PAUL SCHERRER INSTITUT

Outline

What do we have? What can we do? What did we do? What do we want to do?

Dorothea Schumann, Rugard Dressler

Radioactive isotope and target production for nuclear astrophysics

Nuclear Astrophysics at the Dresden Felsenkeller, 26.-28.06.2017

The ERAWAST project

Sources for isotopes at PSI Processing material from outside

List of available isotopes and performed measurements

Examples for isotope and target preparation

¹⁰Be from graphite wheels
⁹¹Nb from irradiated ⁹²Mo
⁶⁰Fe from copper

Requirements for isotope and target preparation

Summary

ERAWAST@PSI

(Exotic Radionuclides from Accelerator WAste for Science and Technology)

Objective:

Exploitation of accelerator waste for isolating rare exotic radionuclides

History:

- Radiochemical analytics of activated components for disposal
- Results showed high content of several rare isotopes
- Looking for potential users of these isotopes: I. ERAWAST workshop 2006 (PSI), funded by ESF
- Five-years working program
- II. ERAWAST workshop 2011 at PSI: first results and future program
- CHANDA-workshop in 2015
- ~ 20 Partners
- Member of n_TOF

Collaboration between

Nuclide production facilities

Basic nuclear physics research

Nuclear astrophysics

AMS measurement groups

Environmental chemistry

All elements of periodic table with $Z \le Z_{target} + 1$

- > 590 MeV protons
- 2.4 mA beam current
- High activiation of shieldings, targets, structure material

PSI accelerator facilities

Injector cyclotron (72 MeV protons)

590 MeV Ring Cyclotron (up to 2.4 mA proton beam current)

SINQ – spallation neutron source

COMET (cyclotron 250 MeV) for medical use

Ultra Cold Neutrons

SLS Swiss Light Source

Special irradiation positions with 590 MeV protons

V for ³²Si production

Basaste

Target manufacturing and measurements finished

- ⁶³Ni @ n_TOF 10 mg neutron capture cross section
- ¹⁷¹Tm @ n_TOF, SARAF, Mainz
- ¹⁴⁷Pm @ n_TOF

10 mgneutron capture cross section3 mgneutron capture cross section72 μgneutron capture cross section

Isotope separation performed, samples ready for use

¹⁶³Ho@HOLMES
⁹¹Nb@FRANZ
1.5 mg neutrino mass measurement neutron capture cross section

Isotope production planned

• ⁷⁹Se@n_TOF ? neutron capture cross section

Isotope production and measurements finished

• ⁶⁰ Fe	1 µg	half-life and neutron capture cross sections, @several
• ⁴⁴ Ti	30 µg	⁴⁴ Ti(α ,p) reaction, @ISOLDE/Uni Edinburgh
• ⁷ Be	15 μg	⁷ Be(n, α) and ⁷ Be(n,p), @n_TOF
• ¹⁰ Be	4 mg	¹⁰ Be(n,γ) thermal, @Uni Mainz

Isotope production performed, isotopes ready for use

²⁶Al 0.4 μg half-life measurement
⁵³Mn 3 mg half-life and neutron capture cross sections

Isotope production planned

- ³²Si 60 μg half-life and cross section measurements
- ¹⁴⁶Sm 100 μ g half-life measurements
- ¹⁴⁸Gd 80 μg half-life measurements
- ¹⁵⁴Dy 25 μ g half-life measurements
- ²⁰⁹Po ? half-life measurements
- Actinides and fission products from spent nuclear fuel solutions

¹⁰Be from target-E graphite targets

Myon production station

proton beam

years

consumes up to 20% of the

Typical operation time: 1-3

Source for ⁷Be and ¹⁰Be

Chemical separation

Main radioactive components: ³H, ¹⁴C Combustion of graphite in oxygen stream

Spallation products in carbon by mass:

currently available: ca. 4 mg ¹⁰Be

data by courtesy of Dr. D. Kiselev

PAUL SCHERRER INSTITUT ⁹¹Nb – from proton-irradiated ⁹²Mo

83.4 d 78.4 h

51 .45

Development of the chemical system using model tracers

THE ASTROPHYSICAL JOURNAL, 827:48 (17pp), 2016 August 10 © 2016. The American Astronomical Society. All rights reserved.

dol:10.1038/ nature 17424

⁶⁰Fe in 2016

RADIOACTIVE IRON RAIN: TRANSPORTING ⁶⁰Fe IN SUPERNOVA DUST TO THE OCEAN FLOOR

BRIAN J. FRY¹, BRIAN D. FIELDS¹, AND JOHN R. ELLIS²

¹ Department of Astronomy, University of Illinois, Urbana, IL 61801, USA ² Theoretical Physics and Cosmology Group, Department of Physics, King's College London, London WC2R 2LS, UK; Theory Department, CERN, CH-1211 Geneva 23, Switzerland Received 2016 April 3; revised 2016 May 11; accepted 2016 May 18; published 2016 August 5

Nature 2016:

ASTROPARTICLE PHYSICS

Observation of the ⁶⁰Fe nucleosynthesis-clock isotope in galactic cosmic rays

Science 2016: Mass spectrometry with CRIS

Transport calculations

The locations of recent supernovae near the Sun from modelling ⁶⁰Fe transport

D. Breitschwerdt¹, J. Feige¹, M. M. Schulreich¹, M. A. de, Avillez^{1,2}, C. Dettbarn³ & B. Fuchs³

W. R. Binns,¹^x M. H. Israel,¹^x E. R. Christian,² A. C. Cummings,³ G. A. de Nolfo,² K. A. Lave,¹ R. A. Leske,⁵ R. A. Mewaldt,⁵ E. C. Stone,⁵ T. T. von Rosenvinge,2 M. E. Wiedenbeck4

PRL 116, 151104 (2016)

PHYSICAL REVIEW LETTERS

week ending 15 APRIL 2016

Interstellar ⁶⁰Fe on the Surface of the Moon

L. Fimiani,¹ D. L. Cook,^{2,*} T. Faestermann,¹ J. M. Gómez-Guzmán,¹ K. Hain,¹ G. Herzog,² K. Knie,^{1,†} G. Korschinek,^{1,‡} P. Ludwig,¹ J. Park,² R. C. Reedy,³ and G. Rugel^{1,§} ¹Physik Department, Technische Universität München, D-85748 Garching, Germany ²Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA ³Planetary Science Institute, Los Alamos, New Mexico 87544-3826, USA (Received 18 November 2015; published 13 April 2016)

samples from the Apollo missions measured by AMS

Nature 2016:

Investigation of ocean floor samples with AMS

dol:10.1038/ nature 17196

Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe

The discovery of ⁶⁰Fe from a nearby supernova explosion

~ 2.5 million years ago

A. Wallner¹, I. Feige²7, N. Kinoshita², M. Paul⁴, L. K. Fifield¹, R. Golser², M. Honda⁵, U. Linnemann⁶, H. Matsuzaki⁷, S. Merchel⁸, G. Rugel⁸, S. G. Tims¹, P. Steier², T. Yamagata⁹ & S. R. Winkler²

Separation and preparation

Dissolution of Cu chips (3 g) in 7 M HNO_3

Evaporation to dryness

Dissolution in 7 M HCl + 5 mg Co²⁺ as carrier

Extraction with methylisobutylketone

Aqueous phase:

Ni, Co, Cu, organic phase: Fe

Back extraction with 0.1 M HCl, repetition of procedure

Result: $7.8 \cdot 10^{15}$ or 777 ng 60 Fe atoms, decontamination factor (Co) > 10^{8} (0.3 Bq)

Evaporation of the final solution onto a graphite backing

⁶⁰Fe - summary

- Sample preparation for 4 half-life determinations
- Target preparation for 2 neutron capture cross section experiments (thermal energy and 25 keV)
- Preparation of standard material for AMS measurement

All sample-requiring experiments on ⁶⁰Fe world-wide within the last 20 years work with material produced at PSI

- New measurement of the ⁶⁰Fe half-life, **G. Rugel** et.al. PRL 2009
- Determination of the neutron capture cross section at stellar energies, E. Ueberseder et.al. PRL 2009
- Quantification of ⁶⁰Fe atoms by MC-ICP-MS for the redetermination of the half-life, **N. Kivel** et.al. ABC 2013
- The thermal neutron capture cross section of the radioactive isotope ⁶⁰Fe, **T. Heftrich** et.al., PRC 2015
- Settling the half-life of ⁶⁰Fe fundamental for a versatile astrophysical chronometer, A. Wallner et.al., PRL 2015
- Activity measurement of ⁶⁰Fe through the decay of ^{60m}Co and confirmation of its half-life, K. Ostiek et.al. PRC 2017
- Nuclear properties of ⁶⁰Fe, **R. Dressler** et.al., currently ongoing

KARLSRUHER NUKLIDKARTE

8. Auflage 2012

Ga

CHART OF THE NUCLIDES, 8th Edition 2012 / CARTE DES NUCLEIDES, 8thme Edition 2012 CARTA DE NUCLEIDOS, 8º Edición 2012 / ТАБЛИЦА НУКЛИДОВ, 8-е Издание 2012

核素图, 2012年第8版

J. Magill¹, G. Pfennig², R. Dreher¹, Z. Sóti²

'Nucleonica GmbH, c/o European Commission, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, eMail: joseph.magill@nucleonica.com, http://www.nucleonica.com ²European Commission – Joint Research Centre – Institute for Transuranium Elements P.O. Box 2340, 76125 Karlsruhe, Germany

© Nucleonica GmbH 2012, developed under a License of the European Atomic Energy Community

Legal Notice

Neither the Nucleonica GmbH nor any person acting on behalf of the Company is responsible for the use which might be made of the following information. No part of this publication may be reproduced or distributed in any form without prior written consent of Nucleonica GmbH. ISBN 978-3-00-038392-2, © Nucleonica GmbH, 2012

G. Rugel, et al.: Phys. Rev. Lett. 103 (2009) 072502

Ga 60 Ga 61 Ga 62 Ga 63 Ga 64 Ga 65 Ga 66 Ga 67

			31	69.723 σ 2.9		70 ms p* 8.3, 12.2. y 1004, 3848 pp px?	168 ms p* 8.2. y 88, 418, 124 756	116.121 ms (1 ⁺ 8.2_ (1954_1)	31.4 s 0* ~4.5 1.637, 627, 193 050	2.62 m 1* 2.9, 6.1 1 992, 808 3366, 1387 2195	15 m 8 ⁺ 2.1, 2.2. , 115, 61, 163 752	9.304 h p* 4.2. / 1039, 2752 834, 2190 4296	78.278 h = no s ⁺ + 93. 185. 300.
Zn 65.38	Zn 54 3.2 ms	Zn 55 19.8 ms	Zn 56 30.0 ms	Zn 57 47 ms	Zn 58 84 ms	Zn 59 182 ms	Zn 60 2.4 m	Zn 61 1.5 m	Zn 62 9.13 h	Zn 63 38.1 m	Zn 64 49.17	Zn 65 244.3 d	Zn 66 27.73
σ 1.1	20 0 74 + 0.74 00 4 19	р* 80-4.604	0 ⁺ 10 2 877, 2 082 1,147	ft" 3p 1 87 4.52 2.50. - 2701"	β* 7,203.648 8ρ7	0" 8.1 1491,914 10,1.76,2.09 1.82,1.38	() ⁺ 2 5 3 1 y 670, 61, 273 334	₿ ⁺ 4.4 1 475, 1660 970	6 ⁺ 0.7 7 41, 597, 548 506	()* 2.3 ± 670, 982 1412	a 0.74 σ _{nu} 1.1E-5 σ _{ne} < 1.2E-5	ε.β ⁺ 0.3 γ 1115 α 66. α ₆₆ 2.0	σ0.9 n _{nu} ≤2E-5
Cu 63.546	Cu 53 <300 ns	Cu 54 <75 ns	Cu 55 27 ms	Cu 56 93 ms	Cu 57 199 ms	Cu 58 3.20 s	Cu 59 82 s	Cu 60 23 m	Cu 61 3.4 h	Cu 62 9.74 m	Cu 63 69.15	Cu 64 12.7004 h	Cu 65 30.85
σ 3.8	R ² a	p?	8* 00 p?	1 2701, 1225 2507, 2780, Rp	0* 7.7. 7 1112	β* 7.5 7 1454, 1448 40	() ⁴ 3 8. 7 1302, 878 339, 465	β ⁺ 2 0, 3 9, γ 1332, 1792 826	(1 ⁺ 1.2 y 283, 656, 67 1186,	p* 2.9 7 (1173)	o 4.5	6-06.0*0.7 Y (1346) G -270	o 2.17
Ni 51 23.8 ms	Ni 52 40.8 ms	Ni 53 55.2 ms	Ni 54 104 ms	Ni 55 209 ms	Ni 56 6.075 d	Ni 57 36 h	Ni 58 68.077	Ni 59 7.5-10' a	Ni 60 26.223	Ni 61 1.1399	Ni 62 3.6346	Ni 63 100 a	Ni 64 0.9255
10 4 571 2 466 2 858 765' 1067'	0 Bo 1.323 1.037 - 2410, 142	Do 1 893, 2.354 2.072. 7 649*	n* 7 937 0	()* 7.7. 7 (2919, 2976 3303)	no 8* 7 158, 812, 750 480, 270	08 (1378,1920 127	α 4.6 α _{4.6} < 3E-5	ε, β [*] , no γ ο 77.7, σ _{no} 14 α ₁₈ .2, σ _{sta} 92	σ 2.9	σ 2.5 σ _{0.0} 3E-5	α 15	87 0.07 no 7 o 20	a 1.6
Co 50 38.8 ms p*, pp 2715 2.003 y 261*, 797* 785, 482*	Co 51 68.8 ms	Co 52 104 ms7 115 ms 	CO 53 247 ms 240 ms	Co 54 140 m 1932 m (143 (41) (150) p ⁴ 23	Co 55 17.54 h 931.477	Co 56 77.236 d s, it* 1.5 7.647, 1238 2598, 1771 1038	Co 57 271 80 d	Co 58 894 h 7926 d 9 (22)	Co 59 100	Co 60 10.5 m 5.2711 a 1:50, e ⁻ 7 ⁻ 1:500 1:50	Co 61 1.65 h	Co 62 14.0 m 15 m 17.2 h 15 m 1100 2300	Co 63 27.5 s
Fe 49 64.7 ms p ⁺ 10 1.937 7.752 ⁺ 262, 797 462	Fe 50 150 ms	Fe 51 305 ms	Fe 52 4591 8271 100 100 100 100 100 100 100	Fe 53 25 m 831 m 1726 p* 2 H 1911 1270	Fe 54 5.845	Fe 55 273 a 707 713 9.001	Fe 56 91.754	Fe 57 2 119	Fe 58 0.282	Fe 59 44.494 d #* 0.5.1.6 1099, 1292	Fe 60 2.62-10° a	Fe 61 6.0 m 5° 2.6, 2.6. 1205, 1027	Fe 62 88 s
Mn 48 158 ms 752, 1108 3676 10	Mn 49 382 ms	Mn 50 175 m 283 m (************************************	Mn 51 46.2 m	Mn 52 21 m 56d	Mn 53 3.7·10° a	Mn 54 312.2 d	Mn 55 100	Mn 56 2.58 h 9 847, 1811 2113	Mn 57 1.5 m	Mn 58 (63 s 3.0 s	Mn 59 4.5 s 1 ^{-44,4.8} 728,473	Mn 60 1.77 s 1.57 1.12 1.42 1.42 1.42 1.42 1.42 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	Mn 61 0.71 s
Cr 47 472 ms	Cr 48 21.6 h	Cr 49 42 m	Cr 50 4.345	Cr 51 27.7010 d	Cr 52 83.789	Cr 53 9.501	Cr 54 2.365	Cr 55 3.50 m	Cr 56 5.94 m	Cr 57 21.1 s	Cr 58 7.0 s	Gr 59 1.05 s	Cr 60 0.49 s
µ* 6.4 у 87	308, 112	0 ⁺ 1.4, 1.5. 7 91, 153, 62	a 15	4 7 320 9 < 10	a 0.8	a 18	a 0.36	β ⁺ 2.6 γ (1526)	β [−] 1.5 ⊤ 83, 26	β 5.1 y 83, 853, 1752 1538	0 7 683, 126, 290 520_ m	β 7 1238, 1900 112, 661	8 ⁺ 6.7 y 349, 410, 758 9

Requirements for sample and target preparation

Isotope production and separation

- Total amount of activity?
- Which chemical form?

PAUL SCHERRER INSTITUT

- With carrier or non-carrieradded?
- Disturbing isotopes?
- Magnitude of decontamination factors?
- Matrix of the final sample?
- Single or multiple separation?
- Shielding equipment (hotcell) necessary?

Target preparation

- Self-supporting or with backing?
- Which backing?
- Thickness of the backing to be known?
- Isotope composition required?
- Distribution to be known?
- Thickness measurement required?
- Single or multi-use?
- Radioprotection issues
- Transport issues

Collaboration on the basis of a material transfer agreement (MTA)

- Exotic radionuclides are produced in components of the 590 MeV proton accelerator at PSI
- After chemical separation, these isotopes are available for scientific applications
 - Nuclear astrophysics
 - Geoscience
 - Basic nuclear physics
 - AMS standards
- PSI owns a store house of several very rare isotopes, some of them being unique world-wide in quality and quantity (^{7/10}Be, ⁶⁰Fe, ⁵³Mn, ⁴⁴Ti and others)
- Examples for front-end experiments using targets made by PSI
 - ⁶⁰Fe half-life and neutron capture cross section measurements
- Examples for ongoing experiments (¹⁰Be, ⁹¹Nb)
- We need a network on target preparation
- We need a dedicated mass separation device for exotic radionuclides!

My thanks go to

- Stephan Heinitz
- Emilio Maugeri
- Zeynep Talip
- Tanja Stowasser
 - n_TOF
 - Uni Frankfurt
 - and many others
- CHANDA (7th EC framework)
- Swiss National Science Foundation
- You for your attention!

