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The department of Computational Fluid Dynamics at the Helmholtz-Zentrum Dresden – 

Rossendorf (HZDR) has promoting a baseline concept for the definition of closures for 

Euler-Euler modelling of poly-dispersed multiphase flows (Lucas et al., 2016, Rzehak et 

al., 2017).  

  

1. Bubble forces 

 

a. Drag force  
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The drag coefficient for single bubble is calculated according to the work of Ishii and 

Zuber (1979) 
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where Re p  and Eo are particle Reynolds number and Eötvös number, respectively. 

 

b. Virtual mass force 
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The virtual mass coefficient is set to constant, i.e. CVM = 0.5. 

 

 

c. Lift force  
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The lift force coefficient is calculated according to the Tomiyama correlation (Tomiyama, 

2002). 
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d. Turbulent dispersion force 

 

The turbulent dispersion force is calculated by the Favre averaging drag force (FAD) 

model (Burns et al., 2004). 
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e. Wall lubrication force  

 

yuuF ˆ
2 2

LGGLW

B

wall C
d

   

 

The wall force coefficient CW is calculated according to the work of Hosokawa et al. 

(2002)  
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,   with ( ) 0.0217f Eo Eo  

and ŷ is the wall normal vector and y is the distance to the wall. 

 

2. Turbulence 

 

a. Liquid phase 

 

The k--SST model with additional source terms for bubble-induced turbulence (BIT) is 

recommended:  
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The BIT source terms, k

LS  and LS   are calculated according to a model derived from DNS 

(Direct Numerical Simulation) of bubble column (Ma et al., 2017). 
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The source term in the equation is derived from the relation between k, ε and ω 
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b. Near-wall treatment 

 

The automatic near-wall treatment presented in Menter et al. (2003) is used.  

The flux (wall shear stress) for the momentum equation is computed from 
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y




is the velocity gradient over the first cell adjacent to the wall, and for a smooth 

wall the constant C has a value around 2.28. 

 

The flux for the k-equation is assumed to be zero. 
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For the ω-equation, an algebraic expression is specified instead of the flux, which is a 

blend between the analytical expression for ω in the logarithmic region and the 

corresponding expression in the sublayer: 
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c. Gas phase 
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The turbulent Prandtl number σ is set to 1.0. 

 

3. The inhomogeneous MUSIG model 

 

The poly-dispersity of bubbles is considered by the inhomogeneous MUSIG model 

(Krepper et al., 2008), which is a kind of class method. A transport equation for the 

volume fraction of each size group is solved.   
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The terms on the right hand side are birth rate, death rate of the size group i due to 

coalescence and break of bubbles. These integro-differential terms have to be solved by an 

appropriate discretization algorithm preserving the bubble number and mass (Liao et al., 

2017). In addition, kernels describing the coalescence and breakup rate are required to 

close the equation.   

 

4. Bubble coalescence & breakup 

 

The models presented in Liao et al. (2015) are used to calculate the coalescence and 

breakup rate. 

 

a. Coalescence 
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Finally, AH is the (material dependent) Hamaker constant. For twi air-water interafces, its 

value is about 3.7x10
-20

J.  

 

Values suggested for the adjusted constants are  max= 0.8, Cturb= 1.0, Ceddy= 1.0, Cshear= 

1.0, Cbuoy= 1.0, Cwake= 1.0,  Ceff = 5.0. 



 

 

b. Breakup 
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Values suggested for the adjusted constants are  Bturb= 1.0,  Beddy= 1.0,  Bshear= 1.0,  Bfric= 

0.25 are adjusted  parameters. 
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