Selected publications

2024

Unraveling the Np(V) Sorption on the Nuclear Fuel Cladding Corrosion Product ZrO₂: a Batch, Spectroscopic and Modeling Combined Approach

Jessat, I.(1); Foerstendorf, H.(2); Roßberg, A.; Scheinost, A.(3); Lützenkirchen, J.; Heim, K.; Stumpf, T.(4); Jordan, N.(5)

Involved research facilities

Related publications


2023

Uranium(VI) interactions with Pseudomonas sp. PS-0-L, V4-5-SB and T5-6-I

Kasko, J.; Li, X.; Müller, K.(9); Ge, Y.; Vettese, G. F.; Law, G. T. W.; Siitari-Kauppi, M.; Huittinen, N. M.(10); Raff, J.(11); Bomberg, M.; Herzig, M.


Gold-based Coronands as Hosts for M3+ Metal ions: Ring Size Matters

Sucena, S. F.; Demirer, T. I.; Baitullina, A.; Hagenbach, A.; Grewe, J.; Spreckelmeyer, S.(13); März, J.(14); Barkleit, A.(15); Maia, P. I. D. S.(16); Nguyen, H. H.; Abram, U.(17)


Investigations towards incorporation of Eu3+ and Cm3+ during ZrO2 crystallization in aqueous solution

Opitz, L.; Hübner, R.(19); Shams Aldin Azzam, S.; Gilson, S.; Finkeldei, S. C.; Huittinen, N. M.(20)

Involved research facilities

Related publications


Analysis of Cadmium Retention Mechanisms by a Smectite Clay in the Presence of Carbonates

Missana, T.; Alonso, U.; Mayordomo, N.(24); García-Gutiérrez, M.

Related publications


Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8)

Dettmann, S.; Huittinen, N. M.(27); Jahn, N.; Kretzschmar, J.(28); Kumke, M. U.; Kutyma, T.; Lohmann, J.; Reich, T.; Schmeide, K.(29); Shams Aldin Azzam, S.; Spittler, L.; Stietz, J.

Involved research facilities

Related publications


Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC – An Improved Approach to More Robust Thermodynamics

Friedrich, S.(33); Sieber, C.; Drobot, B.(34); Tsushima, S.(35); Barkleit, A.(36); Schmeide, K.(37); Stumpf, T.(38); Kretzschmar, J.(39)


Deconvoluting Cr States in Cr-Doped UO2 Nuclear Fuels via Bulk and Single Crystal Spectroscopic Studies

Murphy, G. L.(41); Gericke, R.(42); Gilson, S.; Bazarkina, E.(43); Roßberg, A.; Kaden, P.(44); Thümmler, R.; Klinkenberg, M.; Henkes, M.; Kegler, P.; Svitlyk, V.(45); Marquardt, J.; Lender, T.; Hennig, C.(46); Kvashnina, K.(47); Huittinen, N. M.(48)

Involved research facilities

Related publications


Hybridised production of technetium-99m and technetium-101 with fluorine-18 on a low-energy biomedical cyclotron

Johnstone, E. V.; Mayordomo, N.(53); Mausolf, E. J.


2022

Discovery, nuclear properties, synthesis and applications of technetium-101

Johnstone, E. V.; Mayordomo, N.(55); Mausolf, E. J.

Related publications


Exploring the Reduction Mechanism of ⁹⁹Tc(VII) in NaClO₄: A Spectro-Electrochimical Approach

Rodriguez Hernandez, D. M.(58); Mayordomo, N.(59); Parra-Puerto, A.; Schild, D.; Brendler, V.(60); Stumpf, T.(61); Müller, K.(62)


A combined extended x–ray absorption fine structure spectroscopy and density functional theory study of americium vs. yttrium adsorption on corundum (α–Al2O3)

Huittinen, N. M.(64); Virtanen, S.; Roßberg, A.; Eibl, M.; Lönnrot, S.; Polly, R.

Involved research facilities

Related publications


Peptidoglycan as major binding motif for Uranium bioassociation on Magnetospirillum magneticum AMB-1 in contaminated waters

Krawczyk-Bärsch, E.; Ramtke, J.; Drobot, B.; Müller, K.; Steudtner, R.; Kluge, S.; Hübner, R.; Raff, J.


Mechanistic understanding of Curium(III) sorption on natural K feldspar surfaces

Demnitz, M.(69); Schymura, S.(70); Neumann, J.(71); Schmidt, M.(72); Schäfer, T.(73); Stumpf, T.(74); Müller, K.(75)


Effect of Ca(II) on U(VI) and Np(VI) retention on Ca-bentonite and clay minerals at hyperalkaline conditions – New insights from batch sorption experiments and luminescence spectroscopy

Philipp, T.; Huittinen, N. M.(77); Shams Aldin Azzam, S.; Stohr, R.; Stietz, J.; Reich, T.; Schmeide, K.(78)


Kinetic Aspects of the Electrochemical Reduction of Uranyl in HCl Solutions

Munoz, A.(80); Weiß, S.(81)


A critical review of the solution chemistry, solubility, and thermodynamics of europium: recent advances on the Eu3+ aqua ion and the Eu(III) aqueous complexes and solid phases with the sulphate, chloride, and phosphate inorganic ligands

Jordan, N.(83); Thoenen, T.; Starke, S.; Spahiu, K.; Brendler, V.(84)


The effect of UV-C irradiation and EDTA on the uptake of Co2+ by antimony oxide in the presence and absence of competing cations Ca2+ and Ni2+

Malinen, L.; Repo, E.; Harjula, R.; Huittinen, N. M.(86)


2021

Complexation of Np(V) with the dicarboxylates malonate and succinate: complex stoichiometry, thermodynamic data and structural information

Maiwald, M. M.; Müller, K.(88); Heim, K.; Rothe, J.; Dardenne, K.; Roßberg, A.; Koke, C.; Trumm, M.; Skerencak-Frech, A.; Panak, P. J.

Involved research facilities

Related publications


Effects of surface roughness and mineralogy on the sorption of Cm(III) on crystalline rock

Demnitz, M.(92); Molodtsov, K.; Schymura, S.(93); Schierz, A.; Müller, K.(94); Jankovsky, F.; Havlova, V.(95); Stumpf, T.; Schmidt, M.(96)

Related publications


Reductive immobilization of 99Tc(VII) by FeS2: the effect of marcasite

Rodriguez Hernandez, D. M.(99); Mayordomo, N.(100); Schild, D.(101); Shams Aldin Azzam, S.; Brendler, V.(102); Müller, K.(103); Stumpf, T.


The effect of four lanthanides onto a rat kidney cell line (NRK-52E) is dependent on the composition of the cell culture medium

Heller, A.; Pisarevskaja, A.; Bölicke, N.; Barkleit, A.(105); Bok, F.(106); Wober, J.


Analysis of technetium immobilization and its molecular retention mechanisms by Fe(II)-Al(III)-Cl layered double hydroxide.

Mayordomo, N.(108); Rodriguez Hernandez, D. M.(109); Roßberg, A.; Foerstendorf, H.(110); Heim, K.; Brendler, V.(111); Müller, K.(112)

Involved research facilities

Related publications


Revisiting the complexation of Cm(III) with aqueous phosphates: what can we learn from the complex structures using luminescence spectroscopy and ab initio simulations?

Huittinen, N. M.(116); Jessat, I.; Réal, F.(117); Vallet, V.(118); Starke, S.; Eibl, M.(119); Jordan, N.(120)


Impact of the microbial origin and active microenvironment on the shape of biogenic elemental selenium nanomaterials

Fischer, S.; Jain, R.(122); Krause, T.; Jain, P.; Tsushima, S.(123); Shevchenko, A.; Hübner, R.(124); Jordan, N.(125)


2020

Determination of thermodynamic functions and structural parameters of NpO2+ lactate complexes

Maiwald, M. M.; Müller, K.(127); Heim, K.; Trumm, M.; Fröhlich, D. R.; Banik, N. L.; Rothe, J.; Dardenne, K.; Skerencak-Frech, A.; Panak, P. J.


Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay

Hennig, T.; Stockmann, M.; Kühn, M.


Temperature-dependent luminescence spectroscopic investigations of U(VI) complexation with the halides F- and Cl-

Demnitz, M.; Hilpmann, S.; Lösch, H.; Bok, F.(130); Steudtner, R.; Patzschke, M.(131); Stumpf, T.; Huittinen, N. M.(132)


Understanding the local structure of Eu3+ and Y3+ stabilized zirconia – Insights from luminescence and X–ray absorption spectroscopic investigations

Eibl, M.(134); Shaw, S.; Prieur, D.(135); Roßberg, A.; Wilding, M. C.; Hennig, C.; Morris, K.; Rothe, J.; Stumpf, T.; Huittinen, N. M.(136)


New insights into 99Tc(VII) removal by pyrite: A spectroscopic approach

Rodriguez Hernandez, D. M.(138); Mayordomo, N.(139); Scheinost, A.(140); Schild, D.; Brendler, V.(141); Müller, K.(142); Stumpf, T.


Signatures of Technetium Oxidation States: A New Approach

Bauters, S.(144); Scheinost, A.(145); Schmeide, K.(146); Weiß, S.; Dardenne, K.(147); Rothe, J.; Mayordomo, N.(148); Steudtner, R.(149); Stumpf, T.; Abram, U.; Butorin, S.(150); Kvashnina, K.(151)

Involved research facilities

Related publications


Temperature‒dependent luminescence spectroscopic and mass spectrometric investigations of U(VI) complexation with aqueous silicates in the acidic pH‒range

Lösch, H.; Raiwa, M.; Jordan, N.(155); Steppert, M.; Steudtner, R.; Stumpf, T.; Huittinen, N. M.


Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable nanoparticles

Fischer, S.; Krause, T.; Lederer, F.; Merroun, M. L.; Shevchenko, A.; Hübner, R.; Stumpf, T.; Jordan, N.; Jain, R.


Uranium(VI) Complexes of Glutathione Disulfide Forming in Aqueous Solution

Kretzschmar, J.(158); Strobel, A.; Haubitz, T.; Drobot, B.(159); Steudtner, R.; Barkleit, A.(160); Brendler, V.(161); Stumpf, T.

Related publications


2019

Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups

Götzke, L.; Schaper, G.; März, J.(164); Kaden, P.(165); Huittinen, N.(166); Stumpf, T.; Kammerlander, K. K. K.; Brunner, E.; Hahn, P.; Mehnert, A.; Kersting, B.; Henle, T.; Lindoy, L. F.; Zanoni, G.; Weigand, J. J.


Thermodynamic and structural studies on the Ln(III)/An(III) malate complexation

Taube, F.; Drobot, B.; Roßberg, A.; Foerstendorf, H.(168); Acker, M.; Patzschke, M.; Trumm, M.; Taut, S.; Stumpf, T.

Involved research facilities

Related publications


A spectroscopic investigation of Eu3+ incorporation in LnPO4 (Ln = Tb, Gd1–xLux, x = 0.3, 0.5, 0.7, 1) ceramics

Lösch, H.; Hirsch, A.; Holthausen, J.; Peters, L.; Xiao, B.; Neumeier, S.; Schmidt, M.; Huittinen, N.


Multidentate extracting agents based on calix[4]arene scaffold – UVI/EuIII separation studies

Bauer, A.; Jäschke, A.; Shams Aldin Azzam, S.; Glasneck, F.; Ullmann, S.; Kersting, B.; Brendler, V.; Schmeide, K.(173); Stumpf, T.


Stability of U(VI) doped calcium silicate hydrate gel in repository-relevant brines studied by leaching experiments and spectroscopy

Wolter, J.-M.; Schmeide, K.(175); Weiss, S.; Bok, F.; Brendler, V.(176); Stumpf, T.


Neptunium(V) transport in granitic rock: A laboratory scale study on the influence of bentonite colloids

Elo, O.; Hölttä, P.; Kekäläinen, P.; Voutilainen, M.; Huittinen, N.



Content from Sidebar

Contact

Porträt Dr. Müller, Katharina; FWOG

Photo: André Wirsig

Dr. Katharina Müller

Head Surface Processes
k.muellerAthzdr.de
Phone: +49 351 260 2439


URL of this article
https://www.hzdr.de/db/Cms?pOid=54932


Links of the content

(1) https://orcid.org/0000-0003-1653-5723
(2) https://orcid.org/0000-0002-8334-9317
(3) https://orcid.org/0000-0002-6608-5428
(4) https://orcid.org/0000-0002-4505-3865
(5) https://orcid.org/0000-0002-4625-1580
(6) https://doi.org/10.1107/S1600577520014265
(7) https://doi.org/10.1107/S1600577520014265
(8) https://doi.org/10.1016%2Fj.jhazmat.2023.132168
(9) https://orcid.org/0000-0002-0038-1638
(10) https://orcid.org/0000-0002-9930-2329
(11) https://orcid.org/0000-0002-0520-3611
(12) https://doi.org/10.1016%2Fj.apgeochem.2023.105829
(13) https://orcid.org/0000-0003-1348-0309
(14) https://orcid.org/0000-0003-4960-3745
(15) https://orcid.org/0000-0003-3241-3443
(16) https://orcid.org/0000-0003-4699-9481
(17) https://orcid.org/0000-0002-1747-7927
(18) https://doi.org/10.3390%2Fmolecules28145421
(19) https://orcid.org/0000-0002-5200-6928
(20) https://orcid.org/0000-0002-9930-2329
(21) https://doi.org/10.17815/jlsrf-3-159
(22) https://doi.org/10.17815/jlsrf-3-159
(23) https://doi.org/10.1038%2Fs41598%2D023%2D39143%2D0
(24) https://orcid.org/0000-0003-4433-9500
(25) https://www.hzdr.de/publications/Publ-36480
(26) https://doi.org/10.3390%2Ftoxics11020130
(27) https://orcid.org/0000-0002-9930-2329
(28) https://orcid.org/0000-0001-5042-8134
(29) https://orcid.org/0000-0002-6859-8366
(30) https://doi.org/10.1107/S1600577520014265
(31) https://doi.org/10.1107/S1600577520014265
(32) https://doi.org/10.3389%2Ffnuen.2023.1124856
(33) https://orcid.org/0009-0007-3878-0734
(34) https://orcid.org/0000-0003-1245-0466
(35) https://orcid.org/0000-0002-4520-6147
(36) https://orcid.org/0000-0003-3241-3443
(37) https://orcid.org/0000-0002-6859-8366
(38) https://orcid.org/0000-0002-4505-3865
(39) https://orcid.org/0000-0001-5042-8134
(40) https://doi.org/10.3390%2Fmolecules28124881
(41) https://orcid.org/0000-0003-3239-9725
(42) https://orcid.org/0000-0003-4669-0206
(43) https://orcid.org/0000-0002-5445-2438
(44) https://orcid.org/0000-0002-9414-2936
(45) https://orcid.org/0000-0001-5449-8009
(46) https://orcid.org/0000-0001-6393-2778
(47) https://orcid.org/0000-0003-4447-4542
(48) https://orcid.org/0000-0002-9930-2329
(49) https://doi.org/10.1107/S1600577520014265
(50) https://doi.org/10.1107/S1600577520014265
(51) https://www.hzdr.de/publications/Publ-36731
(52) https://doi.org/10.1038%2Fs41467%2D023%2D38109%2D0
(53) https://orcid.org/0000-0003-4433-9500
(54) https://doi.org/10.1140%2Fepjti%2Fs40485%2D023%2D00089%2D2
(55) https://orcid.org/0000-0003-4433-9500
(56) https://www.hzdr.de/publications/Publ-35406
(57) https://doi.org/10.1038%2Fs42004%2D022%2D00746%2D9
(58) https://orcid.org/0000-0002-6926-1933
(59) https://orcid.org/0000-0003-4433-9500
(60) https://orcid.org/0000-0001-5570-4177
(61) https://orcid.org/0000-0002-4505-3865
(62) https://orcid.org/0000-0002-0038-1638
(63) https://doi.org/10.1021%2Facs.inorgchem.2c01278
(64) https://orcid.org/0000-0002-9930-2329
(65) https://doi.org/10.1107/S1600577520014265
(66) https://doi.org/10.1107/S1600577520014265
(67) https://doi.org/10.3390%2Fmin12111380
(68) https://doi.org/10.1016%2Fj.jhazmat.2022.129376
(69) https://orcid.org/0000-0002-4137-1057
(70) https://orcid.org/0000-0003-4079-002X
(71) https://orcid.org/0000-0002-3650-3967
(72) https://orcid.org/0000-0002-8419-0811
(73) https://orcid.org/0000-0002-7133-8717
(74) https://orcid.org/0000-0002-4505-3865
(75) https://orcid.org/0000-0002-0038-1638
(76) https://doi.org/10.1016%2Fj.scitotenv.2022.156920
(77) https://orcid.org/0000-0002-9930-2329
(78) https://orcid.org/0000-0002-6859-8366
(79) https://doi.org/10.1016%2Fj.scitotenv.2022.156837
(80) https://orcid.org/0000-0002-5394-3390
(81) https://orcid.org/0000-0003-4339-2414
(82) https://doi.org/10.1149%2F1945%2D7111%2Fac3e7c
(83) https://orcid.org/0000-0002-4625-1580
(84) https://orcid.org/0000-0001-5570-4177
(85) https://doi.org/10.1016%2Fj.ccr.2022.214608
(86) https://orcid.org/0000-0002-9930-2329
(87) https://doi.org/10.1016%2Fj.net.2021.08.002
(88) https://orcid.org/0000-0002-0038-1638
(89) https://doi.org/10.1107/S1600577520014265
(90) https://doi.org/10.1107/S1600577520014265
(91) https://doi.org/10.1021%2Facs.inorgchem.1c01966
(92) https://orcid.org/0000-0002-4137-1057
(93) https://orcid.org/0000-0003-4079-002X
(94) https://orcid.org/0000-0002-0038-1638
(95) https://orcid.org/0000-0003-0424-3862
(96) https://orcid.org/0000-0002-8419-0811
(97) https://www.hzdr.de/publications/Publ-33137
(98) https://doi.org/10.1016%2Fj.jhazmat.2021.127006
(99) https://orcid.org/0000-0002-6926-1933
(100) https://orcid.org/0000-0003-4433-9500
(101) https://orcid.org/0000-0001-6034-8146
(102) https://orcid.org/0000-0001-5570-4177
(103) https://orcid.org/0000-0002-0038-1638
(104) https://doi.org/10.1016%2Fj.chemosphere.2021.130904
(105) https://orcid.org/0000-0003-3241-3443
(106) https://orcid.org/0000-0002-6885-2619
(107) https://doi.org/10.1016%2Fj.tox.2021.152771
(108) https://orcid.org/0000-0003-4433-9500
(109) https://orcid.org/0000-0002-6926-1933
(110) https://orcid.org/0000-0002-8334-9317
(111) https://orcid.org/0000-0001-5570-4177
(112) https://orcid.org/0000-0002-0038-1638
(113) https://doi.org/10.1107/S1600577520014265
(114) https://doi.org/10.1107/S1600577520014265
(115) https://doi.org/10.1016%2Fj.cej.2020.127265
(116) https://orcid.org/0000-0002-9930-2329
(117) https://orcid.org/0000-0002-5163-1545
(118) https://orcid.org/0000-0002-2202-3858
(119) https://orcid.org/0000-0003-1231-4739
(120) https://orcid.org/0000-0002-4625-1580
(121) https://doi.org/10.1021%2Facs.inorgchem.1c01319
(122) https://orcid.org/0000-0002-5494-3106
(123) https://orcid.org/0000-0002-4520-6147
(124) https://orcid.org/0000-0002-5200-6928
(125) https://orcid.org/0000-0002-4625-1580
(126) https://doi.org/10.1021%2Facs.est.0c07217
(127) https://orcid.org/0000-0002-0038-1638
(128) https://doi.org/10.1039%2Fd0nj04291a
(129) https://doi.org/10.1016%2Fj.apgeochem.2020.104777
(130) https://orcid.org/0000-0002-6885-2619
(131) https://orcid.org/0000-0003-3125-1278
(132) https://orcid.org/0000-0002-9930-2329
(133) https://doi.org/10.1039%2FD0DT00646G
(134) https://orcid.org/0000-0003-1231-4739
(135) https://orcid.org/0000-0001-5087-0133
(136) https://orcid.org/0000-0002-9930-2329
(137) https://doi.org/10.1007%2Fs10853%2D020%2D04768%2D3
(138) https://orcid.org/0000-0002-6926-1933
(139) https://orcid.org/0000-0003-4433-9500
(140) https://orcid.org/0000-0002-6608-5428
(141) https://orcid.org/0000-0001-5570-4177
(142) https://orcid.org/0000-0002-0038-1638
(143) https://doi.org/10.1021%2Facs.est.9b05341
(144) https://orcid.org/0000-0001-5484-8857
(145) https://orcid.org/0000-0002-6608-5428
(146) https://orcid.org/0000-0002-6859-8366
(147) https://orcid.org/0000-0003-1286-1855
(148) https://orcid.org/0000-0003-4433-9500
(149) https://orcid.org/0000-0002-3103-9587
(150) https://orcid.org/0000-0003-3242-5305
(151) https://orcid.org/0000-0003-4447-4542
(152) https://doi.org/10.1107/S1600577520014265
(153) https://doi.org/10.1107/S1600577520014265
(154) https://doi.org/10.1039%2FD0CC03905E
(155) https://orcid.org/0000-0002-4625-1580
(156) https://doi.org/10.1016%2Fj.envint.2019.105425
(157) https://doi.org/10.1016%2Fj.jhazmat.2019.121146
(158) https://orcid.org/0000-0001-5042-8134
(159) https://orcid.org/0000-0003-1245-0466
(160) https://orcid.org/0000-0003-3241-3443
(161) https://orcid.org/0000-0001-5570-4177
(162) https://www.hzdr.de/publications/Publ-35617
(163) https://doi.org/10.1021%2Facs.inorgchem.9b02921
(164) https://orcid.org/0000-0003-4960-3745
(165) https://orcid.org/0000-0002-9414-2936
(166) https://orcid.org/0000-0002-9930-2329
(167) https://doi.org/10.1016%2Fj.ccr.2019.01.006
(168) https://orcid.org/0000-0002-8334-9317
(169) https://doi.org/10.1107/S1600577520014265
(170) https://doi.org/10.1107/S1600577520014265
(171) https://doi.org/10.1021%2Facs.inorgchem.8b02474
(172) https://doi.org/10.3389%2Ffchem.2019.00094
(173) https://orcid.org/0000-0002-6859-8366
(174) https://doi.org/10.1016%2Fj.seppur.2018.12.041
(175) https://orcid.org/0000-0002-6859-8366
(176) https://orcid.org/0000-0001-5570-4177
(177) https://doi.org/10.1016%2Fj.chemosphere.2018.11.074
(178) https://doi.org/10.1016%2Fj.apgeochem.2019.01.015