125-1278
(40) https://orcid.org/0000-0003-4960-3745
(41) https://orcid.org/0000-0002-9414-2936
(42) https://orcid.org/0000-0002-8419-0811
(43) https://www.hzdr.de/publications/Publ-34272
(44) https://doi.org/10.1021%2Fjacs.1c13127
(45) https://orcid.org/0000-0003-3013-5590
(46) https://orcid.org/0000-0003-3125-1278
(47) https://orcid.org/0000-0001-5484-8857
(48) https://orcid.org/0000-0002-3117-7701
(49) https://orcid.org/0000-0003-4447-4542
(50) https://orcid.org/0000-0002-8419-0811
(51) https://orcid.org/0000-0003-4960-3745
(52) https://www.hzdr.de/publications/Publ-34386
(53) https://doi.org/10.1002%2Fchem.202200119
(54) https://orcid.org/0000-0003-3013-5590
(55) https://orcid.org/0000-0003-3125-1278
(56) https://orcid.org/0000-0002-8419-0811
(57) https://orcid.org/0000-0003-4960-3745
(58) https://www.hzdr.de/publications/Publ-33353
(59) https://doi.org/10.1002%2Fchem.202102849
(60) https://doi.org/10.1002%2Fchem.202104350
(61) https://orcid.org/0000-0002-5209-1632
(62) https://orcid.org/0000-0002-0723-7778
(63) https://orcid.org/0000-0003-4960-3745
(64) https://orcid.org/0000-0002-8419-0811
(65) https://doi.org/10.1016%2Fj.ccr.2021.214011
(66) https://orcid.org/0000-0002-3729-030X
(67) https://orcid.org/0000-0003-4960-3745
(68) https://orcid.org/0000-0002-9414-2936
(69) https://orcid.org/0000-0003-4368-8418
(70) https://orcid.org/0000-0001-7323-7816
(71) https://doi.org/10.1107/S1600577520014265
(72) https://doi.org/10.1107/S1600577520014265
(73) https://www.hzdr.de/publications/Publ-31820
(74) https://doi.org/10.1039%2FD1DT00365H
(75) https://orcid.org/0000-0003-3396-8408
(76) https://orcid.org/0000-0003-4960-3745
(77) https://orcid.org/0000-0003-3125-1278
(78) https://orcid.org/0000-0002-9414-2936
(79) https://orcid.org/0000-0002-2679-1715
(80) https://orcid.org/0000-0002-8419-0811
(81) https://www.hzdr.de/publications/Publ-31730
(82) https://doi.org/10.1002%2Fchem.202003241
(83) https://orcid.org/0000-0002-4665-6289
(84) https://orcid.org/0000-0003-3125-1278
(85) https://orcid.org/0000-0003-4960-3745
(86) https://orcid.org/0000-0003-4368-8418
(87) https://doi.org/10.1002%2Fejic.202000565
(88) https://orcid.org/0000-0002-2417-2670
(89) https://orcid.org/0000-0002-0723-7778
(90) https://orcid.org/0000-0002-9414-2936
(91) https://orcid.org/0000-0003-3125-1278
(92) https://orcid.org/0000-0002-0915-3893
(93) https://orcid.org/0000-0002-8419-0811
(94) https://orcid.org/0000-0003-4960-3745
(95) https://www.hzdr.de/publications/Publ-31654
(96) https://doi.org/10.1021%2Facs.inorgchem.0c01969
(97) https://orcid.org/0000-0002-0723-7778
(98) https://orcid.org/0000-0002-9414-2936
(99) https://orcid.org/0000-0002-0915-3893
(100) https://orcid.org/0000-0003-4960-3745
(101) https://www.hzdr.de/publications/Publ-31459
(102) https://doi.org/10.1002%2Fchem.202001865
(103) https://orcid.org/0000-0003-4960-3745
(104) https://orcid.org/0000-0002-8419-0811
(105) https://doi.org/10.1002%2Fejic.202000298
(106) https://orcid.org/0000-0003-4960-3745
(107) https://orcid.org/0000-0001-5484-8857
(108) https://orcid.org/0000-0003-4447-4542
(109) https://doi.org/10.1107/S1600577520014265
(110) https://doi.org/10.1107/S1600577520014265
(111) https://doi.org/10.1021%2Facs.inorgchem.0c01335
(112) https://arxiv.org/abs/2010.07937
(113) https://orcid.org/0000-0003-3396-8408
(114) https://orcid.org/0000-0002-2417-2670
(115) https://orcid.org/0000-0002-0723-7778
(116) https://orcid.org/0000-0003-4960-3745
(117) https://orcid.org/0000-0002-9414-2936
(118) https://orcid.org/0000-0003-3125-1278
(119) https://orcid.org/0000-0002-8419-0811
(120) https://doi.org/10.1039%2FD0DT03405C
(121) https://orcid.org/0000-0002-0952-1334
(122) https://orcid.org/0000-0003-4960-3745
(123) https://orcid.org/0000-0002-4520-6147
(124) https://doi.org/10.1039%2FC9RA10090C
(125) https://orcid.org/0000-0003-4960-3745
(126) https://orcid.org/0000-0002-9414-2936
(127) https://orcid.org/0000-0002-9930-2329
(128) https://doi.org/10.1016%2Fj.ccr.2019.01.006
(129) https://orcid.org/0000-0002-0723-7778
(130) https://orcid.org/0000-0003-3380-5211
(131) https://doi.org/10.1039%2Fc9dt01056d
(132) https://orcid.org/0000-0002-0723-7778
(133) https://orcid.org/0000-0003-3380-5211
(134) https://doi.org/10.1021%2Facs.inorgchem.8b01868
(135) https://orcid.org/0000-0003-4137-2671
(136) https://orcid.org/0000-0003-2769-9360
(137) https://orcid.org/0000-0001-6393-2778
(138) https://orcid.org/0000-0001-8175-3407
(139) https://orcid.org/0000-0003-3380-5211
(140) https://doi.org/10.1039%2FC8CC03744B
(141) https://orcid.org/0000-0003-4137-2671
(142) https://orcid.org/0000-0003-3380-5211
(143) https://orcid.org/0000-0001-8175-3407
(144) https://orcid.org/0000-0003-2769-9360
(145) https://doi.org/10.1039%2FC8CC03121E
(146) https://orcid.org/0000-0003-0622-0306
(147) https://orcid.org/0000-0002-0723-7778
(148) https://orcid.org/0000-0003-4960-3745
(149) https://orcid.org/0000-0002-6859-8366
(150) https://orcid.org/0000-0003-3125-1278
(151) https://orcid.org/0000-0001-5386-2809
(152) https://orcid.org/0000-0002-8752-5824
(153) https://orcid.org/0000-0001-5570-4177
(154) https://doi.org/10.1002%2Fopen.201800085
(155) https://orcid.org/0000-0002-0723-7778
(156) https://orcid.org/0000-0003-3380-5211
(157) https://doi.org/10.1002%2Fchem.201703009
(158) https://orcid.org/0000-0003-3380-5211
(159) https://doi.org/10.1021%2Facs.inorgchem.6b02962
(160) https://doi.org/10.1016%2Fj.jorganchem.2016.04.021