Microscopic calculations for structure and reactions of light nuclei

Thomas Neff GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Workshop on
Nuclear Astrophysics at the Dresden Felsenkeller
June 26-28, 2017
HZDR Rossendorf, Dresden, Germany

HELMHOLTZ | GEMEINSCHAFT

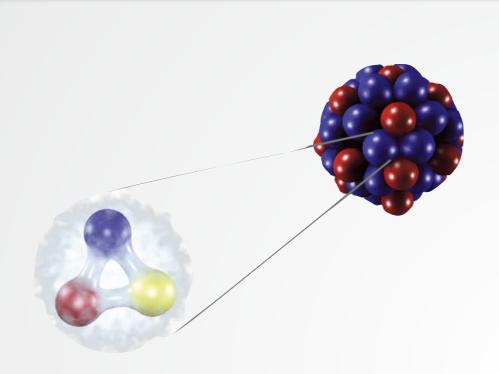
Our Aim:

Solve the nuclear many-body problem for bound-states, resonances and scattering states with realistic NN interactions

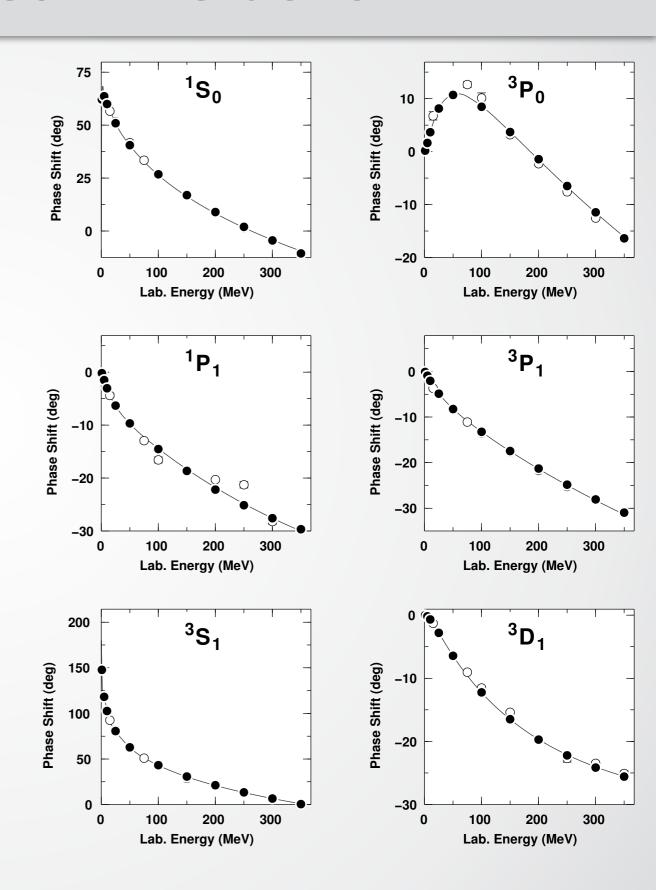
Many-Body Method

Effective Interaction

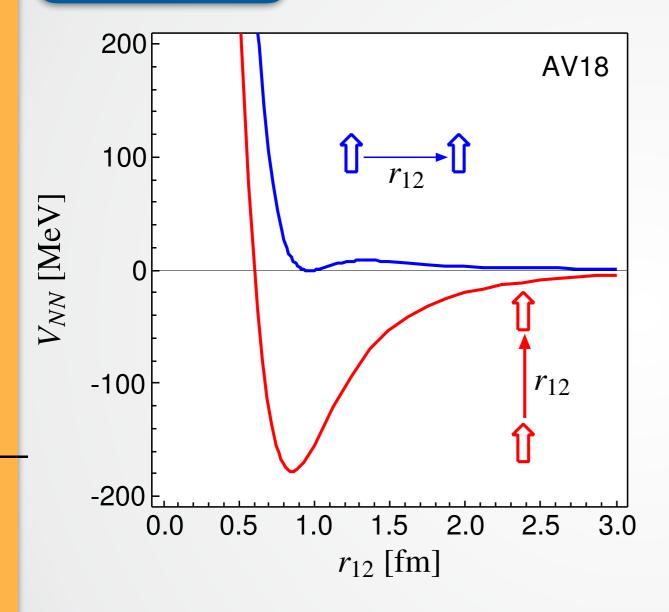
Nucleon-Nucleon Interaction



- Nucleons are not point-like, complicated quark and gluon sub-structure
- Nucleon-nucleon (NN) interaction: residual interaction
- Calculation within QCD not possible yet
 → construct realistic NN potentials ...
- describe two-nucleon properties (scattering, deuteron) with high accuracy
- high-momentum and off-shell behavior not constrained by scattering data



Nucleon-Nucleon Interaction



- repulsive core: nucleons can not get closer than ≈ 0.5 fm → central correlations
- strong dependence on the orientation of the spins due to the tensor force (mainly from π-exchange) → tensor correlations
- the nuclear force will induce strong shortrange correlations in the nuclear wave function

$$\hat{S}_{12} = 3(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{r}}_{12})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{r}}_{12}) - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$$

Unitary Correlation Operator Method

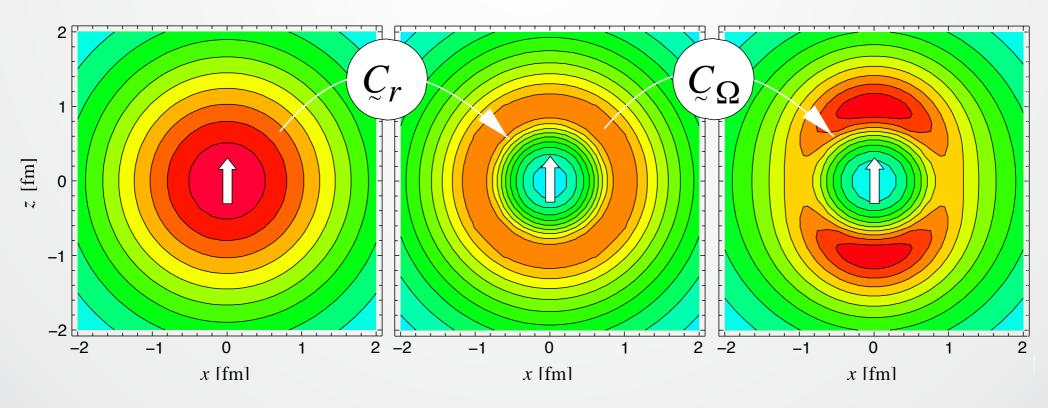
Correlation Operator

$$\hat{C} = \hat{C}_{\Omega} \hat{C}_r$$

Correlated Hamiltonian

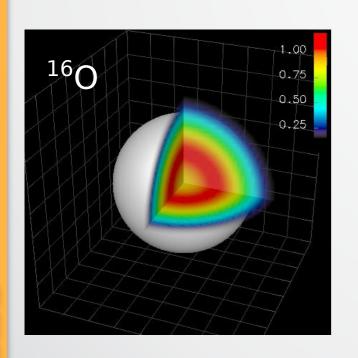
$$\hat{C}^{\dagger}(\hat{T}+\hat{V})\hat{C}=\hat{T}+\hat{V}_{\text{UCOM}}+\dots$$

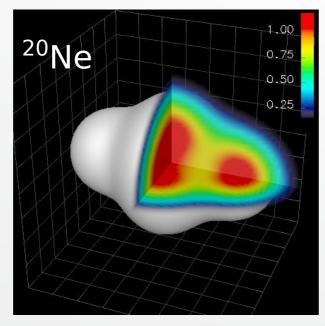
Central correlator shifts nucleons apart,
Tensor correlator aligns nucleons with spin



Fermionic Molecular Dynamics

Many-body Method using Gaussian wave-packet basis





Fermionic Molecular Dynamics

Fermionic

Intrinsic many-body states

$$|Q\rangle = \hat{A}\{|q_1\rangle \otimes \cdots \otimes |q_A\rangle\}$$

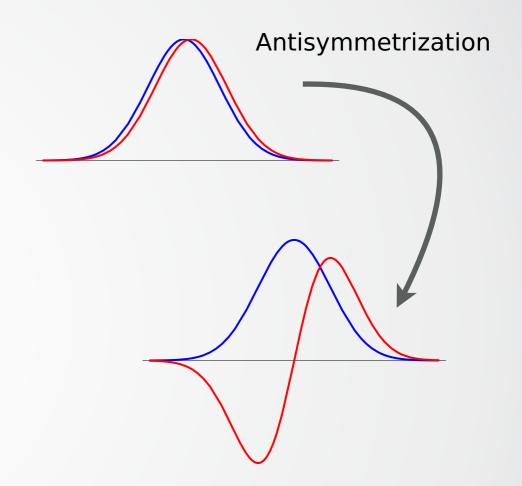
are antisymmetrized A-body states

Molecular

Single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow}\rangle \otimes |\xi\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width α_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

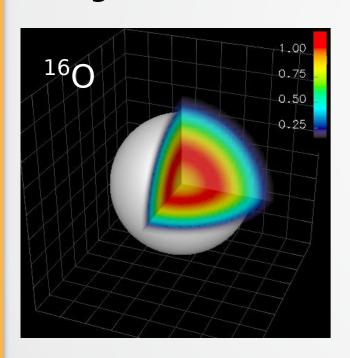


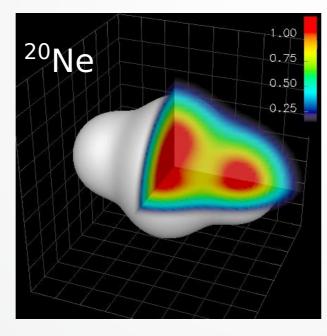
harmonic oscillator shell model
and Brink-type cluster
configurations as limiting cases

Projection after Variation

Variation and Projection

- minimize the energy of the intrinsic state
- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, angular (and linear) momentum





Generator coordinates

 use generator coordinates (radii, quadrupole or octupole deformation, strength of spin-orbit force) to create additional basis states

Variation

$$\min_{\{q_{\mathcal{V}}\}} \frac{\langle Q | \hat{H} - \hat{T}_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

Projection

$$\hat{P}^{\pi} = \frac{1}{2}(1 + \pi \hat{\Pi})$$

$$\hat{P}^{J}_{MK} = \frac{2J+1}{8\pi^2} \int d^3\Omega \, D^{J}_{MK}^{*}(\Omega) \, \hat{R}(\Omega)$$

$$\hat{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\hat{\mathbf{P}} - \mathbf{P}) \cdot \mathbf{X}\}$$

Variation after Projection

Variation after Projection

- Correlation energies can be quite large for well deformed and/or clustered states
- For light nuclei it is possible to perform real variation after projection
- Can be combined with generator coordinate method

Multiconfiguration Mixing

- Set of N intrinsic states optimized for different spins and parities and for different values of generator coordinates are used as basis states
- Diagonalize in set of projected basis states

Variation

$$\min_{\{q_{\mathcal{V}}\}} \frac{\langle Q | \hat{H} - \hat{T}_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

Variation after Projection

$$\min_{\{q_{\nu},c^{\alpha}_{K}\}} \frac{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | (\hat{H} - \hat{T}_{cm}) \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}$$

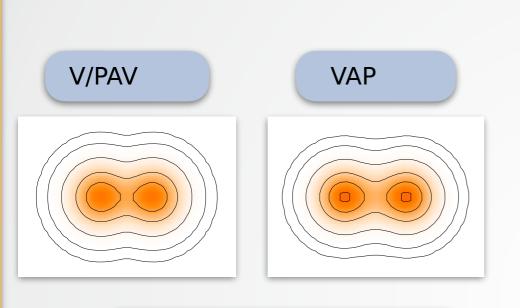
(Intrinsic) Basis States

$$\left\{\left|Q^{(a)}\right\rangle, a=1,\ldots,N\right\}$$

Generalized Eigenvalue Problem

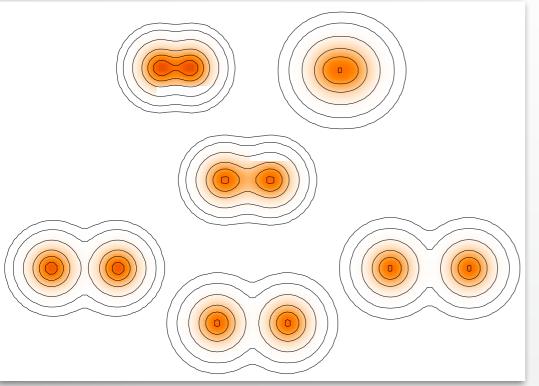
$$\sum_{K'b} \underbrace{\langle Q^{(a)} | \hat{H} \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\textbf{P}=0} | Q^{(b)} \rangle}_{\text{Hamiltonian kernel}} c^{\alpha}_{K'b} = E^{J^{\pi}\alpha} \sum_{K'b} \underbrace{\langle Q^{(a)} | \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\textbf{P}=0} | Q^{(b)} \rangle}_{\text{norm kernel}} c^{\alpha}_{K'b}$$

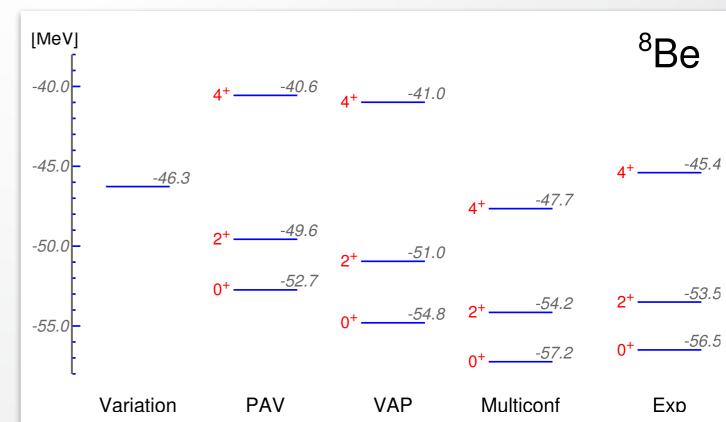
⁸Be: PAV/VAP/Multiconfiguration Mixing



	E _b [MeV]	r _{ch} [fm]	<i>B(E2)</i> [e ² fm ⁴]
PAV	52.7	2.39	9.3
VAP	54.8	2.49	15.4
Multiconfig	57.2	2.74	30.4
Exp.	56.5		

Multiconfiguration Mixing





3 He(α , γ) 7 Be and 3 H(α , γ) 7 Li Radiative Capture

PRL **106**, 042502 (2011)

PHYSICAL REVIEW LETTERS

week ending 28 JANUARY 2011

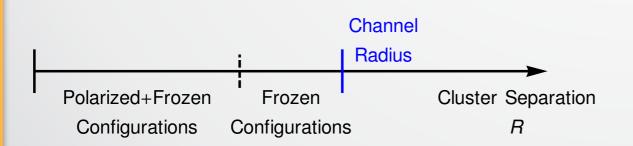
Microscopic Calculation of the ${}^3{\rm He}(\alpha,\gamma)^7{\rm Be}$ and ${}^3{\rm H}(\alpha,\gamma)^7{\rm Li}$ Capture Cross Sections Using Realistic Interactions

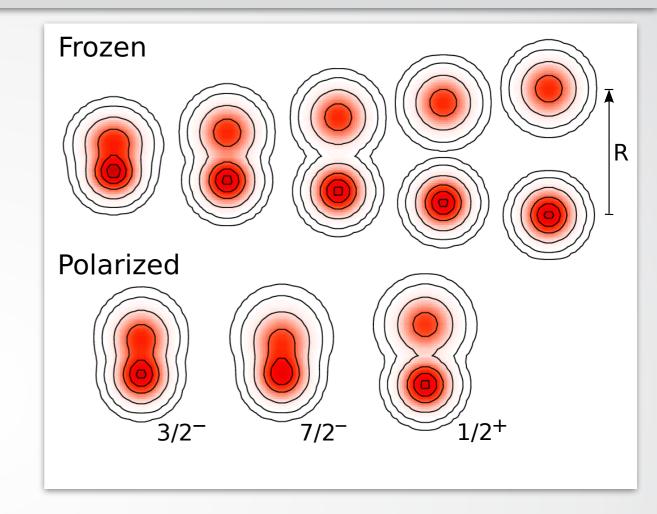
Thomas Neff*

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany (Received 12 November 2010; published 25 January 2011)

FMD Basis States

- FMD wave functions use Gaussian wave packets as single-particle basis states
- Many-body basis states are Slater determinants projected on parity, angular momentum and total linear momentum
- FMD basis contains both harmonic oscillator and Brink-type cluster wave functions as special cases
- a realistic low-momentum interaction is obtained from the Argonne v₁₈ interaction by the Unitary Correlation Operator Method in two-body approximation





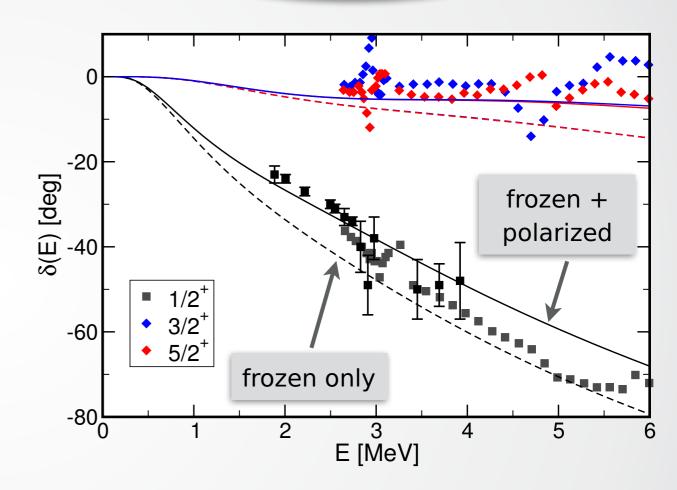
- Polarized configurations are obtained by variation after projection for all spins and parities
- Frozen configurations are generated from ⁴He and ³He ground states
- at the channel radius many-body wave functions are matched to Whittaker and Coulomb solutions for point-like clusters with the *R*-matrix method

Bound and Scattering States

Bound States

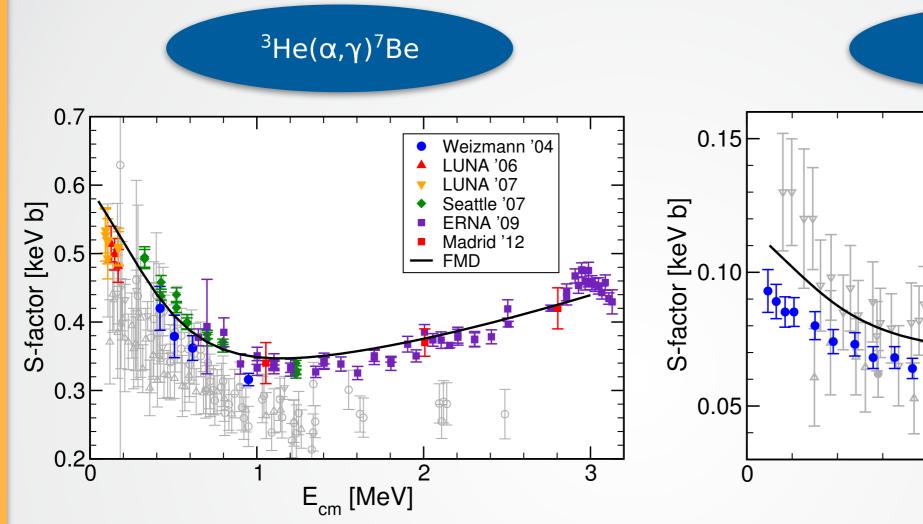
		FMD	Experiment
⁷ Be	E _{3/2-} [MeV]	-1.49	-1.59
	E _{1/2-} [MeV]	-1.31	-1.15
	<i>r</i> _{ch} [fm]	2.67	2.647(17)
	Q [e fm ²]	-6.83	-
7Li	E _{3/2-} [MeV]	-2.39	-2.467
	E _{1/2-} [MeV]	-2.17	-1.989
	<i>r</i> _{ch} [fm]	2.46	2.444(43)
	Q [e fm ²]	-3.91	-4.00(3)

Scattering States



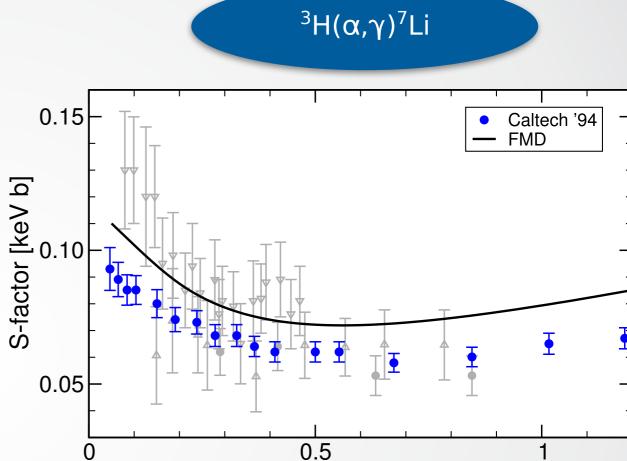
- centroid energy of bound states well reproduced, splitting between 3/2- and 1/2states too small
- charge radii and quadrupole moment test the tails of bound state wave functions
- s- and d-wave capture dominate at small energies
- polarized configurations are important for describing the phase shifts

Capture Cross Section

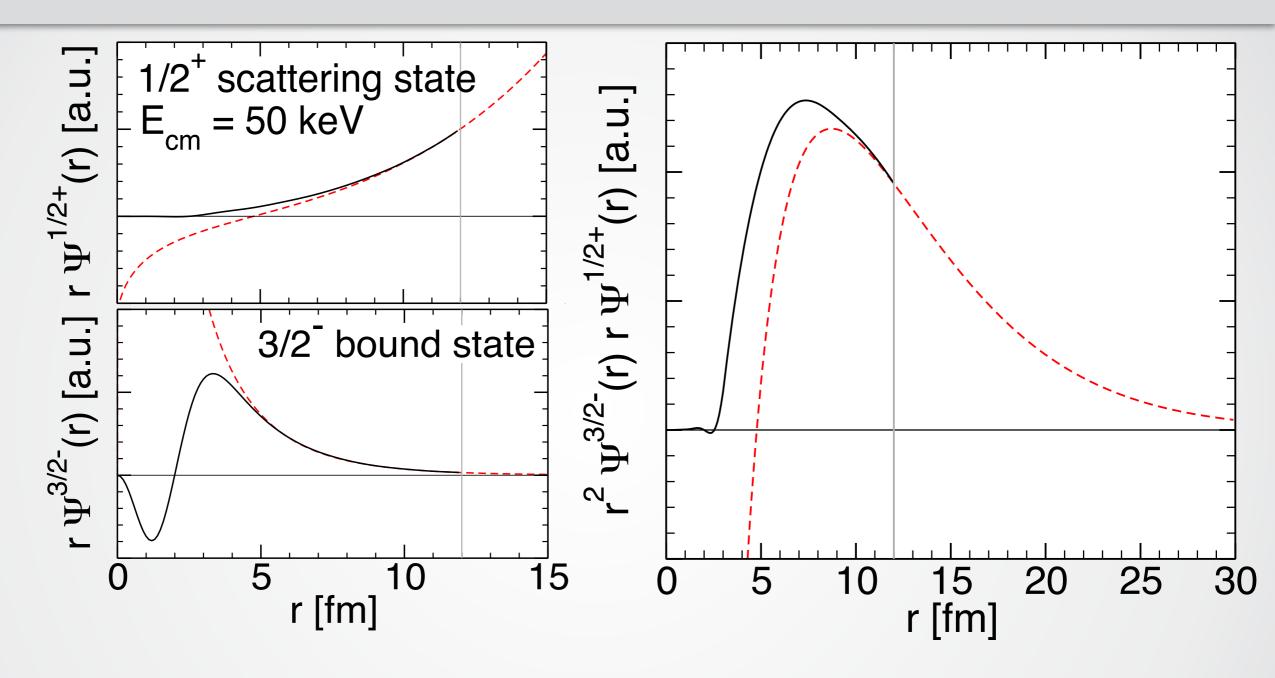


 E_{cm} [MeV]
• calculations reproduce energy dependence but not normalization of ${}^3H(\alpha,\gamma)^7Li$ data by Brune *et al.*

• good agreement with new high quality $^3\text{He}(\alpha,\gamma)^7\text{Be}$ data regarding both energy dependence and normalization



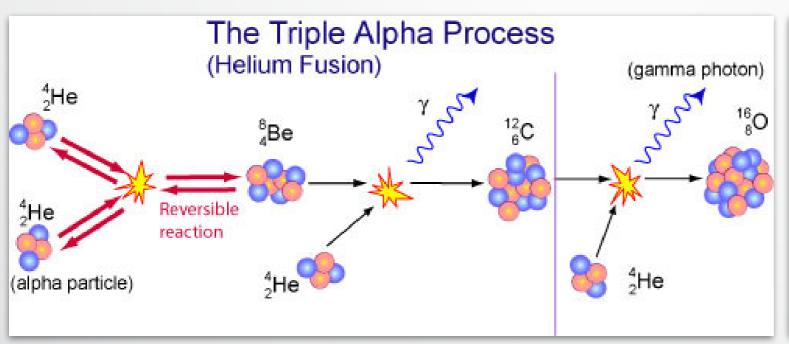
Overlap functions and Matrixelements

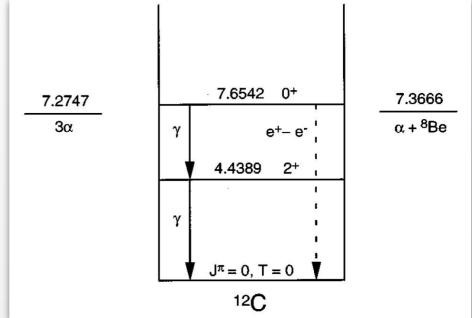


- Overlap functions from projection on RGM-cluster states
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

Cluster States in ¹²C

FMD and Cluster Model Calculations





¹²C: Microscopic α-Cluster Model

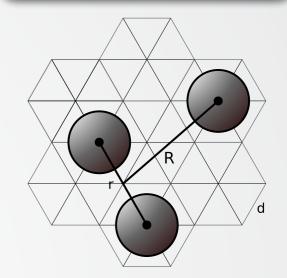
- 12 C is described as a system of three α -particles
- α -particles are given by HO $(0s)^4$ wave functions
- wave function is fully antisymmetrized
- effective Volkov nucleon-nucleon interaction adjusted to reproduce α - α and 12 C ground state properties
- Internal region: α's on triangular grid
- External region: ${}^{8}Be(0^{+},2^{+},4^{+})-\alpha$ configurations

$$\left|\Psi_{JMK\pi}^{3\alpha}(\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3})\right\rangle = \hat{P}^{\pi}\hat{P}_{MK}^{J}\hat{\mathcal{A}}\left\{\left|\Psi_{\alpha}(\mathbf{R}_{1})\right\rangle \otimes \left|\Psi_{\alpha}(\mathbf{R}_{2})\right\rangle \otimes \left|\Psi_{\alpha}(\mathbf{R}_{3})\right\rangle\right\}$$

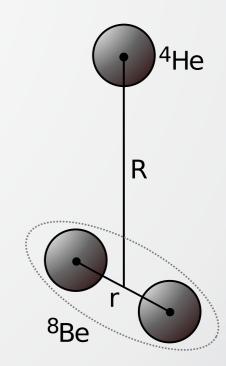
Double Projection

$$|\Psi_{IK}^{^{8}\text{Be}}\rangle = \sum_{i} \hat{P}_{K0}^{I} \hat{\mathcal{A}} \left\{ \left| \Psi_{\alpha} (-\frac{r_{i}}{2} \mathbf{e}_{z}) \otimes \left| \Psi_{\alpha} (+\frac{r_{i}}{2} \mathbf{e}_{z}) \right\} c_{i}^{I} \right.$$
$$\left| \Psi_{IK;JM\pi}^{^{8}\text{Be},\alpha} (R_{j}) \right\rangle = \hat{P}^{\pi} \hat{P}_{MK}^{J} \hat{\mathcal{A}} \left\{ \left| \Psi_{IK}^{^{8}\text{Be}} (-\frac{R_{j}}{3} \mathbf{e}_{z}) \right\rangle \otimes \left| \Psi_{\alpha} (+\frac{2R_{j}}{3} \mathbf{e}_{z}) \right\rangle \right\}$$

Internal Region

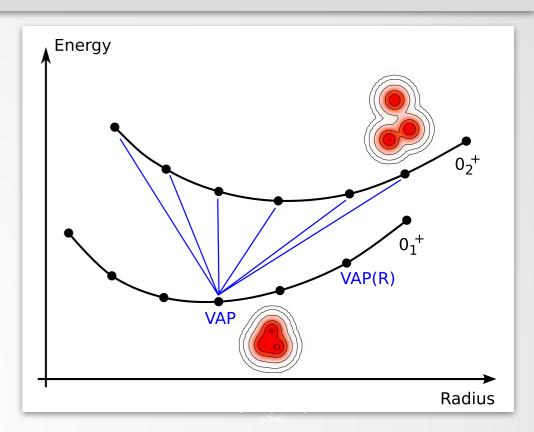


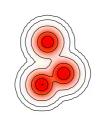
External Region

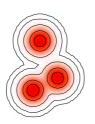


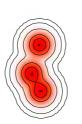
¹²C: FMD

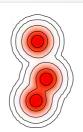
- AV18 UCOM(SRG) (α =0.20 fm⁴) interaction Increase strength of spin-orbit force by a factor of two to partially account for omitted three-body forces
- Internal region: FMD basis states obtained by **VAP** with radius as generator coordinate for **first 0**⁺, 1⁺, 2⁺, ..., perform VAP for second 0⁺, 1⁺, 2⁺, ... with radius as generator coordinate
- External region: ⁸Be(0⁺,2⁺,4⁺)-α configurations, polarization effects in ⁸Be are important









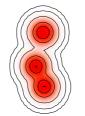


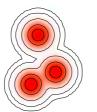
$$\left|\left\langle \cdot \mid 0_{1}^{+} \right\rangle \right| = 0.94$$
$$\left|\left\langle \cdot \mid 2_{1}^{+} \right\rangle \right| = 0.93$$

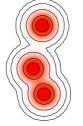
$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.58$$

$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.57$$

$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.45$$







$$\left|\left\langle \cdot \mid 3_{1}^{-} \right\rangle \right| = 0.91$$

$$\langle \cdot | 2_2^+ \rangle | = 0.50$$

$$\left|\left\langle \cdot \mid 2_2^+ \right\rangle \right| = 0.4$$

$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0$$

$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.50 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.49 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.44 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.41$$

Basis states are not orthogonal!

 0^{+}_{2} and 2^{+}_{2} states have no rigid intrinsic structure

¹²C: Matching to Coulomb Asymptotics

- asymptotically only Coulomb interaction between ⁸Be and α
- calculate spectroscopic amplitudes with RGM wavefunction
- use microscopic R-matrix method to match logarithmic derivative of spectroscopic amplitudes to Coulomb solutions

Bound states (Whittaker)

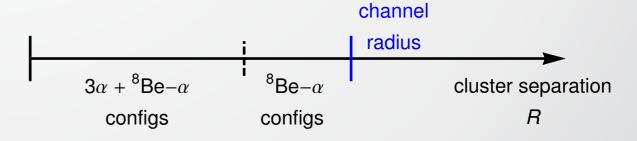
$$\psi_c(r) = A_c \frac{1}{r} W_{-\eta_c, L_c + 1/2}(2\kappa_c r), \qquad \kappa_c = \sqrt{-2\mu(E - E_c)}$$

Resonances (purely outgoing Coulomb - complex energy)

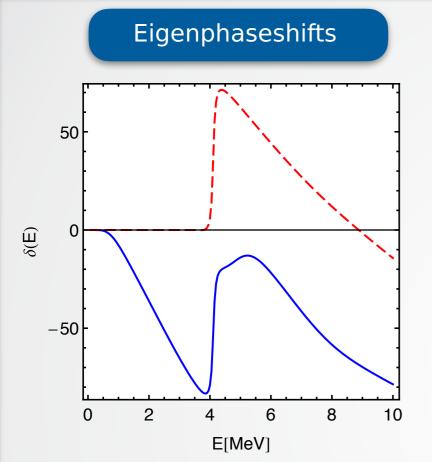
$$\psi_c(r) = A_c \frac{1}{r} O_{L_c}(\eta_c, k_c r), \qquad k_c = \sqrt{2\mu(E - E_c)}$$

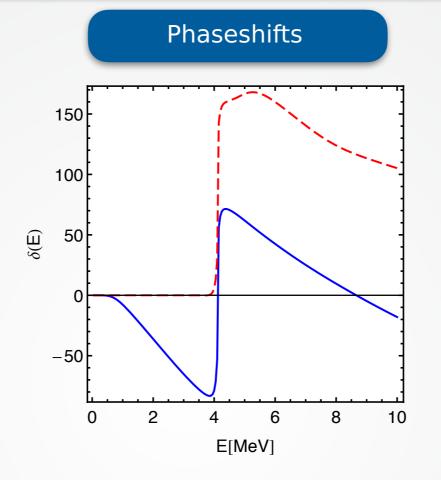
Scattering States (incoming + outgoing Coulomb)

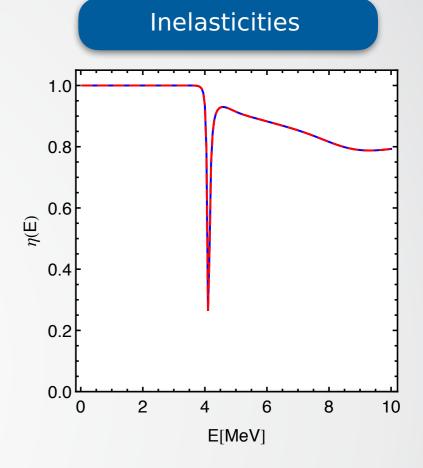
$$\psi_{c}(r) = \frac{1}{r} \left\{ \delta_{L_{c},L_{0}} I_{L_{c}}(\eta_{c}, k_{c}r) - S_{c,c_{0}} O_{L_{c}}(\eta_{c}, k_{c}r) \right\}, \qquad k_{c} = \sqrt{2\mu(E - E_{c})}$$



8 Be(0_{1}^{+} , 0_{2}^{+})+ α Continuum: 0^{+} Phaseshifts







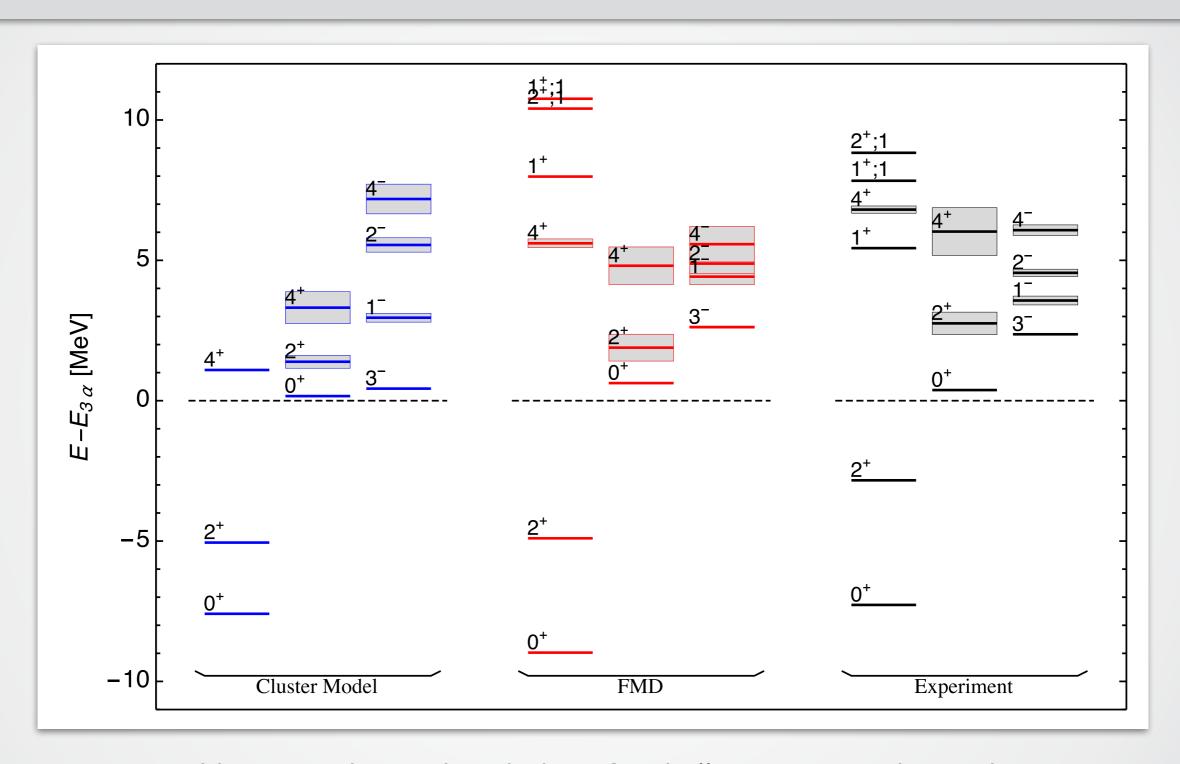
Gamow States

	E [MeV]	Γ _α [MeV]
02+	0.29	1.78 10 ⁻⁵
03+	4.11	0.12
04+	4.76	1.51

- Hoyle state missed when scanning the phase shifts
- non-resonant background
- strong coupling between ⁸Be(0+) and ⁸Be(2+) channel at 4.1 MeV

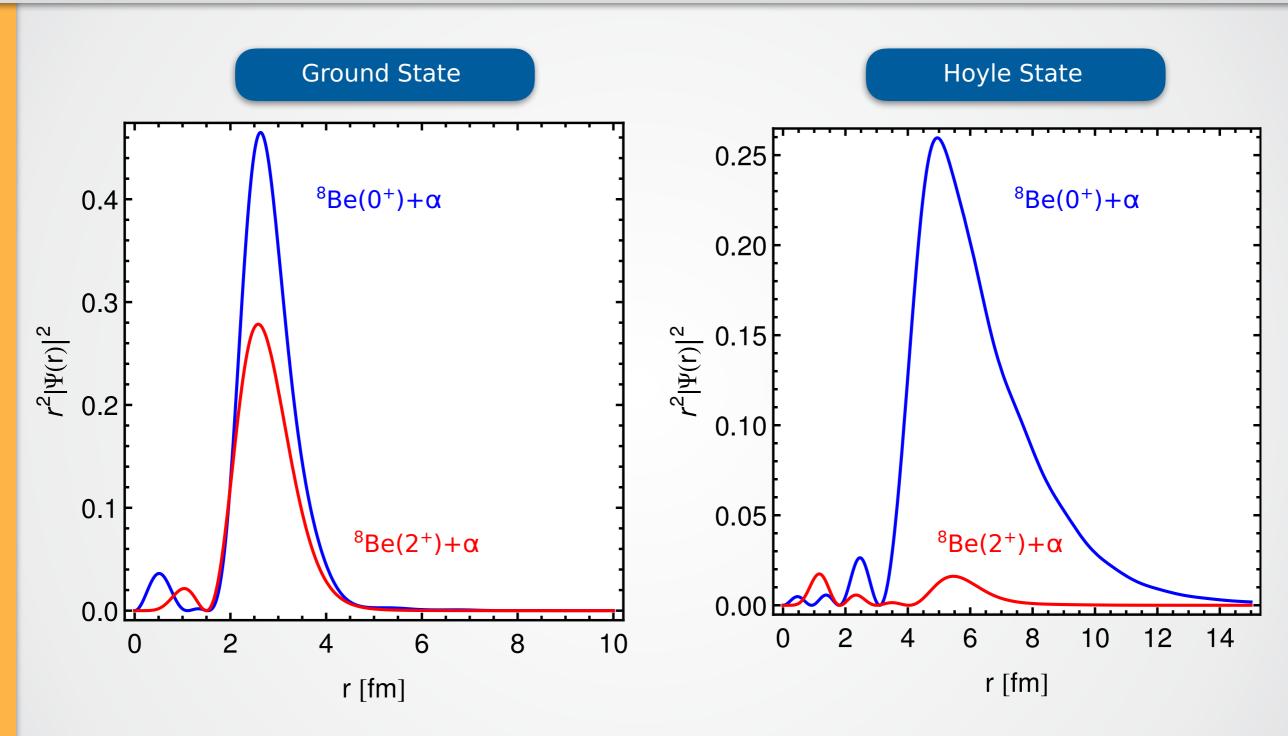
Cluster Model

¹²C: Spectrum



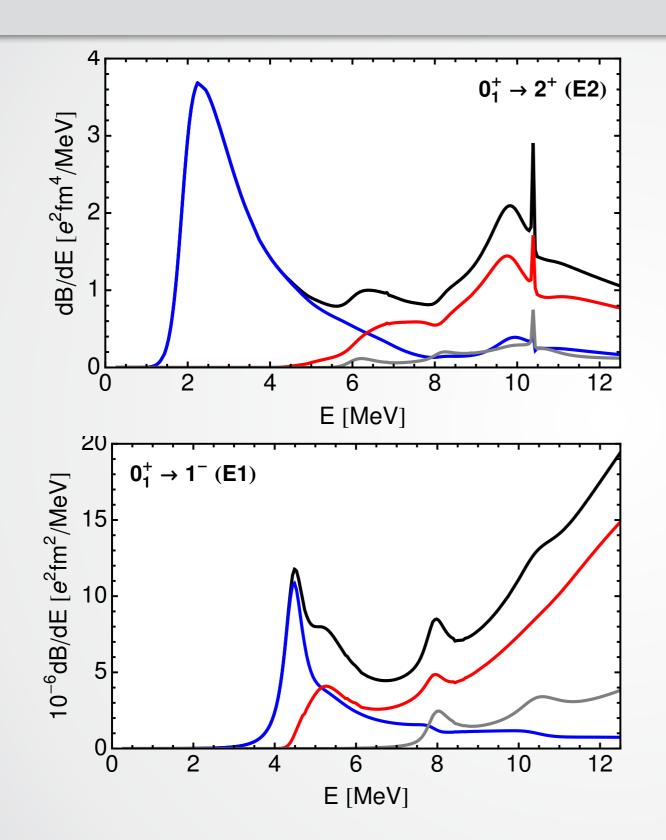
• FMD provides a consistent description of *p*-shell states, negative parity states and cluster states

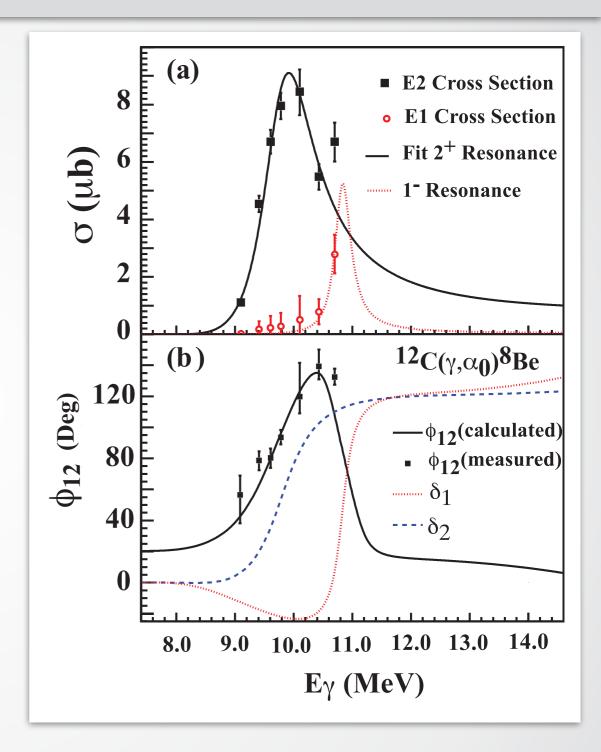
¹²C: ⁸Be-α Spectroscopic Amplitudes



- Ground state overlap with ${}^8\text{Be}(0^+) + \alpha$ and ${}^8\text{Be}(2^+) + \alpha$ configurations of similar magnitude
- Hoyle state overlap dominated by ${}^{8}Be(0^{+})+\alpha$ configurations, large spatial extension

¹²C: Transitions into the Continuum

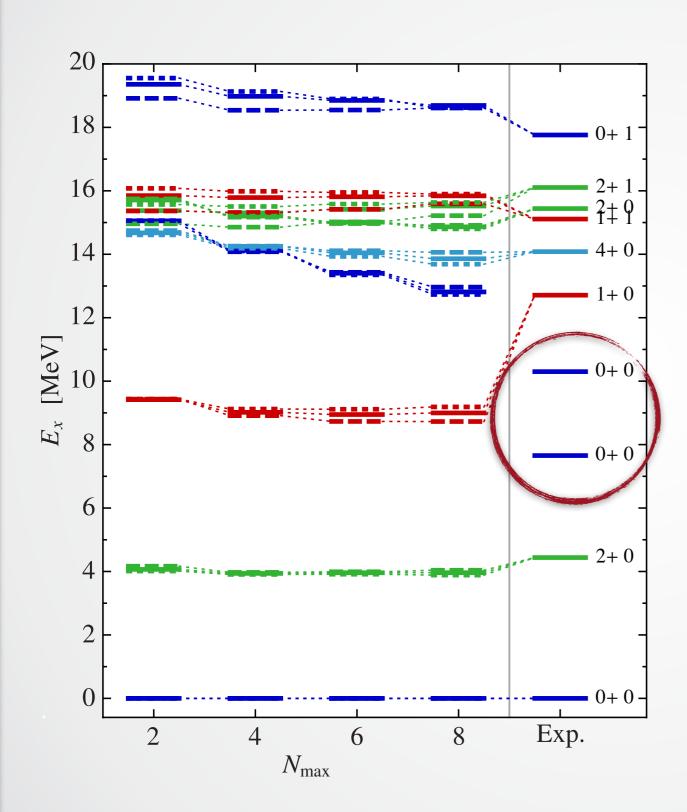




Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)

• E1 transition isospin-forbidden in cluster model

¹²C: Cluster States in the Oscillator Basis?

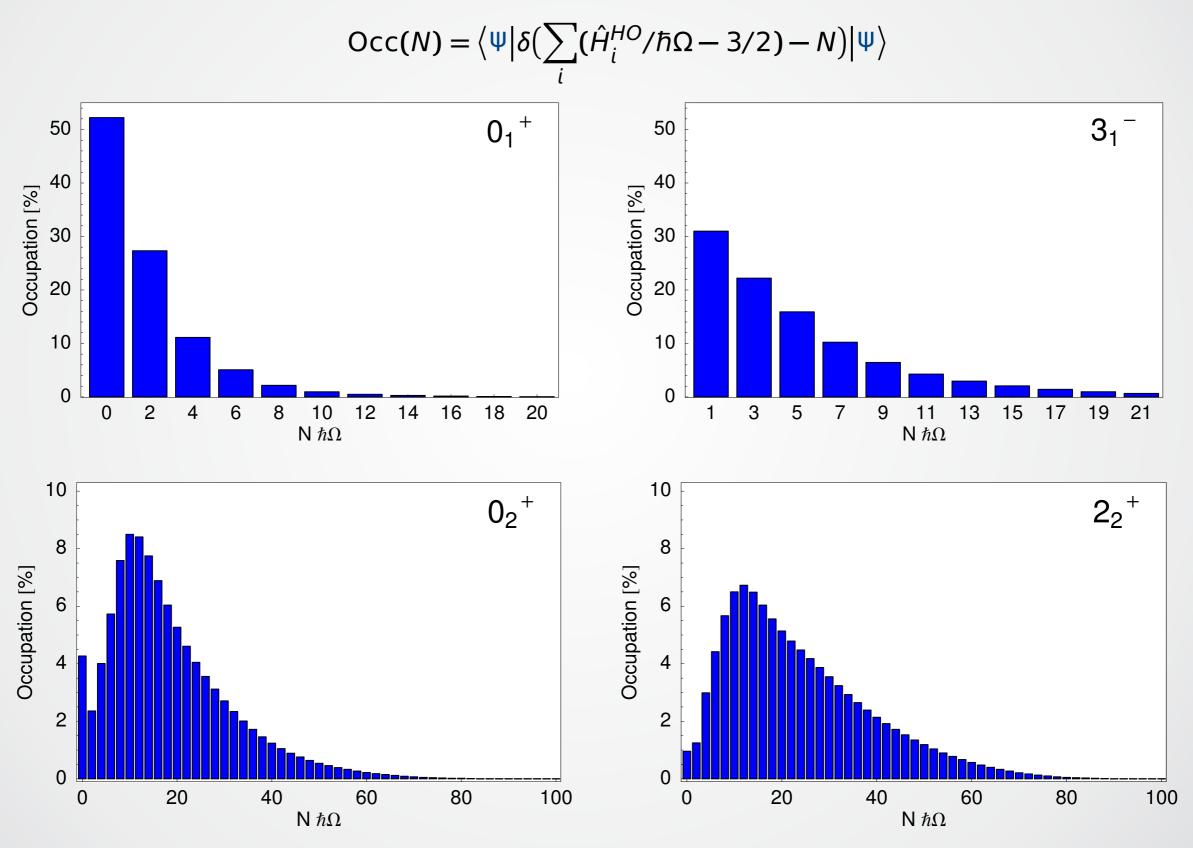


State of the art NCSM calculation with chiral NN+NNN forces

Hoyle state and other cluster states missing!

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C 90, 014314 (2014)

¹²C: $N\hbar\Omega$ Decomposition



Summary and Conclusions

Unitary Correlation Operator Method

Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

- Gaussian wave-packet basis contains HO shell model and Brink-type cluster states
- R-matrix method for description of continuum states

3 He $(\alpha,\gamma)^{7}$ Be Capture Reaction

- Consistent description of bound-state properties, phase shifts and capture cross section
- Good agreement with ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ data, but normalization off for ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$

Continuum states in ¹²C

- Compare α-cluster model and FMD
- Model space with ${}^{8}\text{Be}(0^{+},2^{+},...)+\alpha$ configurations
- Consistent picture for ground state band, negative parity states and cluster states in the continuum
- Hoyle state band built on ⁸Be(gs)+α

