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Abstract

We study a holographic Einstein-Maxwell-dilaton model, which is adjusted to lattice QCD
data for 2+1 flavors and physical quark masses for the equation of state and quark number
susceptibilities at zero baryo-chemical potential, to explore the resulting phase diagram over
the temperature-chemical potential plane. A first-order phase transition sets in at a tempera-
ture of about 112MeV and a baryo-chemical potential of 612MeV. We estimate the accuracy
of the critical point position in the order of approximately 5-8% by taking lattice uncertainties
into account. The phase transition is characterized by analyzing the critical pressure and the
behavior of isentropes. Furthermore, we calculate the holographic entanglement entropy for
this model and compare its phase diagram to that of the thermodynamic entropy. We find an
agreement in the vicinity of the critical point. Thus, the holographic entanglement entropy
qualifies us to characterize different phase structures. The scaling behavior near the critical
point is analyzed through the calculation of critical exponents.

Kurzdarstellung

Im Rahmen dieser Arbeit untersuchen wir ein holographisches Einstein-Maxwell-Dilaton Mod-
ell, welches an die Daten der 2+1 Flavor-Gittereichtheorie mit physikalischen Quarkmassen
bezüglich der Zustandsgleichung und Suszeptibilitäten bei verschwindendem chemischen po-
tential adjustiert ist. Das resultierende Phasendiagramm wird in der Temperatur-chemisches
Potential Ebene analysiert. Ein Phasenübergang erster Ordnung setzt bei einer Temperatur
von etwa 112MeV und einem chemischen Potential von 612MeV ein. Die Genauigkeit dieses
Ergebnisses für den kritischen Punkt wird unter Berücksichtigung von Unsicherheiten der
Gitterdaten in der Größenordnung von 5-8% abgeschätzt. Der Phasenübergang wird durch
Beschreibung des kritischen Druckes und dem Verhalten der Isentropen näher charakterisiert.
Im Weiteren berechnen wir die holographische Verschränkungsentropie für dieses Modell und
vergleichen das resultierende Phasendiagramm mit dem der thermodynamischen Entropie.
Es stellt sich eine gute Übereinstimmung in der Nähe des kritischen Punktes heraus. Die
holographisch berechnete Verschränkungsentropie kann daher zur Charakterisierung der ver-
schiedenen Phasenstrukturen dienen. Das Skalenverhalten in der Nähe des kritischen Punktes
wird durch Berechnung von kritischen Exponenten untersucht.
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1 Introduction

According to our current understanding of physics, there are four fundamental forces in na-
ture. The electroweak and strong forces are responsible for microscopic particle interactions,
whereas gravitation determines the motion and structure of objects on large scales in the uni-
verse. The first three forces are described by quantum field theories (QFTs) as part of the
standard model in particle physics - the most successful theory in science, which is falsified up
to very high energies with incredibly high precision. Quantized fields represent the physical
objects in QFTs and particles are described as quanta thereof. On the other side, gravity
is described by general relativity as a classical, non-quantized field theory. So far, efforts to
combine quantum mechanics and general relativity into an unified framework failed. String
theory can be seen as a promising candidate towards that direction. Although pure stringy
predictions are questionable and debated due to energy scales that are beyond experimental
verification, applications of string theory methods can still be very helpful to explore proper-
ties of QFTs that are attainable in realistic experiments.
In this work, we use the so-called gauge/gravity duality to explore properties of Quantum
Chromodynamics (QCD). QCD is the theory of strong interactions and part of the standard
model. Its fundamental degrees of freedom are quarks and gluons. Additionally to the electric
charge, those particles carry also a color charge. Due to color confinement, the hypothesis
is put forward that only color-neutral hadronic matter states are observable. Examples for
hadrons are mesons, which are composed of a quark-antiquark pair (e.g. pions) and baryons,
which are made of three quarks (e.g. protons and neutrons as constituents of atomic nuclei);
virtual quark-antiquarks and gluons make these, in total uncolored, objects to complicated
composites. An important property of QCD is the “running” of the coupling constant. That
is, the interaction strength between particles decreases at high energies. This asymptotic
freedom causes a confinement-deconfinement transition at high energies. Put another way, a
quark-gluon plasma (QGP) is formed at high temperatures and/or densities, where quarks are
not bound into hadrons any more. The QGP is an extreme state of matter that existed in
the early evolution of the universe after the big bang. During the evolution of the universe
the cooling caused the quarks and gluons conversely to form nucleons, which represented the
foundation for the subsequent formation of atomic nuclei. Another place where the QGP
exists is in neutron stars and possible quark stars, i.e. in the interior of supernova type II
remnants. Most importantly, the QGP is created in heavy-ion collisions (HIC) at facilities
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2 1 Introduction

like the Relativistic Heavy Ion Collider (RHIC) in Brookhaven or the Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN). Moreover, the planned
Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Re-
search (FAIR) in Darmstadt plans to study properties of the QGP at high densities [4]. Such
experiments already revealed some fascinating properties: The QGP is not only the most per-
fect [5–8] but also the fastest-rotating (i.e. most vortical) fluid [9] ever measured in the entire
universe. From the first property, one can conclude that the QGP is a strongly interacting
liquid. The main interest of current research is the exploration of the QCD phase diagram,
i.e. the different phases of strongly interacting matter, which are typically considered in the
temperature-chemical potential or temperature-density plane. It is believed that the phase
diagram exhibits a rich variety of different structures. Besides the already mentioned con-
fined phase at low densities and temperatures and the QGP in the opposite regime, phases
like color superconductors and quarkyonic matter could also exist. The exact structure of the
phase diagram and types of different phase transitions are unknown. In particular, the possible
existence of a critical endpoint (CEP) as the starting point of a first-order phase transition
(FOPT) curve towards larger chemical potential or density is of utmost importance and a
motivation for current and planned HIC experiments.
Perturbative methods are not applicable to study the strongly coupled QGP, since the series
expansion does not converge. A well-established non-perturbative method to deal with QCD
thermodynamics is lattice gauge theory. Here, spacetime is turned into an Euclidean one
which is discretized on a lattice grid and the QCD path integral is evaluated statistically via
Monte-Carlo integration. Although lattice QCD established the confinement-deconfinement
transition at vanishing chemical potential as an analytic crossover already a long time ago [10],
consistent results for the corresponding equation of state (EoS) are available only for a few
years [11, 12]. These results determined the characteristic scale of the hadron-quark (HQ)
deconfinement transition as 𝑇𝑐 = 𝒪(150 MeV). Despite these tremendous successes, lattice
QCD is limited up to now to calculations at vanishing chemical potential, i.e. on the tempera-
ture axis of the phase diagram, because of the so-called sign problem related to the fermionic
determinant appearing in the former expressions.
A promising approach that allows phenomenological model calculations even at finite chemical
potential and density is the so-called gauge/gravity duality. A first hint for such a duality was
already prophesied decades ago by ’t Hooft in his famous paper about planar diagrams [13],
where he considered the large-𝑁 limit of a gauge theory and linked it with a dual string. The
idea of a holographic principle was developed later by ’t Hooft and Susskind [14, 15] and refers
to the concept that a QFT in 𝑑 dimensions might be related to a gravitational theory in 𝑑+ 1

dimensions, similar to a holographic image. This idea is supported by the fact that the black
hole entropy, due to Bekenstein [16], is proportional to the area of the event horizon and not to
the volume. A concrete realization of this principle was found by Maldacena in 1997 [17] and
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others [18, 19]. It is now called AdS/CFT correspondence and states in the most general case
that a type IIB superstring theory on 𝐴𝑑𝑆5×𝑆5 is dual to a 𝒩 = 4 supersymmetric Yang-Mills
theory (SYM). The latter one is a conformal field theory (CFT), which is characterized by a
vanishing beta function in contrast to the QFTs in the standard model. However, in a certain
limit, there is a correspondence between a strongly coupled QFT and a classical theory of grav-
ity. The strong coupling on the QFT side is translated into weak coupling on the string side
and vice versa, which makes applications to strongly coupled systems feasible and explains the
term duality. (The lower-dimensional QFT “lives” on the boundary of the higher-dimensional
gravity theory.) Such correspondences have successfully applied to describe HICs and many
other examples in particle or condensed matter physics and are now summarized by the more
general term gauge/gravity duality. One of the outstanding outcomes is the holographic result
for the shear viscosity to entropy density ratio [20]

𝜂

𝑠
≥ 1

4𝜋
, (1.1)

which agrees well with the experimental results cited above. 2 Holographic methods have also
provided important insight into the time-dependent hydrodynamization and isotropization as
well as the far-from-equilibrium dynamics of HICs.
The subject of this work is the investigation of the QCD phase diagram with holographic meth-
ods. We use a so-called Einstein-Maxwell-dilaton (EMd) model, which was initially introduced
by Gubser and collaborators [21]. This bottom-up model is adjusted to known physical results
from lattice QCD at vanishing chemical potential and then extrapolates the information to
finite density. It is based on a five-dimensional gravity model in an asymptotic anti-de Sitter
(AdS) spacetime that contains black hole solutions. The black hole thermodynamics of Beken-
stein [16] and Hawking [22] is thus related to the QCD thermodynamics. In this sense, the
EMd model provides a phenomenological bottom-up AdS/QCD duality. We are particularly
interested in the prediction of a critical point and its properties. Moreover, we study the holo-
graphic entanglement entropy of this model. Entanglement is an unique property in quantum
mechanics that separates it from classical physics. Historically, entanglement was discussed
as a spooky action at a distance and seen with scepticism, e.g. by Einstein. Nowadays, en-
tanglement between particles is experimentally well confirmed, and entanglement entropy is a
widely used quantity to quantify this property. Also in this context, the holographic dictionary
provides a tool to calculate entanglement entropy in strongly coupled systems. We use those
methods to explore and characterize the resulting phase diagram.

This thesis is organized as follows. In chapter 2 we present the necessary background of
QCD and the physics of HICs. We concentrate on the thermodynamic properties and relevant

2𝜂/𝑠 = 1/4𝜋 is often considered the universal lower bound; however, depending on the gravity dual employed,
it may be larger or smaller than the quoted value.



4 1 Introduction

features. The gauge/gravity duality is introduced in chapter 3 with the relevant background
of the AdS/CFT correspondence. Chapter 4 contains our results for the holographic model.
We first review the setup of the EMd model and present our adjustment to lattice QCD
thermodynamics. We then present our holographic QCD phase diagram and its properties.
This represents the first reliable discussion of an holographic result for the QCD phase diagram.
Chapter 5 is devoted to entanglement entropy. It includes an introduction to the concept and
the holographic result for our EMd model. The ability of entanglement entropy to characterize
the QCD phase diagram is analyzed. We sum up in chapter 6 and discuss our work in the
context of related literature. Detailed elaborations on the dilaton potential can be found in
appendix A.



2 Quantum Chromodynamics and
heavy-ion collisions

2.1 Lagrangian formulation and 𝛽 function

Quantum Chromodynamics is the non-Abelian quantum field theory of strong interactions
with 𝑁𝑓 = 6 flavors (𝑓 = 𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑡) and 𝑁𝑐 = 3 colors. We give an introduction into
the relevant foundations in this section following [23, 24]. Further comprehensive discussions
can be found in [25, 26].

The classical QCD Lagrangian

ℒ𝑐𝑙 = −1

4
𝐹 𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 +

𝑁𝑓∑︁
𝑓

𝑞𝑓 (𝑖𝛾𝜇𝐷𝜇 −𝑚𝑓 )𝑞𝑓 (2.1)

is the most general relativistically invariant and renormalizable Lagrangian, which is gauge
invariant under 𝑆𝑈(𝑁𝑐) color transformations. 3 Each quark flavor is described by three color
Dirac four-spinors 𝑞𝑐𝑓𝛼 with 𝑐 = 1, . . . , 𝑁𝑐 as the color and 𝛼 = 1, . . . , 4 as the spinor index in
the fundamental representation of 𝑆𝑈(𝑁𝑐). Gluons as gauge bosons are described by 4-vectors
𝐴𝑎

𝜇 in the adjoint representation (𝑎 = 1, . . . , 𝑁2
𝑐 − 1). The covariant derivative is given by

𝐷𝜇 = 𝜕𝜇− 𝑖𝑔𝐴𝜇 with 𝐴𝜇 ≡ 𝐴𝑎
𝜇𝑡𝑎 and 𝑡𝑎 are the representation matrices of 𝑆𝑈(𝑁𝑐). The gluon

field strength tensor is defined as

𝐹 𝑎
𝜇𝜈 ≡ 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈 , (2.2)

where 𝑔 is the gauge coupling and 𝑓𝑎𝑏𝑐 are the structure constants of the corresponding Lie
algebra. The last term in (2.2) shows that next to quark-gluon interactions also self-interactions
among gluons are allowed.

The quantized QCD needs to be regularized and renormalized to cancel divergences. This
introduces an energy scale 𝜇 into the theory and the 𝛽 function describes the dependence of

3The full QCD Lagrangian ℒ𝑄𝐶𝐷 = ℒ𝑐𝑙 + ℒ𝑔𝑎𝑢𝑔𝑒 + ℒ𝐹𝑃 + ℒ𝑐𝑡 + ℒ𝜃 contains also a gauge fixing term
ℒ𝑔𝑎𝑢𝑔𝑒 = − 1

2𝜉 (𝜕
𝜇𝐴𝑎

𝜇)
2, the Fadeev-Popov ghost term ℒ𝐹𝑃 = 𝑐𝑎(−𝜕𝜇𝐷𝑎𝑐

𝜇 )𝑐𝑐 and counterterms ℒ𝑐𝑡 for a

consistent quantization and renormalization. A possible CP violating term ℒ𝜃 = 𝜃 𝑔2

32𝜋2
̃︀𝐹 𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 is neglected

in all of our considerations.
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6 2 Quantum Chromodynamics and heavy-ion collisions

the coupling constant on 𝜇 (“running coupling”):

𝛽(𝑔) = 𝜇
d𝑔

d𝜇
. (2.3)

At first-loop order, the result is

𝛽(𝑔) = − (11𝑁𝑐 − 2𝑁𝑓 )
𝑔3

48𝜋2
+ 𝒪(𝑔5), (2.4)

which is negative and thus causes the important property of the asymptotic freedom: The
coupling constant is decreasing with increasing energy (i.e. at short distances) or the charac-
teristic momentum transfer of a physical process. By dimensional transmutation, QCD is not
described by a dimensionless coupling but by a dimensional scale Λ𝑄𝐶𝐷 ≃ 200 MeV, which
is typically chosen as the scale at which the coupling is of order one. At the 𝑍 boson pole,
the strong coupling constant 𝛼𝑠 ≡ 𝑔2

4𝜋
assumes the value 𝛼𝑠(𝑚𝑧) = 0.1181 [27]. Perturbative

calculations are therefore only possible for large energies with free quarks and gluons at high
temperatures or densities. Explorations of the QCD phase diagram (cf. section 2.3) hence
require strictly non-perturbative methods or model calculations.

An important property of QCD is the breaking of scale invariance at the quantum level. The
classical QCD Lagrangian (2.1) possesses dilatational symmetry in the chiral limit 𝑚𝑓 → 0. 4

Quantum effects break this (approximate) invariance and give rise to the scale of QCD, Λ𝑄𝐶𝐷.
The expectation value of the trace of the energy-momentum tensor is an order parameter for
this anomaly, given by

⟨𝑇 𝜇
𝜇⟩ =

𝛽

2𝑔
⟨𝐹 𝑎

𝜇𝜈𝐹
𝜇𝜈
𝑎 ⟩ + (1 + 𝛾𝑚)

∑︁
𝑓

𝑚𝑓⟨𝑞𝑓𝑞⟩. (2.5)

The first term, the gluon condensate, is dominating and originates from quantum effects, which
are described by the QCD 𝛽 function (2.3). The second term demonstrates that quark masses
explicitly break scaling invariance. Quantum effects are encoded in

𝛾𝑚(𝑔) =
𝜇

𝑚𝑓

d𝑚𝑓

d𝜇
, (2.6)

which describes the quark mass dependence on the renormalization scale.

The classical scaling dimension ∆0 of an field operator 𝒪, which is defined under dilatations
𝑥 ↦→ 𝑥′ = 𝜆𝑥 through the transformation 𝒪 ↦→ 𝒪′(𝑥′) = 𝜆−Δ0𝒪(𝑥) also receives a quantum

4In this case, the Noether theorem implies the conservation law 𝜕𝜇𝑗
𝜇 = 𝑇𝜇

𝜇 for the current 𝑗𝜇 = 𝑥𝜈𝑇
𝜇𝜈 . Scale

invariance is therefore valid for a traceless energy-momentum tensor 𝑇𝜇𝜈 . Quark masses explicitly break
this symmetry, but even then, a vanishing 𝛽 function would be expected at high energies.
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contribution ∆ = ∆0 + 𝛾 by the anomalous dimension

𝛾(𝑔) =
1

2

d ln𝑍𝒪

d ln𝜇
, (2.7)

where 𝑍𝒪 is the renormalization constant of 𝒪.
The elaborated properties, most notably the asymptotic freedom and symmetries of QCD,
determine the structure of the phase diagram and are responsible for the richness of phenomena
related to strongly coupled physics.

2.2 Lattice gauge theory and thermodynamics

Lattice gauge theory is a fundamental approach to solve full QCD and calculate thermody-
namic quantities. We give a basic introduction into the relevant concepts in this section,
following [24, 25, 28, 29]. Detailed discussions can be found in [30].
In lattice QCD the grand partition function is computed in the path integral formalism. A
discretized Euclidean spacetime of size 𝑁𝜏 × 𝑁𝑠 with lattice spacing 𝑎 is used such that the
temperature and volume are given by

𝑇 =
1

𝑁𝜏𝑎
, 𝑉 = (𝑁𝑠𝑎)3. (2.8)

The smallest and largest length scale introduce an UV cutoff Λ𝑈𝑉 ∼ 𝑎−1 as the maximum
momentum scale and an IR regulator via Λ𝐼𝑅 ∼ (𝑁𝑠𝑎)−1 respectively. The grand partition
function is then given by the Euclidean path integral

𝑍(𝑇, 𝑉, �⃗�) =

∫︁
𝒟𝐴𝜇𝒟𝑞𝑓𝒟𝑞𝑓 e−𝑆𝐸

, (2.9)

where the product over all gauge field components and flavors is implicitly assumed. The
Euclidean action

𝑆𝐸(𝑇, 𝑉, �⃗�) ≡ −
∫︁ 1/𝑇

0

d𝜏

∫︁
𝑉

d3𝑥 ℒ𝐸(�⃗�) (2.10)

contains the inverse temperature and imaginary time 𝜏 = 𝑖𝑡. The quark chemical potentials
𝜇𝑓 couple to the conserved quark number currents in the Lagrangian

ℒ𝐸(�⃗�) = ℒ𝐸
𝑐𝑙 +

∑︁
𝑓

𝜇𝑓𝑞𝑓𝛾0𝑞𝑓 (2.11)

with ℒ𝐸
𝑐𝑙 as the classical QCD Lagrangian (2.1) in Euclidean spacetime. To preserve gauge

invariance, the gauge fields are discretized as variables on links between the lattice sites.
Several discretization schemes exist that define the fermionic degrees of freedom on the lattice
sites itself.
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Splitting the action into the gluonic and fermionic part, 𝑆𝐸 = 𝑆𝑔 +𝑆𝑓 , the quark fields can be
integrated out since the action is bilinear in the fermion fields. This gives the determinant of
the Dirac operator, det𝑀𝑓 (𝐴𝜇, 𝜇𝑓 ), and the partition function simplifies to

𝑍(𝑇, 𝑉, �⃗�) =

∫︁
𝒟𝐴𝜇 det𝑀𝑓 (𝐴𝜇, 𝜇𝑓 ) e−𝑆𝑔 , (2.12)

where the high-dimensional integral is expressed with link variables 𝑈𝑥,�̂� ≡ exp(𝑖𝑎𝑔𝐴𝜇(𝑥)) as
𝒟𝐴𝜇 =

∏︀
𝑥,�̂� 𝑑𝑈𝑥,�̂�. The path integral can then be evaluated on the grid with the Monte-Carlo

method as a sum over all possible field configurations. This Euclidean approach allows to
calculate time-independent quantities but not dynamical ones.

Physical quantities in lattice QCD are extracted in the continuum limit 𝑎→ 0. At finite tem-
perature and volume, this is achieved by increasing the number of lattice points, 𝑁𝜏 , 𝑁𝑠 → ∞,
such that the quantities in Eq. (2.8) are kept constant. 5 The bare coupling in lattice QCD
is adjusted such that asymptotic freedom corresponds to the limit 𝑔(𝑎 → 0) → 0. In this
continuum limit, Lorentz invariance is restored and lattice QCD is renormalizable, i.e. UV di-
vergences can be absorbed in the masses and coupling constants, such that physical observables
are independent of the lattice spacing.

The EoS follows from the grand canonical potential

Ω(𝑇, 𝑉, 𝑧𝑓 ) = 𝑇 ln𝑍(𝑇, 𝑉, 𝑧𝑓 ) − 𝑝0 (2.13)

with 𝑧𝑓 ≡ 𝑒𝜇𝑓/𝑇 as the fugacity related to the quark chemical potential 𝜇𝑓 . The normalization
𝑝0 = lim𝑇→0 𝑇 ln𝑍(𝑇, 𝑉, 1) is the vacuum pressure and is chosen such that Ω vanishes at zero
temperature. By standard thermodynamic relations, the pressure 𝑝, energy density 𝜖 and
speed of sound squared 𝑣2𝑠 are obtained as

𝑝 =
1

𝑉
Ω(𝑇, 𝑉, 𝑧𝑓 ), 𝜖 =

𝑇 2

𝑉

𝜕Ω(𝑇, 𝑉, 𝑧𝑓 )/𝑇

𝜕𝑇
, 𝑣2𝑠 =

d𝑝

d𝜖
. (2.14)

Computationally, the basic observable in lattice QCD is the interaction measure 𝐼, which is
related to the thermodynamic quantities and the thermal contribution to the trace of the
energy-momentum tensor through the anomaly (2.5) as

𝐼 ≡ 𝜖− 3𝑝 = 𝑇 5 d

d𝑇

(︁ 𝑝

𝑇 4

)︁
= 𝑇 𝜇

𝜇 = −𝑇
𝑉

d ln𝑍

d ln 𝑎
, (2.15)

such that the pressure follows from integration (see e.g. [12] for details of the numerical proce-
dure). At non-vanishing quark chemical potential, the quark densities 𝑛𝑓 and entropy density

5The thermodynamic limit 𝑉 → ∞ for a given temperature requires 𝑁𝑠 ≫ 𝑁𝜏 .
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𝑠 are given by
𝑛𝑓

𝑇 3
=

1

𝑉 𝑇 3

𝜕𝑝/𝑇 4

𝜕𝜇𝑓/𝑇
,

𝑠

𝑇 3
=
𝜖+ 𝑝

𝑇 4
−
∑︁
𝑓

𝑛𝑓𝜇𝑓

𝑇 4
. (2.16)

Lattice QCD is now a well established quantitative method to solve full QCD at vanishing
chemical potential. We will use results from these calculations in section 4.2 to adjust a
holographic model to the thermodynamics. A direct evaluation of the partition function for
𝜇𝑓 > 0 is, however, restricted by the sign problem: The fermion determinant becomes imag-
inary in this case and prevents a probabilistic integration. There are several approaches like
the reweighting method, evaluations at imaginary 𝜇𝑓 , Taylor expansions, a complex Langevin
method or a path optimization method that try to avoid or circumvent the sign problem. All
of these ansätze, however, have intrinsic limitations and are, at best, limited to small chemical
potentials.

2.3 The QCD phase diagram

It is believed that QCD exhibits a rich phase diagram as illustrated in Fig. 2.1 (left panel). 6 An
ultimate goal of current research is to explore these different structures, which are typically con-
sidered in the temperature-net baryon density plane (as in Fig. 2.1) or in the temperature-baryo
chemical potential plane. In the following discussion, we present some important properties of
these phases, following [23] and [24, 28, 29].
Let us start by looking at the zero temperature case, i.e. on the 𝜇-axis at 𝑇 = 0. Microscop-
ically, attractive and repulsive forces between nucleons compete such that the ground state
is assumed at a finite baryon density 𝑛0 ≃ 0.17 fm−3. Nuclear matter in this ground state
is stable, i.e. the pressure vanishes, 𝑝 = 0, and therefore the baryon density 𝑛(𝜇) vanishes
below some value 𝜇0 ≃ 924 MeV. The thermodynamic stability at smaller densities 𝑛 < 𝑛0

is preserved through fragmentation of nuclear matter into droplets of constant density 𝑛0. At
finite but small temperature, single nucleons can thermally evaporate. The phase transition
between nucleons in a mixed phase at low densities/chemical potential and nuclear matter
at larger densities is well established as a gas-liquid (GL) FOPT curve terminating into a
second-order critical point towards smaller chemical potential at a temperature in the order of
10MeV. With increasing chemical potential 𝜇, the pressure 𝑝 =

∫︀
𝑛 d𝜇 is increasing too. This

region of the phase diagram is particularly important for the description of neutron or quark
stars and core-collapse supernova explosions.
On the temperature axis, i.e. for 𝜇 = 0, there is a phase transition between the hadronic
phase at low temperatures and the QGP at high temperatures. In the hadronic phase, quarks
and gluons are confined as colorless bound sates, whereas the deconfined QGP is a strongly
interacting near-ideal liquid, as suggested by experiments. The existence of a QGP phase

6Historically, the first remarks on QCD related phase transitions can be found in [32].
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Figure 2.1: Left Panel: The QCD phase diagram with expected phases of strongly interact-
ing matter. The net baryon density is related to the baryo chemical potential. (Figure: GSI,
Darmstadt) Right panel: The Columbia plot sketches the type of the QCD phase transition
at 𝜇 = 0 in dependence of the quark masses for different flavors. (Figure taken from [31])

follows from the decreasing beta function, i.e. the asymptotic freedom in QCD. The Columbia
plot [33] in Fig. 2.1 (right panel) shows the qualitative options for the type of this phase
transition in dependence of the u, d, s quark masses 𝑚𝑢,𝑑,𝑠. (See [34] for recent investigations.)
In the chiral limit, 𝑚𝑢,𝑑,𝑠 → 0 (lower left corner), and the infinitely heavy quark-mass limit,
𝑚𝑢,𝑑,𝑠 → ∞ (upper right corner), the deconfinement transition is a FOPT. These FOPT regions
extend into the mass plane and are bounded by second-order transition lines. Such a critical
line extends also from the upper left corner along the 𝑚𝑠 axis and meets the FOPT region at
a tricritical point. The rest of the quark-mass diagram is the crossover region. Lattice QCD
revealed that the confinement-deconfinement transition in the real world with physical quark
masses is a crossover [10] in the temperature range 150 − 170 MeV [11, 12].

The crossover-deconfinement transitions extends from the temperature axis into the phase
diagram at finite chemical potential. There is the possibility that a true FOPT curve is
emerging at a CEP towards larger chemical potential down to the 𝜇-axis. Some recent remarks
on the experimental signatures of a CEP in HICs can be found in [35]. Lattice calculations
in this region are hampered by the sign problem. The exact phase structure in this range
is therefore unconfirmed and especially model calculations become relevant. Such approaches
predict for example color superconductors, quarkyonic matter or color-flavor locked structures.
We however emphasize that current research is far away from a complete understanding of
the entire phase diagram and many subtleties may arise, similar to the sensitive quark mass
dependence in the Columbia plot already at 𝜇 = 0.

Beyond the confinement-deconfinement transition, also chiral symmetry plays an important
role in the QCD phase diagram. In the limit of massless flavors 𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠 = · · · = 0, the
QCD Lagrangian is invariant under chiral transformations, i.e. independent global rotations
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of left and right handed quarks, and therefore acquires the symmetry 7

𝑈(𝑁𝑓 )𝐿 × 𝑈(𝑁𝑓 )𝑅 ≃ 𝑆𝑈(𝑁𝑓 )𝐿 × 𝑆𝑈(𝑁𝑓 )𝑅 × 𝑈(1)𝑉 × 𝑈(1)𝐴. (2.17)

The QCD ground state spontaneously breaks the global flavor symmetry 𝑆𝑈(𝑁𝑓 )𝐿×𝑆𝑈(𝑁𝑓 )𝑅,
generating three massless Goldstone pseudoscalar bosons and a non-vanishing quark-antiquark
vacuum expectation value ⟨𝑞𝑞⟩ (also called chiral condensate). At the physical point, the
massive pions are interpreted as these approximate Goldstone bosons. In the QGP phase
at high temperatures, asymptotic freedom suggests that condensates disappear and chiral
symmetry is (approximately) restored. Thus, a phase transition to the chirally symmetric
equilibrium state is expected at some temperature 𝑇 ∼ Λ𝑄𝐶𝐷. The exact nature of this
transition and its relation to the deconfinement transition is unknown.

2.4 Heavy-ion collisions

Heavy-ion collisions are an experimental method to study the QCD phase diagram. In such
collisions, a QGP can be created, which undergoes the transition to hadron matter similar
to the evolution in the early universe at about 10𝜇s after the big bang. We give a brief
introduction into the most relevant physical principles that govern such collisions, based on
[36] and [25]. The former is an up to date review, which also discusses modern holographic
approaches. Further information on that topic can be found in [26, 37].
There are two general ways how HICs can be performed: Central collisions with Lorentz-
contracted nuclei create excited matter at high temperature, while fixed-target experiments
compress the nuclear matter to high density. Our current understanding separates the evolu-
tion of HICs into three stages with a characteristic proper time scale 𝜏0 ∼ 1 fm (cf. Fig. 2.2 for
an illustration in the space-time diagram):

i) In the initial or pre-equilibrium stage (0 < 𝜏 < 𝜏0), the two nuclei pass through each
other. This process is accompanied by a huge entropy production, whose microscopic
origin is not fully understood. The difficulties arise due to the time-dependent non-
equilibrium processes of QCD. The local thermalization produces the initial condition
of the hydrodynamic evolution in the second stage. Microscopic models such as the
Color Glass Condensate or AdS/CFT approaches suggest that the matter undergoes
presumably a very fast thermalization and is dominated by gluons.

ii) In the hydrodynamic stage (𝜏0 < 𝜏 < 𝜏𝑓 ), after local thermal equilibrium is reached at 𝜏0,
the dynamical evolution can be described very well by relativistic viscous hydrodynamics.

7The 𝑈(1)𝑉 symmetry reflects the baryon number conservation and the axial symmetry 𝑈(1)𝐴 is explicitly
broken by quantum fluctuations.
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Figure 2.2: Time evolution of a ultra-relativistic HIC in the space-time diagram. The
collision of two nuclei with mass number 𝐴 takes place at the origin and the subsequent
stages are shown inside the light cone. The hyperbolas are contour curves of constant proper
time 𝜏 = (𝑡2 − 𝑧2)1/2; 𝜏0 and 𝜏𝑓 are the characteristic time scales of the thermalization and
freeze-out respectively. Figure taken from [25].

This framework is based on the conservation of the energy-momentum tensor and baryon
number: 8

𝜕𝜇⟨𝑇 𝜇𝜈⟩ = 0, 𝜕𝜇⟨𝑗𝜇𝐵⟩ = 0. (2.18)

The microscopic input is encoded in the EoS 𝑝(𝜖) for a perfect fluid. Higher-order
hydrodynamics also requires viscosities and conductivities as input. Such calculations
were successfully applied to describe the time development of the second stage, in which
the transition to the hadronic phase takes place.

iii) In the freeze-out and post-equilibrium stage (𝜏 > 𝜏𝑓 ), the final state particles decouple
and become free at some proper time 𝜏𝑓 > 𝜏0. The mean free path and time of plasma
particles is increasing in this stage. There are two types of freeze-out, which depend
on the hadron species: The chemical freeze-out takes places first and leaves the num-
ber of each particle species constant (equilibrium is still present), while after thermal
freeze-out the particle momenta remain constant (local thermal equilibrium is no longer
maintained).

During these stages the fireball of the HIC is expanding and cooling. The density is therefore
decreasing and the final particles can be registered in the detectors. The key insight from
holography was the result that the strongly-coupled fluid can hydrodynamize when it is still
in an anisotropic state far from equilibrium [38–42].
There are several experimental signatures of the QGP in HICs, such as an increase in the

8As explained in [25], the expectation value is taken w.r.t. time-dependent states in local thermal equilibrium.
See this reference for further details.
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elliptic flow, jet quenching or modifications of properties of heavy mesons (𝐽/Ψ,Υ, . . .). Other
effects are a rise in the average transverse momentum, caused by the increasing entropy during
the phase transition, or an enhanced production of strangeness and charm. Further signatures
and their relation to experimental data are discussed in [25, 26].





3 The gauge/gravity duality

In this chapter we describe the relevant foundations of the gauge/gravity duality and the
AdS/CFT correspondence. These concepts relate different areas of physics, namely a confor-
mal QFT to a higher-dimensional string theory. Since the CFT is defined in flat space and
string theory is a quantized gravitational theory, the gauge/gravity duality provides also a
promising approach towards quantum gravity. This concrete duality is also a realization of
the holographic principle, which states that the number of degrees of freedom in a volume
scale with the surface area of that volume for a gravitational theory. The original AdS/CFT
proposal by Maldacena in [17] was refined in [18, 19] regarding the calculation of correla-
tion functions and an operator/field relation. This remarkable duality between different fields
in physics allowed insights into foundational questions and provided new methods to tackle
problems in various areas of physics. By now, there are several good textbooks on this topic
[37, 43–46]. We will mainly follow [43] and [37] in our discussions in this chapter. It is not
our intention to give an profound introduction into string theory. We refer to the literature
[47–49] and the discussions in the aforementioned textbooks for introductions.

3.1 Anti-de Sitter spacetimes

The AdS spacetime is a maximally symmetric spacetime with negative cosmological constant,
which appears on the gravity side of the AdS/CFT correspondence. In 𝑑+1 dimensions, AdS𝑑+1

is defined as an embedding in (𝑑+2)-dimensional Minkowski spacetime (𝑋0, . . . , 𝑋𝑑+1) ∈ IR𝑑,2

with metric 𝜂 = diag(−,+, . . . ,+,−) as the hyperboloid

𝜂𝑀𝑁𝑋
𝑀𝑋𝑁 = −(𝑋0)2 +

𝑑∑︁
𝑖=1

(𝑋 𝑖)2 − (𝑋𝑑+1)2 = −𝐿2, (3.1)

where 𝑀,𝑁 ∈ {0, . . . , 𝑑 + 1}. This spacetime possesses 𝑆𝑂(𝑑, 2) invariance and admits the
maximum number of Killing vectors, i.e. it is maximally symmetric with constant curvature.
Furthermore, an AdS𝑑+1 spacetime has a conformal boundary, which is a compactification of
𝑑-dimensional Minkowski spacetime, and can be represented as the set of all lines on the light
cone 𝜂𝑀𝑁𝑋

𝑀𝑋𝑁 = 0 originating from 0 ∈ IR𝑑,2 [43].

AdS spacetimes can be represented in several common coordinate systems. Global coordinates

15
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(𝜌, 𝜏,Ω𝑖) cover the whole AdS space and the metric takes the form 9

d𝑠2 = 𝐿2
(︀
− cosh2𝜌 d𝜏 2 + d𝜌2 + sinh2𝜌 dΩ2

𝑑−1

)︀
. (3.2)

Introducing a new coordinate 𝜃 by tan 𝜃 = sinh 𝜌 and rescaling gives the compactified metric

d𝑠2 = − d𝜏 2 + d𝜃2 + sin2𝜃 dΩ2
𝑑−1, 𝜃 ∈ [0, 𝜋/2], 𝜏 ∈ [0, 2𝜋), (3.3)

which is also known as the “Einstein static universe”. The periodicity in 𝜏 allows closed
timelike curves, causing causal inconsistencies. The problem is solved by considering the
universal cover, i.e. unwrapping the circle, such that 𝜏 ∈ IR with no identifications. The
Penrose diagram of AdS2 in these coordinates is an infinite strip between 𝜃 = −𝜋/2 and
𝜃 = +𝜋/2 while the conformal diagram for full AdS𝑑+1 follows by adding a sphere 𝑆𝑑−1 to
each point. This demonstrates that the boundary of AdS𝑑+1 spacetime is IR𝜏 ×𝑆𝑑−1. Poincaré
patch coordinates 𝑡 ∈ IR, �⃗� = (𝑥1, . . . , 𝑥𝑑−1) ∈ IR𝑑−1, 𝑟 ∈ IR+ cover only half of the spacetime
and the metric is given by

d𝑠2 =
𝐿2

𝑟2
d𝑟2 +

𝑟2

𝐿2

(︀
− d𝑡2 + d�⃗� 2

)︀
, (3.4)

exhibiting a conformal boundary at 𝑟 → ∞. 10 The fifth coordinate can be interpreted as
a warp direction that is relevant for holographic interpretations. The Ricci scalar in these
coordinates is 𝑅 = −𝑑(𝑑+1)

𝐿2 = const < 0, demonstrating that 𝐿 represents the curvature radius.
This spacetime satisfies the source-free Einstein field equations 𝑅𝑀𝑁 − 1

2
𝑅𝑔𝑀𝑁 + Λ𝑔𝑀𝑁 = 0,

following from the Hilbert action

𝑆 =
1

16𝜋𝐺
(𝑑+1)
𝑁

∫︁
d𝑑+1𝑥

√
−𝑔 (𝑅− 2Λ) , (3.5)

if the cosmological constant Λ is chosen as

Λ = −𝑑(𝑑− 1)

2𝐿2
< 0. (3.6)

Particular important for AdS/CFT interpretations are black hole solutions in asymptotic AdS
spacetimes. That means that these spacetimes are on the boundary locally isometric to an
AdS space and solve the Einstein field equations with negative cosmological constant. The
corresponding thermodynamic quantities have interpretations on the gauge theory side.

9The coordinate system follows from the initial definition (3.1) through the parametrization 𝑋0 =
𝐿 cosh 𝜌 cos 𝜏 , 𝑋𝑑+1 = 𝐿 cosh 𝜌 sin 𝜏 , 𝑋𝑖 = 𝐿Ω𝑖 sinh 𝜌 (𝑖 = 1, . . . , 𝑑), where Ω𝑖 are angular coordinates
satisfying

∑︀
𝑖 Ω

2
𝑖 = 1 and 𝜌 ∈ IR+, 𝜏 ∈ [0, 2𝜋).

10The coordinates (3.1) are parametrized as 𝑋0 = 𝐿2

2𝑟

(︁
1 + 𝑟2

𝐿4

[︀
�⃗�2 − 𝑡2 + 𝐿2

]︀)︁
, 𝑋𝑖 = 𝑟𝑥𝑖

𝐿 (𝑖 = 1, . . . , 𝑑 − 1),

𝑋𝑑 = 𝐿2

2𝑟

(︁
1 + 𝑟2

𝐿4

[︀
�⃗�2 − 𝑡2 − 𝐿2

]︀)︁
, 𝑋𝑑+1 = 𝑟𝑡

𝐿 .
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3.2 Aspects of conformal field theories

In QFT, the Coleman-Mandula theorem states that the Poincaré algebra cannot be extended,
since the S-matrix would vanish. There are, however, two loopholes: Theories without a mass
gap and S-matrix can be a representative of the conformal algebra while the introduction
of graded Lie algebras realizes the supersymmetry (SUSY) algebra. In the context of the
AdS/CFT correspondence, both properties are realized in 𝒩 = 4 SYM theory. We describe
the important properties of such CFTs in this section, following [43, 44].

CFTs are quantum field theories which are invariant under conformal transformations. These
are coordinate transformations in flat spacetime that locally preserve angles. The metric
components transform as

𝑔𝜇𝜈(𝑥) ↦→ Ω(𝑥)−2𝑔𝜇𝜈(𝑥) =: e2𝜎(𝑥) 𝑔𝜇𝜈(𝑥) ⇔ d𝑠′2 = e2𝜎(𝑥) d𝑠2, (3.7)

which preserves the causal structure. For an infinitesimal conformal transformation 𝑥𝜇 ↦→
𝑥𝜇 + 𝜖𝜇(𝑥), the definition (3.7) implies

(𝑔𝜇𝜈𝜕𝜌𝜕
𝜌 + (𝑑− 2) 𝜕𝜇𝜕𝜈) 𝜕𝜇𝜖

𝜇 = 0. (3.8)

The case 𝑑 = 2 is obviously different but not relevant for our considerations. We therefore
assume 𝑑 > 2, where the most general solution has the form

𝜖𝜇(𝑥) = 𝑎𝜇 + 𝜔𝜇
𝜈𝑥

𝜈 + 𝜆𝑥𝜇 + 𝑏𝜇𝑥2 − 2(𝑏 · 𝑥)𝑥𝜇. (3.9)

The parameters 𝑎𝜇, 𝜔𝜇𝜈 , 𝜆 and 𝑏𝜇 correspond to translations, Lorentz transformations, dilata-
tions and special conformal transformations respectively. 11 These transformations form the
symmetry group 𝑆𝑂(𝑑, 2), which is the same as for AdS𝑑+1 spacetime in the previous section.
This agreement of the symmetry groups is already a strong hint for a possible relation between
CFTs in flat space and a gravitational theory in an AdS space. The generators of this group
form the corresponding algebra, in particular the momentum vector 𝑃 𝜇 for translations, the
dilatation generator 𝐷 and 𝐾𝜇 for special conformal transformations, which are given with
associated commutation relations.

Beyond the group theoretic point of view, there is also an important relation between scale and
conformal invariance: Conformal invariance is a local symmetry that generalizes global scale
invariance. As discussed in section 2.1 in the context of QCD, classical scale invariance can be
broken at the quantum level through anomalies. Local conformal invariance, however, cannot
be broken quantum-mechanically; this absence of quantum anomalies constrains the theory.

11Special conformal transformations are given by 𝑥𝜇 ↦→ 𝑥𝜇+𝑏𝜇𝑥2

1+2𝑏·𝑥+𝑏2𝑥2 . They can be decomposed into an inversion,
translation and another inversion. Subtleties regarding a mapping to infinity and conformal compactification
are discussed in [43].
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A quantum-mechanically scale invariant theory can be realized by a vanishing 𝛽 function or a
nontrivial interacting fixed point. So far, all such known theories are also conformal invariant.
Field transformations in CFTs are performed in irreducible representations of the conformal
algebra. Induced representations are constructed from eigenfunctions of the the scaling op-
erator 𝐷 with eigenvalue −𝑖∆, where ∆ is the scaling dimension of 𝜑 (cf. section 2.1 for the
definition). The generator 𝑃𝜇 increases ∆ and acts similar to a creation operator

[𝐷,𝑃𝜇] = −𝑖𝑃𝜇 ⇒ 𝐷(𝑃𝜇𝜑) = −𝑖(∆ + 1)(𝑃𝜇𝜑), (3.10)

while 𝐾𝜇 decreases ∆ similar to an annihilation operator due to

[𝐷,𝐾𝜇] = 𝑖𝐾𝜇. (3.11)

The primary operator Φ0 is the lowest dimensional operator in this conformal algebra, defined
by 𝐾𝜇Φ0 = 0. Successive application of 𝑃𝜇 and 𝐾𝜇 generates arbitrary states in the CFT.
Conformal invariance has some important consequences on observables and quantities in the
QFT. For example, the two-point correlator of two arbitrary operators has the general form

⟨𝒪𝑖(𝑥)𝒪𝑗(𝑦)⟩ =
𝐶𝛿𝑖𝑗

|𝑥− 𝑦|Δ𝑖+Δ𝑗
, (3.12)

which follows from the operator product expansion up to some normalizable constant 𝐶 = 1.
Another important property is the tracelessness of of the energy-momentum tensor: 12

𝑇 𝜇
𝜇 = 0, (3.13)

which ensures scale invariance of the classical field theory.
For the formulation of the AdS/CFT correspondence, 𝒩 = 4 SYM theory in 𝑑 = 4 is relevant,
which is a representation of the conformal group with with the largest amount of supersymme-
try (i.e. 16 supercharges without gravity). 13 This non-Abelian gauge theory contains a gauge
field 𝐴𝜇(𝑥), four Weyl fermions 𝜆𝑎𝛼(𝑥) (𝑎 = 1, . . . , 4) and six real scalars 𝜑𝑖(𝑥) (𝑖 = 1, . . . , 6),
which transform in the adjoint representation of 𝑆𝑈(𝑁𝑐). The Lagrangian can be constructed
in the superspace formalism or obtained from 𝒩 = 1 SYM theory in ten dimensions through
dimensional reduction. The unique result has the Yang-Mills coupling constant 𝑔YM and the
number of colors 𝑁𝑐 as parameters. The fields have mass dimensions [𝐴𝜇] = 1, [𝜆𝑎] = 3/2,
[𝜑𝑖] = 1. Since [𝑔YM] = 0, the theory is classically scale invariant. In fact, 𝒩 = 4 SYM theory

12According to the Noether theorem, the energy-momentum tensor is the conserved current for translations.
Scaling invariance restricts this tensor to be traceless due to the conserved dilatation current. This is also
valid for the definition 𝑇𝜇𝜈 = − 2√

−𝑔
𝛿𝑆

𝛿𝑔𝜇𝜈 w.r.t. the classical action 𝑆 =
∫︀
𝑑𝑑𝑥

√
−𝑔ℒ for scalings 𝑔𝜇𝜈 ↦→

(1 + ℎ(𝑥𝜇))𝑔𝜇𝜈 , which imply 𝛿𝑔𝜇𝜈 = 𝛿ℎ(𝑥𝛼)𝑔𝜇𝜈 and thus 0 = 𝛿𝑆 =
∫︀
𝑑𝑑𝑥

√
−𝑔 1

2𝑇
𝜇𝜈𝑔𝜇𝜈𝛿ℎ(𝑥

𝛼).
13The supergroup is 𝑆𝑈(2, 2|4) [50]. It contains the conformal symmetry, R-symmetry, Poincaré supersymme-

tries and conformal supersymmetries.
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is also at the quantum level scale invariant, because the 𝛽 functions vanishes to all orders. It
is expected that this theory is UV finite, since no UV divergences appear in the correlation
functions of its fields. Moreover, from the discrete global S-duality group, one can infer a
strong-weak duality, i.e. the invariance under the transformation 𝑔YM ↔ 4𝜋/𝑔YM.

3.3 The AdS/CFT correspondence

Motivation

We have already seen a hint for the AdS/CFT duality as a relation between a CFT𝑑 and a
theory of gravity in an AdS𝑑+1 spacetime through the agreement of the symmetry groups.
As explained in [37], this correspondence can be further motivated as a geometrization of
the renormalization group (RG) flow: For a QFT in 𝑑 Minkowski dimensions with a short-
distance cutoff 𝜖, an effective field theory at some length scale 𝑧 ≫ 𝜖 can be obtained by
integrating out the short-distance degrees of freedom. The RG scale 𝑧 can be interpreted as a
spatial dimension, such that the resulting continuous family of effective field theories can be
embedded into a single (𝑑 + 1)-dimensional theory. The holographic principle suggests that
this theory could be a theory of quantum gravity. String theory as the natural candidate
can be inferred from ’t Hooft’s large-𝑁𝑐 expansion of non-Abelian gauge theories [13]. 14 An
AdS spacetime as the correct geometry for the (𝑑+ 1)-dimensional string theory is implied by
requiring 𝑑-dimensional Poincaré and conformal symmetry. 15

Derivation

The precise formulation of the AdS/CFT correspondence is obtained by analyzing two different
prescriptions of D𝑝-branes (cf. Fig. 3.1). For that, we consider a type IIB string theory as
a representative of a supersymmetric string theory in ten dimensions. The key insight is
that (extremal) 𝑝-branes and D𝑝-branes are describing the same object [51]. The former are
supergravity solutions and represent black holes in 𝑝 spatial dimensions. On the other side, D𝑝-
branes are dynamical solitonic objects on that open strings can end, occupying a 𝑝-dimensional

14This means that the expansion of the Euclidean partition function in powers of 1/𝑁𝑐 shows a remarkable
similarity with the perturbative expansion of a closed string theory if one identifies 𝑔𝑠 ∼ 1/𝑁𝑐, where 𝑔𝑠 is
the string coupling.

15As elaborated in [37], the most general ansatz d𝑠2 = Ω2(𝑧)
(︀
−d𝑡2 + d�⃗� 2 + d𝑧2

)︀
needs to be invariant under

(𝑡, �⃗�) → 𝐶(𝑡, �⃗�) for some constant 𝐶 to incorporate conformal invariance with simultaneous scaling of the
holographic coordinate 𝑧 → 𝐶𝑧. This determines the conformal factor as Ω(𝑧) = 𝐿/𝑧 for some constant 𝐿.
The metric therefore takes the form

d𝑠2 =
𝐿2

𝑧2
(︀
−d𝑡2 + d�⃗� 2 + d𝑧2

)︀
, (3.14)

which is an AdS𝑑+1 spacetime. Note that the coordinate 𝑧 is related to 𝑟 as 𝑧 ≡ 𝐿2

𝑟 in the Poincaré
coordinates (3.4). The Minkowski boundary is located at 𝑧 = 0.
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Figure 3.1: Illustration of the open string (left) and closed string perspective (right) of
D𝑝-branes. Figure taken from [43].

subspace. For the following discussion, D3-branes that sweep out a 4-dimensional worldvolume
are relevant. Consider now a stack of 𝑁𝑐 coincident D3-branes along the spacetime directions
𝑥0, . . . , 𝑥3 transversal to 𝑥4, . . . , 𝑥9.

i) In the open string perspective, one treats the strings as small perturbations in the limit
of small string coupling constant 𝑔𝑠 ≪ 1. The string spectrum contains finitely many
massless modes and an infinite number of massive modes in this case. The former
consists of an Abelian gauge field 𝐴𝜇(𝑥) (describing parallel open string excitations) and
six scalar fields 𝜑𝑖(𝑥) (describing transverse fluctuations) for a single D3-brane (together
with their superpartners). In the limit of small energies 𝐸 ≪ 𝛼′−1/2 only massless modes
contribute. 16 The effective action has contributions from closed and open string modes
as well as their interactions:

𝑆 = 𝑆closed + 𝑆open + 𝑆int. (3.15)

In the limit 𝛼′ → 0, 𝑆int vanishes (decoupling of open and closed strings), while 𝑆closed

gives free supergravity in Minkowski spacetime. Moreover, 𝑆open leads to the bosonic
part of 𝒩 = 4 SYM theory for the identification 2𝜋𝑔𝑠 = 𝑔2YM with gauge group 𝑈(𝑁𝑐).
The 𝑈(1) part (center of mass motion) decouples from the remaining 𝑆𝑈(𝑁𝑐) ⊂ 𝑈(𝑁𝑐)

modes (describing the brane motions relative to one another).

ii) The closed string perspective is valid for 𝑔𝑠𝑁𝑐 → ∞, where one treats D𝑝-branes as
massive objects that gravitate, i.e. curve the surrounding spacetime, by interchanging
the strong coupling and low-energy limit. The supergravity solution for D3-branes takes
the form

d𝑠2 = 𝐻−1/2
(︀
− d𝑡2 + d�⃗� 2

)︀
+𝐻1/2

(︀
d𝑟2 + 𝑟2 dΩ2

5

)︀
, 𝐻(𝑟) = 1+

(︂
𝐿

𝑟

)︂4

, 𝐿4 = 4𝜋𝑔𝑠𝑁𝑐𝛼
′2,

(3.16)
16𝛼′ is defined as 𝛼′ = 𝑙2𝑠 , where 𝑙𝑠 is the fundamental string length scale.
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where 𝑟2 ≡
∑︀9

𝑖=4 𝑥
2
𝑖 is a radial coordinate and 𝐿 can be interpreted as the characteristic

length scale of gravitational effects. In the limit 𝑟 ≫ 𝐿, one has 𝐻(𝑟) ∼ 1 and the metric
represents a ten-dimensional Minkowski spacetime. In the near-horizon region 𝑟 ≪ 𝐿,
where gravitational effects become strong, the metric reduces to

d𝑠2 =
𝑟2

𝐿2

(︀
− d𝑡2 + d�⃗� 2

)︀
+
𝐿2

𝑟2
d𝑟2 + 𝐿2 dΩ2

5, (3.17)

which is the metric of an AdS5 spacetime times a compact five-sphere 𝑆5. These two
regimes decouple in the low-energy supergravity limit of type IIB superstring theory, i.e.
there are closed strings in flat Minkowski spacetime and, on the other side, closed strings
propagating in the curved throat near the horizon of the D𝑝-brane.

In summary, we found two different descriptions of the same physical object with two decoupled
theories in the low-energy limit respectively. The type IIB supergravity theories on IR9,1 agree
in both descriptions. It is therefore natural to conjecture that also the other two theories
can be identified. The AdS5/CFT4 correspondence thus states the equivalence between the
following two theories 17

𝒩 = 4 𝑆𝑈(𝑁𝑐) SYM in IR1,3 ⇐⇒ IIB superstring theory in AdS5 × 𝑆5 (3.18)

with parameter mapping

𝑔2YM = 2𝜋𝑔𝑠 and 2𝑔2YM𝑁𝑐 =

(︂
𝐿

𝑙𝑠

)︂4

. (3.19)

Validity

The AdS/CFT correspondence relates different types of theories. In the strongest form, the
correspondence is believed to hold for any values of the parameter mapping. For the strong
form one considers the classical gravitational limit 𝑔𝑠 ≪ 1 at constant 𝐿/𝑙𝑠. The first relation
in Eq. 3.19 then implies 𝑔YM ≪ 1 and from the second mapping we infer that the ’t Hooft
coupling 𝜆 ≡ 𝑔2YM𝑁𝑐 is kept constant for 𝑁𝑐 → ∞. This is the planar limit of the CFT
and the AdS/CFT correspondence hence is a concrete realization of the holographic principle
as motivated above. For the weak form of the correspondence one assumes additionally the
strongly coupled field theory limit 𝜆→ ∞, which maps to 𝑙𝑠/𝐿→ 0, i.e. the supergravity limit
at vanishing string length. As a result, the holographic duality is relating a strongly coupled
QFT to a weakly coupled grvitational theory, which is an important advantage for practical
calculations.

17We defined the low-energy condition down such that the duality holds even for superstring theory and not
only supergravity.
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3.4 Elements of the gauge/gravity duality

Inspired by the discussions in [37] and [52], we discuss some important aspects and concepts
of the holographic dictionary in this section.

UV/IR relation

From the motivation as a geometrization of the RG flow and the metric (3.14) follows that the
gauge theory energy 𝐸YM of an object is related to the holographic coordinate 𝑧 as

𝐸 =
𝑧

𝐿
𝐸YM, (3.20)

where 𝐸 is the energy in the bulk (as the time conjugate). Since 𝐸YM ∼ 1/𝑧, UV physics
𝐸YM → ∞ is mapped to bulk processes at 𝑧 → 0 near the Minkowski boundary, and conversely,
the IR limit 𝐸YM → 0 is related to the region 𝑧 → ∞.
The infinite extension 𝑧 → ∞ of the bulk geometry encodes excitations of arbitrary low
energies in the CFT. Confining theories with a mass gap 𝑚 can be realized through a smooth
ending at some finite value 𝑧0 ∼ 1/𝑚. As we will discuss below, the introduction of a BH with
a horizon at 𝑧ℎ introduces a finite temperature 𝑇 ∼ 1/𝑧ℎ.

Operator/field map

The spectra of the different theories in the AdS/CFT correspondence are matched through the
operator/field map, which relates bulk fields to operators in the boundary gauge theory. In
particular, this duality states that the boundary value 𝜑0 of some bulk field Φ acts as a source
for the local field operator 𝒪. In the strong form, the generating functionals are identified
within the path integral formalism on both sides of the correspondence through their partition
functions, i.e.

𝑍𝒪[𝜑0(𝑥)]CFT = 𝑍Φ[𝜑0(𝑥)]string. (3.21)

Here, the partition function of the CFT is calculated w.r.t. the gauge theory action 𝑆 as
𝑍𝒪[𝜑0(𝑥)]CFT =

∫︀
𝒟𝒪 exp

(︀
−𝑆 +

∫︀
d𝑑𝑥𝒪(𝑥)𝜑0(𝑥)

)︀
in Euclidean signature. In the classical

limit, the string theory partition function reduces by a saddle point approximation to the
supergravity expression 𝑍Φ[𝜑0(𝑥)]string = e−𝑆SUGRA[Φ[𝜑0]] subject to the boundary condition

𝜑0(𝑥) = lim
𝑧→0

𝑧𝛼ΦΦ(𝑥, 𝑧). (3.22)

The coefficient 𝛼Φ depends on the boundary asymptotics of the bulk field Φ for a well-defined
limit. Correlation functions can be calculated from this prescription via functional derivatives

⟨𝒪(𝑥1) . . .𝒪(𝑥𝑛)⟩ =
1

𝑍𝒪[0]CFT

𝛿𝑛

𝛿𝜑0(𝑥1) . . . 𝛿𝜑0(𝑥𝑛)
𝑍𝒪[𝜑0(𝑥)]CFT

⃒⃒⃒
𝜑0=0

. (3.23)
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Using the gravitational side of the duality (3.21) for this task requires solving the supergravity
equations of motion with appropriate boundary condition (3.22) and a systematic holographic
renormalization procedure to cancel divergences. This corresponds to the calculation of tree
level diagrams in AdS spacetime, which are known as Witten diagrams.

Based on this operator/field duality, one can see that the AdS bulk metric 𝑔𝑀𝑁 is dual to the
energy-momentum tensor 𝑇 𝜇𝜈 of the boundary theory with 𝛼𝑔 = 2 in (3.22). A gauge field
𝐴𝑀 in the bulk is mapped to a conserved current 𝑗𝜇 with 𝛼𝐴 = 0 and a bulk scalar 𝜑 is dual
to the glueball operator Tr(𝐹 2).

Let us consider the latter case of a bulk scalar 𝜑 with mass 𝑚 in more detail. By applying a
Kaluza-Klein compactification, the supergravity fields in AdS5×𝑆5 are dimensionally reduced
to AdS5. For the more general case of an AdS𝑑+1 spacetime, the relevant bulk action for 𝜑
is 𝑆 ∼ −1

2

∫︀
d𝑧d𝑑𝑥

√
−𝑔
(︀
𝑔𝑀𝑁𝜕𝑀𝜑𝜕𝑁𝜑+𝑚2𝜑2

)︀
under negligence of higher order terms. The

Klein-Gordon equation has two independent solutions near the boundary at 𝑧 → 0:

𝜑(𝑥, 𝑧) ∼ 𝜑0(𝑥)𝑧Δ− + 𝜑+(𝑥)𝑧Δ+ + · · · , (3.24)

where ∆± are the roots of
𝑚2𝐿2 = ∆(∆ − 𝑑), (3.25)

i.e.

∆± =
𝑑

2
±
√︂
𝑑2

4
+𝑚2𝐿2, (3.26)

which satisfy ∆− = 𝑑− ∆+. The non-normalizable modes

𝜑0(𝑥) ≡ lim
𝑧→0

𝜑(𝑥, 𝑧)𝑧−Δ− = lim
𝑧→0

𝜑(𝑥, 𝑧)𝑧Δ+−𝑑 (3.27)

are interpreted as the source of the dual scalar field theory operator 𝒪 with scaling dimension
∆ ≡ ∆+, i.e. 𝛼𝜑 = ∆− 𝑑 in (3.22), while the normalizable mode 𝜑+ can be identified with the
vacuum expectation value of 𝒪. Eq. (3.25) represents the Klein-Gordon equation in Fourier
space in the limit 𝑧 → 0 and provides a remarkable relation between the scaling dimension of
𝒪 and the mass of the dual supergravity field. Furthermore, Eq. 3.26 implies that the scalar
is even stable for negative mass as long as the inequality

𝑚2𝐿2 ≥ −𝑑
2

4
(3.28)

is satisfied, which is known as the Breitenlohner-Freedman bound.

Further remarks on this duality and generalizations in other spacetime dimensions etc. can be
found, e.g., in the early review [53].



24 3 The gauge/gravity duality

Finite temperature and chemical potential

The nonzero temperature case can be studied by introducing a black hole (or black brane) into
an asymptotic AdS𝑑+1 spacetime with an event horizon at some finite value 𝑟 = 𝑟ℎ or 𝑧 = 𝑧ℎ.
The same reasoning behind the duality (3.18) allows to identify the associated thermodynamic
quantities with those of the CFT. In particular, the temperature 𝑇 and entropy density 𝑠 are
given by the Hawking and Bekenstein formulas

𝑇 =
κ
2𝜋
, 𝑠 =

1

𝑉

𝐴𝐻

4𝐺
(𝑑+1)
𝑁

, (3.29)

where κ is the surface gravity, 𝐴𝐻 the event horizon area and 𝐺
(𝑑+1)
𝑁 the Newton constant

in 𝑑 + 1 dimensions. Motivated by a generic quantum gravity path integral formalism, the
temperature can also be calculated through an Euclidean continuation 𝑡→ −𝑖𝑡𝐸 and requiring
regularity at the horizon, such that 𝑡𝐸 has a period 1/𝑇 .
Adding a 𝑈(1) gauge field 𝐴𝑀 in the bulk gives rise to a conserved boundary current 𝑗𝜇. In
the limit 𝑧 → 0, the vector field 𝐴𝑀 has the asymptotic behavior 𝐴𝜇 = 𝑎𝜇 + 𝑏𝜇𝑧

𝑑−2. The time
component of the source 𝑎𝜇(𝑥) is related to the chemical potential 𝜇 via

𝜇 =
𝑎𝑡
𝐿

=
1

𝐿
lim
𝑧→0

𝐴𝑡, (3.30)

while 𝑏𝑡 is proportional to the baryon number density 𝑛. The component 𝐴𝑡 represents an
electrostatic potential, i.e. one considers charged BH solutions. Similarly, a magnetic field
could be turned on through the spatial components of 𝐴𝜇.

Holographic entanglement entropy

The entanglement entropy for a boundary region 𝒜 of a 𝑑-dimensional CFT on IR1,𝑑−1 can be
calculated holographically as

𝑆HEE =
Area(𝛾𝒜)

4𝐺
(𝑑+1)
𝑁

. (3.31)

The gravitational dual represents the area of the minimal surface in the bulk, which shares the
boundary with 𝒜. This concept, introduced in [54, 55], allows to study properties of strongly
coupled field theories and to characterize phase transitions. Furthermore, deep connections
between the emergence of spacetime itself and the entanglement of underlying quantum degrees
of freedom are conjectured (see e.g. [56, 57]). We will give a detailed introduction in chapter 5
and apply this method to our holographic model.



4 Holographic model

This chapter contains our calculations of the holographic model at finite temperature and net
baryon density. We use a EMd model, which was originally developed in [21]. This work was
based on an adjustment to preliminary lattice data, which are quantitatively different to the
most recent and consistent lattice QCD results in [11, 12]. The position for the CEP in [21]
is thus not reliable any more and one aim of this thesis is to update the CEP coordinates.
We also remark, that the original model was extended in [58], where dynamical effects have
been considered. In [59–61], the bottom-up approach was adjusted to recent lattice data
and equilibration effects and transport phenomena were analyzed. However, the structure of
the phase diagram and updated CEP position were not yet addressed. We investigate these
properties in this chapter. There is also plenty of related work, e.g. in [62–67], which use
versions of the original model or similar approaches. Since these works adjust their model to
a meson spectrum to explore diverse properties, they are not of relevance for analyses in this
chapter. See also [68] for a study of the effect of a magnetic field on the QCD thermodynamics
in a holographic approach.
Below, we first review the setup of the EMd model in section 4.1. The discussion follows [21]
and [59]. The adjustment to the recent lattice data is described in section 4.2 and we discuss
our result for the CEP and structure of the phase diagrams in section 4.3, based on [1].

4.1 Review of the holographic EMd model

The 5-dimensional EMd model is based on the action

𝑆 =
1

2𝜅25

∫︁
d5𝑥

√
−𝑔
(︂
𝑅− 1

2
𝜕𝜇𝜑𝜕𝜇𝜑− 𝑉 (𝜑) − 𝑓(𝜑)

4
𝐹 2

)︂
, (4.1)

where 𝑅 is the Ricci scalar as the Einstein-Hilbert part and 𝑉 (𝜑) is a potential describing the
self-interaction of the real scalar (dilaton) 𝜑. The field strength tensor 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇 with
the Abelian gauge field𝐴𝜇𝑑𝑥

𝜇 = Φ𝑑𝑡 is coupled to the dilaton via a dynamical strength function
𝑓(𝜑) (also called gauge kinetic function). 𝜅5 is the 5-dimensional gravitational constant and 𝑔
represents the determinant of the metric 𝑔𝜇𝜈 . The dilaton potential breaks conformal invariance
and thus mimics the effect of a running coupling constant as in QCD, while the 𝐹 2 term
introduces a chemical potential through the holographic dictionary. We do not perform a
renormalization procedure on the action itself and consider only classical equations of motion

25
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(EoM). As discussed in [21, 59], a boundary term, counterterms or a Chern-Simons term are
not necessary in this context. The EoM for the action (4.1) follow from

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 𝑇𝜇𝜈 , (4.2)

∇𝜇 [𝑓(𝜑)𝐹 𝜇𝜈 ] = 0, (4.3)

∇𝜇∇𝜇𝜑 =
𝜕𝑉 (𝜑)

𝜕𝜑
+

1

4

𝜕𝑓(𝜑)

𝜕𝜑
𝐹 2, (4.4)

where the energy-momentum tensor is given by

𝑇𝜇𝜈 =
1

2

[︂
𝜕𝜇𝜑𝜕𝜈𝜑− 1

2
𝑔𝜇𝜈𝜕𝛼𝜑𝜕

𝛼𝜑− 𝑔𝜇𝜈𝑉 (𝜑)

]︂
+
𝑓(𝜑)

2

[︂
𝐹𝜇𝛼𝐹

𝛼
𝜈 − 1

4
𝑔𝜇𝜈𝐹

2

]︂
. (4.5)

Demanding an asymptotical AdS space for vanishing scalar, one has

𝑉 (𝜑 = 0) ≡ 2Λ = −12

𝐿2
, (4.6)

where 𝐿 is the AdS length scale. The cosmological constant Λ is thus implicitly contained in the
third term of the energy-momentum tensor. The explicit forms of 𝑉 (𝜑) and 𝑓(𝜑) are specified
in the next section such that thermodynamic results are in agreement with lattice data. We
consider the coordinates (𝑡, �⃗�, 𝑟) with 𝑟 as the holographic coordinate and the following metric
ansatz

d𝑠2 = e2𝐴(𝑟)
(︀
−ℎ(𝑟) d𝑡2 + d�⃗� 2

)︀
+

e2𝐵(𝑟)

ℎ(𝑟)
d𝑟2. (4.7)

The boundary of the asymptotical AdS space is located at 𝑟 → ∞, and a black hole horizon is
located at 𝑟 = 𝑟𝐻 , defined by a simple zero of the blackness function ℎ(𝑟). Only the dynamics
in the bulk direction is assumed, i.e. the dilaton and the zero-component of the gauge field
(which is essentially the electrostatic potential) depend only on the radial coordinate:

𝜑 = 𝜑(𝑟), Φ = Φ(𝑟). (4.8)

The field equations and EoM then follow as

𝐴′′ − 𝐴′𝐵′ +
1

6
𝜑′2 = 0, (4.9)

ℎ′′ + (4𝐴′ −𝐵′)ℎ′ − e−2𝐴 𝑓(𝜑)Φ′2 = 0, (4.10)

Φ′′ + (2𝐴′ −𝐵′)Φ′ +
d ln 𝑓(𝜑)

d𝜑
𝜑′Φ′ = 0, (4.11)

𝜑′′ +

(︂
4𝐴′ −𝐵′ +

ℎ′

ℎ

)︂
𝜑′ − e2𝐵

ℎ

(︂
𝜕𝑉 (𝜑)

𝜕𝜑
− 1

2
e−2𝐴−2𝐵 Φ′2𝜕𝑓(𝜑)

𝜕𝜑

)︂
= 0, (4.12)

ℎ(24𝐴′2 − 𝜑′2) + 6𝐴′ℎ′ + 2 e2𝐵 𝑉 (𝜑) + e−2𝐴 𝑓(𝜑)Φ′2 = 0 (4.13)
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(the prime means a derivative w.r.t. 𝑟). 18 By integrating Eq. (4.11), it follows that there is a
Gauss charge

𝑄𝐺(𝑟) = 𝑓(𝜑) e2𝐴−𝐵 Φ′, (4.14)

which is radially conserved: d𝑄𝐺/ d𝑟 = 0. 19

The following near-boundary asymptotics in powers of e−𝛼(𝑟) ≡ exp[− 𝑟

𝐿
√

ℎ∞
0

−𝐴∞
0 ] are valid [21]:

ℎ(𝑟) = ℎ∞0 + · · · , (4.15)

𝐴(𝑟) = 𝛼(𝑟) + · · · , (4.16)

Φ(𝑟) = Φ∞
0 + Φ∞

2 e−2𝛼(𝑟) + · · · , (4.17)

𝜑(𝑟) = 𝜑𝐴 e−(4−Δ)𝛼(𝑟) +𝜑𝐵 e−Δ𝛼(𝑟) + · · · . (4.18)

In line with the AdS/CFT formalism, the expansion of 𝜑 assumes the boundary expansion of
the potential

𝐿2𝑉 (𝜑) = −12 +
1

2
[∆(∆ − 4)]𝜑2 + · · · for 𝜑→ 0, (4.19)

where ∆ is the scaling dimension of the field theory operator dual to the scalar 𝜑 with mass
𝑚2𝐿2 = ∆(∆ − 4). 20 In the far from horizon asymptotics (4.18), 𝜑𝐴 is the source and 𝜑𝐵 the
expectation value of the dual boundary theory operator.

For the calculation of thermodynamic quantities we choose the gauge �̃�(𝑟) = 0, where the
tilde denotes functions and coordinates associated with this gauge. The ansätze take the form

d𝑠2 = e2𝐴(𝑟)
(︁
−ℎ̃(𝑟) d𝑡 2 + d⃗̃𝑥 2

)︁
+

d𝑟2

ℎ̃(𝑟)
, 𝜑 = 𝜑(𝑟), 𝐴𝜇 d�̃�𝜇 = Φ̃(𝑟) d𝑡. (4.20)

The boundary expansions in this gauge are [21]:

ℎ̃(𝑟) = 1 + · · · , (4.21)

𝐴(𝑟) =
𝑟

𝐿
+ · · · , (4.22)

Φ̃(𝑟) = Φ̃∞
0 + Φ̃∞

2 e−2𝑟/𝐿 + · · · , (4.23)

𝜑(𝑟) = e−(4−Δ)𝑟/𝐿 + · · · . (4.24)

To express all quantities in the original coordinates (𝑡, �⃗�, 𝑟), one sets d𝑠2 = d𝑠2, 𝜑(𝑟) = 𝜑(𝑟)

18Only the first four equations are independent: Eq. (4.13) is the zero-energy constraint and its derivative can
be expressed by the other equations.

19There is also a radially conserved Noether charge 𝑄𝑁 (𝑟) = e2𝐴−𝐵 [e2𝐴 ℎ′ − 𝑓(𝜑)ΦΦ′], which however is not
important for our purposes. Using Eqs. (4.11) and Eq. (4.10) is then equivalent to d𝑄𝑁/d𝑟 = 0.

20These boundary asymptotics correspond to a relevant operator with scaling dimension Δ < 4 in the boundary
theory. An example for different potential asymptotics associated to a marginal operator is given in [69].
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and 𝐴𝜇 d𝑥𝜇 = 𝐴𝜇 d�̃�𝜇. By comparing the boundary asymptotics, this implies [21, 59]

𝑡 = 𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0 𝑡, ⃗̃𝑥 = 𝜑

1/(4−Δ)
𝐴 �⃗�,

𝑟

𝐿
= 𝛼(𝑟) − ln

(︁
𝜑
1/(4−Δ)
𝐴

)︁
, (4.25)

ℎ̃(𝑟) =
ℎ(𝑟)

ℎ∞0
, 𝐴(𝑟) = 𝐴(𝑟) − ln

(︁
𝜑
1/(4−Δ)
𝐴

)︁
, Φ̃(𝑟) =

Φ(𝑟)

𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

(4.26)

and specifically (from the last relation)

Φ̃∞
0 =

Φ∞
0

𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

, Φ̃∞
2 =

Φ∞
2

𝜑
3/(4−Δ)
𝐴

√︀
ℎ∞0

. (4.27)

The thermodynamic quantities temperature 𝑇 , entropy density 𝑠, baryo-chemical potential 𝜇
and baryon density 𝑛 are now obtained as [21, 59]

𝑇 =
κ
2𝜋

=
e𝐴(𝑟𝐻)

4𝜋

dℎ̃

d𝑟

⃒⃒⃒⃒
𝑟𝐻

=
1

𝐿

1

4𝜋𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

, (4.28)

𝑠 =
1

𝑉

𝐴𝐻

4𝐺
(5)
𝑁

=
2𝜋

𝜅25
e3𝐴(𝑟𝐻) =

1

𝜅25

2𝜋

𝜑
3/(4−Δ)
𝐴

, (4.29)

𝜇 =
1

𝐿
lim
𝑟→∞

Φ̃(𝑟) =
Φ̃∞

0

𝐿
=

1

𝐿

Φ∞
0

𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

, (4.30)

𝑛 = lim
𝑟→∞

𝜕ℒ
𝜕(𝜕𝑟Φ̃)

= −Φ̃∞
2

𝜅25
= − 1

𝜅25

Φ∞
2

𝜑
3/(4−Δ)
𝐴

√︀
ℎ∞0

. (4.31)

The temperature and entropy density follow from the black hole thermodynamics according
to Bekenstein-Hawking (κ is the surface gravity and 𝐴𝐻 the event horizon area) while 𝜇 and
𝑛 are given by the holographic dictionary.
Numerical solutions to the EoM are obtained by integrating Eqs. (4.9)-(4.12) from 𝑟𝐻 + 𝜖

towards the boundary at 𝑟 → ∞. We choose 𝜖 = 𝒪(10−6) to avoid the horizon as the singular
point and set 𝑟𝐻 = 0 (which is allowed by rescaling the 𝑟-coordinate). To determine the initial
conditions at this point minimally above the horizon, a Taylor series 𝑋(𝑟) =

∑︀∞
𝑛=0𝑋𝑛(𝑟−𝑟𝐻)𝑛

for any of the fields ℎ,𝐴,Φ, 𝜑 is plugged into the Eqs. (4.9)-(4.13) and every power of 𝜖 in the
resulting equations is set to zero. The following assumptions are are valid for this purpose: 21

ℎ0 = 0, ℎ1 = 1/𝐿, 𝐴0 = 0, Φ0 = 0. (4.32)

As a consequence, a solution to the field equations is fully specified by 𝜑0 ≡ 𝜑(𝑟𝐻) and
Φ1 ≡ 𝜕Φ

𝜕𝑟

⃒⃒
𝑟𝐻

as the only free parameters. Plugging the horizon expansion up to first order in the
constraint equation (4.13) yields 𝐴1 = −𝐿

6
[2𝑉 (𝜑0) + 𝑓(𝜑0)Φ

2
1]. Demanding an asymptotically

21As explained in [21, 59], the first condition follows from the definition of the horizon as a simple zero,
ℎ(𝑟𝐻) ≡ 0, and ℎ1 = 1/𝐿 is achieved by rescaling 𝑡. Similarly, 𝐴0 = 0 is obtained by rescaling (𝑡, �⃗�). Φ0 = 0
is necessary for a well-defined integration measure Φd𝑡 at the horizon.
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AdS space requires 𝐴1 > 0. Taking into account 𝑉 (𝜑0) < 0 and 𝑓(𝜑0) > 0, it follows that
Φ1 is bounded from above as Φ1 < Φ𝑚𝑎𝑥

1 ≡
√︁

−2𝑉 (𝜑0)
𝑓(𝜑0)

. Applying the horizon expansion
to the Gauss charge (4.14) gives 𝑄𝐺(𝑟𝐻) = 𝑓(𝜑0)Φ1, while the value at the boundary is
𝑄𝐺(𝑟 → ∞) = −2𝑓(0)Φ∞

2 /
√︀
ℎ∞0 from (4.17). The conservation law implies

Φ∞
2 = −

√︀
ℎ∞0

2𝑓(0)
𝑓(𝜑0)Φ1. (4.33)

Computationally, we employed the horizon expansion up to fifth order and solved the field
equations (4.9)-(4.12) using the function odeint implemented in python. The values for
ℎ∞0 , 𝜑𝐴 and Φ∞

0 are extracted by fitting the numerical solutions to the boundary behavior in
Eqs. (4.15)-(4.18) at large 𝑟. At intermediate steps, we set 𝜅5 = 𝐿 = 1 and restore afterwards
physical units by introducing dimensional scaling factors 𝜆𝑇,𝑠,𝜇,𝑛 as in [21, 58]. The scaling
factors satisfy 𝜆𝑇 = 𝜆𝜇 := 1/𝐿 and 𝜆𝑠 = 𝜆𝑛 := 1/𝜅25 and accommodate the only two scales
𝐿 and 𝜅5 appearing in the action (4.1). Together with Eq. (4.33), our final formulas for the
thermodynamic quantities thus take the form

𝑇 = 𝜆𝑇
1

4𝜋𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

, (4.34)

𝑠 = 𝜆𝑠
2𝜋

𝜑
3/(4−Δ)
𝐴

, (4.35)

𝜇 = 𝜆𝜇
Φ∞

0

𝜑
1/(4−Δ)
𝐴

√︀
ℎ∞0

, (4.36)

𝑛 = 𝜆𝑛
𝑓(𝜑0)Φ1

2𝑓(0)𝜑
3/(4−Δ)
𝐴

. (4.37)

Based on this setup, the 𝑇−𝜇 plane is uncovered with suitably chosen initial conditions (𝜑0,Φ1).
From the thermodynamic laws, the pressure follows by integrating 𝑑𝑝(𝑇, 𝜇) = 𝑠(𝑇, 𝜇)𝑑𝑇 +

𝑛(𝑇, 𝜇)𝑑𝜇, with 𝑝(0, 0) = 0 and 𝑇 = 0, 𝜇 = 0 correspond to 𝜑0 → ∞,Φ1 = 0. (Details of that
integral are discussed in the next sections.)

4.2 Adjustment to lattice QCD data at 𝜇 = 0

The holographic model introduced in the previous section is supplemented by a specific form
of the dilaton potential 𝑉 (𝜑) and the gauge kinetic function 𝑓(𝜑). This bottom-up approach
is adjusted to lattice QCD data at 𝜇 = 0. Proper engineering of 𝑉 (𝜑) determines the EoS at
𝜇 = 0 and the phase transition type - in particular it allows to incorporate a FOPT (as for
pure glue dynamics or QCD in the chiral limit(s)) or a crossover (as for 2+1 flavor QCD with
physical quark masses). We refer to [3, 71, 72] for recent discussions and to [69, 73–77] for
original investigations.
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Figure 4.1: Equation of state of the updated holographic EMd model with parametrizations
(4.38)-(4.40) as functions of 𝑇 for 𝜇 = 0: scaled entropy density (top left), speed of sound
squared 𝑣2𝑠 = 𝜕 ln𝑇

𝜕 ln 𝑠 (top right), scaled pressure (bottom left) and scaled trace anomaly
(bottom right). Lattice results from [11] are displayed as symbols with error bars. Figure
from [1].

We found the following dilaton potential by a fit of the scaled entropy density 𝑠/𝑇 3 to the
lattice data

𝐿2𝑉 (𝜑) =

⎧⎨⎩−12 exp
{︀

𝑎1
2
𝜑2 + 𝑎2

4
𝜑4
}︀

: 𝜑 < 𝜑𝑚

𝑎10 cosh [𝑎4(𝜑− 𝑎5)]
𝑎3/𝑎4 exp

{︁
𝑎6𝜑+ 𝑎7

𝑎8
tanh [𝑎8(𝜑− 𝑎9)]

}︁
: 𝜑 ≥ 𝜑𝑚

(4.38)

with parameters

𝜑𝑚 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

1.7058 0.2840 -0.0089 0.7065 0.4951 0.1761
,

𝑎6 𝑎7 𝑎8 𝑎9 𝑎10

-0.0113 -0.4701 2.1420 4.3150 -10.0138
,

(4.39)
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Figure 4.2: Left panel: Dilaton potential 𝐿2𝑉 (4.38) with coefficients (4.39) as a function
of the initial conditions 𝜑0 for the adjustment to lattice QCD data at 𝜇 = 0. Right panel:
Coupling function 𝑓 (4.44) (blue curve) with coefficients (4.45), temperature 𝑇 (orange
curve) and scaled entropy density 𝑠/𝑇 3 (green curve) as a function of the initial conditions
𝜑0. The values of 𝑓 and 𝑇 are scaled for a suitable representation.
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Figure 4.3: Second-order susceptibility 𝜒2/𝑇
2 (left panel) and fourth-order susceptibility

𝜒4 (right panel) of the updated holographic EMd model with parametrizations (4.38)-(4.40)
as function of 𝑇 for different values of the chemical potential 𝜇. Lattice results from [70] are
displayed as symbols with error bars. Figure from [1].

implying ∆ = 2(1 +
√

1 − 3𝑎1) and the scaling factors

𝜆𝑇 = 𝜆𝜇 𝜆𝑠 = 𝜆𝑛

1148.07 MeV (513.01 MeV)3
. (4.40)

We set Φ1 = 0 to numerically generate charged black hole solutions with initial conditions
𝜑0 ∈ [0.35, 5.0] at 𝜇 = 0. The resulting equation of state is exhibited in Fig. 4.1. The lattice
QCD results of [11] are consistent with the data in [12]; we select the tabulated results of [11]
for the fit procedure and comparison.
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The parameters (4.39) represent the best fit values that allow the most precise description of
available lattice data within our model. In more detail, the parameters 𝑎1 and 𝑎2 of the dilation
potential 𝑉 (𝜑) for small 𝜑0 are used to mimic the asymptotic behavior near the boundary.
The parameters 𝑎3-𝑎5 determine the thermodynamic behavior at large temperatures 𝑇 . The
exponential term with parameter 𝑎6 dominates at large 𝜑0, i.e. at low 𝑇 . The parameters 𝑎7-𝑎9
modulate this asymptotics and are relevant to incorporate the crossover, e.g. the minimum of
the speed of sound. Together, the parametrization (4.38) of 𝑉 (𝜑) represents a monotonically
decreasing function that avoids singular points as shown in Fig. 4.2 (left panel). The right
panel in Fig. 4.2 shows the temperature and scaled entropy density as a function of the initial
conditions 𝜑0 (orange and green curves). Both functions are monotonically decreasing and
the limit 𝑇 → 0 corresponds to 𝜑0 → ∞. In appendix A we elaborate further details of this
dilaton potential.

The pressure in the lower left panel in Fig. 4.1 is calculated from the thermodynamic relations
as an integral over the entropy density w.r.t. the temperature. This is actually a pressure
difference, similar to the discussion in [59], since the lower bound 𝑇𝑙𝑜𝑤 of the integral is finite:

𝑝(𝑇, 𝜇 = 0) ≈ ∆𝑝(𝑇, 𝜇 = 0) = 𝑝(𝑇, 𝜇 = 0) − 𝑝(𝑇𝑙𝑜𝑤, 𝜇 = 0) =

∫︁ 𝑇

𝑇𝑙𝑜𝑤

d𝑇 𝑠(𝑇 , 𝜇 = 0). (4.41)

In our work, we put 𝑇𝑙𝑜𝑤 = 44 MeV and the considered phase diagrams in the next section are
for temperatures larger than 0.5𝑇𝐶𝐸𝑃 = 56 MeV. By choosing even smaller values for 𝑇𝑙𝑜𝑤,
we checked that our value for 𝑇𝑙𝑜𝑤 gives stable results in the relevant temperature range and
thus the approximation is adequate. (The integrals converge quickly to the same values.) The
interaction measure 𝐼 then follows as 𝐼 = 𝜖− 3𝑝 = 𝑠𝑇 − 4𝑝 for 𝜇 = 0.

The holographic model is completed by fixing 𝑓(𝜑). This is done by adjusting the EMd
model to the quark number susceptibility from lattice QCD data. Susceptibilities are im-
portant fluctuation measures and defined as derivatives of the pressure, 𝜒𝑖(𝑇, 𝜇) ≡ 𝜕𝑖𝑝(𝑇,𝜇)

𝜕𝜇𝑖

⃒⃒⃒
𝑇
,

𝑖 = 2, 3, 4, · · · . Odd susceptibilities 𝜒3,5,··· vanish by CP invariance only at 𝜇 = 0. An explicit
formula for 𝜒2 at 𝜇 = 0 follows from the definition

𝜒2(𝑇, 𝜇 = 0) = lim
𝜇,𝛿→0

𝑛(𝑇, 𝜇+ 𝛿) − 𝑛(𝑇, 𝜇)

𝛿
= lim

𝜇→0

𝑛(𝑇, 𝜇)

𝜇
. (4.42)

As outlined in [21, 59], the result can easily be derived from the relations (4.34)-(4.37) and
contains only information of the functions at vanishing chemical potential. The equation for
the dimensionless ratio 𝜒2/𝑇

2 allows the matching of 𝑓(𝜑) to lattice data and reads

𝜒2(𝑇, 𝜇 = 0)

𝑇 2
=

𝐿

16𝜋2𝑓(0)

𝑠

𝑇 3

1∫︀∞
𝑟𝐻

d𝑟 e
−2𝐴(𝑟)

𝑓(𝜑(𝑟))

. (4.43)
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We use the following ansatz for 𝑓(𝜑) in (4.43) to fit 𝜒2/𝑇
2 to lattice data in [70]

𝑓(𝜑) = 𝑐0 + 𝑐1 tanh [𝑐2(𝜑− 𝑐3)] + 𝑐4 exp [−𝑐5𝜑] (4.44)

with parameters

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

0.1892 -0.1659 1.5497 2.1820 0.6219 112.7136
. (4.45)

Fig. 4.3 shows the resulting susceptibilities at 𝜇 = 0 (blue curves). The last term 𝑐4 e−𝑐5𝜑

in Eq. (4.44) with 𝑐5 ≈ 100 as fit parameter is a delta function like contribution and puts
significantly weight for 𝜑→ 0, i.e. for large values of 𝑟 near the boundary. Hence, the integrand
in Eq. (4.43) is continuously changed and the last term in 𝑓(𝜑) has the overall effect similar
to a normalization factor for 𝜒2/𝑇

2, which allows to circumvent additional independent scales
𝜆𝜇 and 𝜆𝑛 as in [21, 58]. Since the initial conditions in our phase diagrams are chosen for
𝜑0 > 0.35, the last term in 𝑓(𝜑) is highly suppressed in this range and the thermodynamic
behavior is dominated by the tanh-term in (4.44) (see blue curve in the right panel of Fig. 4.2).
As outlined in [1], the fourth-order susceptibility 𝜒4 is calculated by applying smoothed spline
derivatives w.r.t. 𝑛(𝜇, 𝑇 = const) curves. The robustness of this numerical procedure was
verified for different smoothing conditions. Results for 𝜒2/𝑇

2 at finite 𝜇 are obtained similarly
without smoothing technique. The adjustment of 𝜒2/𝑇

2 in the left panel of Fig. 4.3 to the
lattice data represents an input, while the values for 𝜒4 in the right panel are the result of
the holographic EMd model. Since both functions are in very good agreement within lattice
uncertainties, one may be confident to transport the information from 𝜇 = 0 to finite chemical
potential and to make robust predictions within the framework of this holographic EMd model
based on the concrete realization described in this section.

4.3 Holographic QCD phase diagrams

In this section, we describe the results of the holographic EMd model at finite chemical poten-
tial and density. The initial conditions for the numerical generation of charged BH solutions
are 𝜑0 ∈ [0.35, 4.5] and Φ1/Φ

𝑚𝑎𝑥
1 (𝜑0) ∈ [0, 0.755]. These input values uncover the 𝑇−𝜇 plane

as shown in Fig. 4.4. Numerically generated BH solutions are represented by dots. The colors
indicate the sign of the determinant of the susceptibility matrix

𝐽 ≡ det𝒮 =
𝜕(𝑠, 𝑛)

𝜕(𝑇, 𝜇)
=
𝜒2𝐶𝑛

𝑇
. (4.46)

The last equality follows from standard thermodynamic relations (𝐶𝑛 is the heat capacity at
constant baryon density) and shows that negative values for 𝐽 correspond to thermodynami-
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Figure 4.4: Initial conditions for numerically charged black hole solutions (left panel) and
resulting location in the 𝑇−𝜇 plane (right panel, excerpt). Red dots represent black hole
solutions with a positive sign of the determinant 𝐽 in (4.46), while green dots mark a negative
sign. Curves of constant 𝜑0 and Φ1/Φ

𝑚𝑎𝑥
1 are connected by thin lines.

cally unstable solutions (green dots in Fig. 4.4) whereas thermodynamically stable phases have
𝐽 > 0 (red dots in Fig. 4.4). The determinant (4.46) is calculated by a finite difference approx-
imation as in [21] and allows a rough approximation for the CEP position: The green dots
in the right panel of Fig. 4.4 indicate an unstable branch with multivalued thermodynamic
functions that terminates in a CEP at about 𝑇𝐶𝐸𝑃 ≈ 110 MeV and 𝜇𝐶𝐸𝑃 ≈ 600 MeV.

To determine the phase structure, we need to identify initial conditions (𝜑0,Φ1), which result
in constant temperatures (but are functions of the other thermodynamic quantities 𝑠, 𝜇 and
𝑛). We do so by generating contour plots of constant temperature in the (𝜑0,Φ1) plane with
a relatively small number of numerical BH solutions. These curves are unique and used as
an approximate input for a minimization algorithm that determines the initial conditions for
𝑇 = const curves with an accuracy of 10−8 MeV. On every 𝑇 = const line (which we displace
in steps of 1 MeV), we calculate the pressure (as the relevant thermodynamic potential) as an
integral over the baryon density w.r.t. the chemical potential:

𝑝(𝑇 = const, 𝜇) =

∫︁ 𝜇

0

d�̄� 𝑛(𝑇 = const, �̄�) + 𝑝(𝑇 = const, 𝜇 = 0). (4.47)

The integration constant 𝑝(𝑇 = const, 𝜇 = 0) is taken from the previous calculation at 𝜇 = 0

in (4.41) and no further approximation is necessary here. In case of a FOPT at 𝑇 < 𝑇𝐶𝐸𝑃 ,
the baryon density as a function of the chemical potential, i.e. 𝑛(𝜇, 𝑇 = const), is multivalued
(S shape) and thus the pressure exhibits a typical loop. Then, the critical chemical potential
𝜇𝑐, where the FOPT takes place, can be uniquely determined by the thermodynamic stability
criterion (stable phases are those with highest pressure) as the intersection point of the low-
temperature and high-temperature pressure branches. We can also simply identify unstable
and metastable phases by this procedure.
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Figure 4.5: Contour plots of scaled pressure (top left), scaled entropy density (top right),
scaled baryon density (bottom left), and entropy-to-baryon ratio (bottom right) over the
scaled 𝑇 − 𝜇 plane for the updated holographic EMd model. The position of the CEP is
marked by a white dot and the FOPT curve is displayed as grey line. Figure from [1].

This construction results in the phase diagram in Fig. 4.5, where quantities in the thermody-
namically stable phase are shown in several variants over the 𝑇−𝜇 plane. The position of the
CEP is

𝑇𝐶𝐸𝑃 = (111.5 ± 0.5) MeV and 𝜇𝐶𝐸𝑃 = (611.5 ± 0.5) MeV. (4.48)

The uncertainties are determined by the numerical calculation of lines of 𝑇 = const as dis-
cussed above and similarly also for 𝜇 = const. The FOPT curve is signaled by a kinky behavior
of the pressure (top left panel) and a discontinuous jump of the entropy density (top right
panel), baryon density (bottom left panel) and entropy-to-baryon ratio (bottom right panel).
More precisely, the entropy and baryon density jump towards larger values across the FOPT
curve with increasing temperature or chemical potential, whereas the entropy-to-baryon ratio
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Figure 4.6: Left panel: Contour plot of entropy-to-baryon ratio over the 𝑇/𝑇𝐶𝐸𝑃 −
log(𝑛/𝑇 3

𝐶𝐸𝑃 ) plane for the updated holographic EMd model. The coexistence region is
shown in grey. White regions indicate areas that are beyond the range of the colorbar.
Right panel: Critical pressure 𝑝𝑐 = 𝑝(𝑇, 𝜇𝑐(𝑇 )) for the updated holographic EMd model.
Figure from [1].

is pushed towards smaller values. Similar to the scaled entropy density and baryon density,
the scaled pressure in Fig. 4.5 is increasing in 𝜇-direction and the highlighted contour curves in
this panel can be interpreted as scaled isobars, 𝑝/𝑇 4 = const. Contour curves in the 𝑠/𝑛-panel
represent isentropes. In heavy-ion collisions, these represent paths of matter (gas or fluid)
elements during the expansion, which is assumed to be adiabatic. The entropy-to-baryon ratio
is decreasing towards finite values of 𝜇.

The FOPT can further be specified as a gas-liquid (GL) one by the following observations:
A comparison of the entropy-to-baryon ratios 𝑠/𝑛 on both sides of a point on the FOPT
curve gives 𝑠/𝑛|− > 𝑠/𝑛|+, where the label −(+) means approaching the FOPT curve from
the left/dilute (right/dense) side. As emphasized in [1], this implies that the critical pres-
sure 𝑝𝑐(𝑇 ) = 𝑝(𝑇, 𝜇𝑐(𝑇 )) increases with temperature (see right panel in Fig. 4.6) because the
Clausius-Clapeyron relation

d𝑝𝑐(𝑇 )

d𝑇
=

(︂
𝑠

𝑛

⃒⃒⃒⃒
−
− 𝑠

𝑛

⃒⃒⃒⃒
+

)︂(︂
1

𝑛

⃒⃒⃒⃒
−
− 1

𝑛

⃒⃒⃒⃒
+

)︂
> 0 (4.49)

implies a positive slope of the curve 𝑝(𝑇, 𝜇𝑐(𝑇 )) as a function of 𝑇 . Furthermore, the FOPT
curve is steeper than neighboring isobars. Both features are characteristic for a GL FOPT.

The quark number susceptibility at finite 𝜇 is another important quantity that probes the CEP.
As exhibited in Fig. 4.3 (green and red curves in the left panel), 𝜒2/𝑇

2 is pushed towards larger
values with increasing chemical potential. At the CEP, an evolving maximum is transformed
into a divergence.
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The left panel in Fig. 4.6 elucidates the behavior of the isentropes as paths of adiabatically
expanding and cooling pieces of matter in the 𝑇 − log 𝑛 plane. Isentropes enter the coexistence
region on the deconfined/dense side and leave the FOPT curve on the confined/dilute side
at lower temperature. Inside the two-phase coexistence region, which is depicted by a grey
region, isentropes can be constructed by the lever rule, but are not displayed here. A detailed
discussion of different FOPT types is presented in [78]. According to the nomenclature therein,
the holographic EMd model is classified as type IA and represents a GL phase transition. We
also calculated the phase diagram for the original model in [21] and found only incoming
isentropes. This shows that the general structure of the phase diagram is dependent and
rather sensitive on the concrete adjustment to lattice QCD data at 𝜇 = 0.
The equation of state for different values of the baryo-chemical potential is explicitly shown
in Fig. 4.7. The scaled pressure (top left panel), interaction measure (top right panel) and
scaled entropy density (bottom right panel) are pushed towards higher values with increasing
chemical potential. Here, the pressure at finite values of 𝜇 is calculated by Eq. (4.47) for a
given value of 𝑇 ; the interaction measure then follows as

𝐼(𝑇, 𝜇) = 𝜖(𝑇, 𝜇) − 3𝑝(𝑇, 𝜇) = 𝑇𝑠(𝑇, 𝜇) + 𝜇𝑛(𝑇, 𝜇) − 4𝑝(𝑇, 𝜇). (4.50)

In particular, the maxima of the scaled interaction measure are attained for lower temperatures
at larger values of 𝜇. For 𝜇 ≥ 𝜇𝐶𝐸𝑃 , both the scaled interaction measure and scaled entropy
density jump across the FOPT. The bottom left panel in Fig. 4.7 shows the sound velocity
squared 𝑣2𝑠 for different values of the chemical potential 𝜇. The following relation holds

𝑣2𝑠(𝑇, 𝜇 = const) ≡ d𝑝

d𝜖

⃒⃒⃒⃒
𝜇

=

(︃
𝑇

𝑠

𝜕𝑠(𝑇, 𝜇)

𝜕𝑇

⃒⃒⃒⃒
𝜇

+
𝜇

𝑠

𝜕𝑛(𝑇, 𝜇)

𝜕𝑇

⃒⃒⃒⃒
𝜇

)︃−1

, (4.51)

where d𝑝 = 𝑠 d𝑇 + 𝑛 d𝜇 and d𝜖 = 𝑇 d𝑠 + 𝜇 d𝑛 follow from the first law of thermodynamics.
For 𝜇 = 𝜇𝐶𝐸𝑃 , the sound velocity squared drops to zero, as typical for a second-order phase
transition (cf. [80]). The holographic results are in reasonable agreement with lattice data
at finite values of 𝜇 from [79] (shown as red symbols in Fig. 4.7) and support the described
qualitative behavior. 22

In Fig. 4.8 (left panel), the holographic result for isentropes of constant 𝑠/𝑛 is explicitly com-
pared to lattice QCD results [81] in the 𝑇 −𝜇 plane. The lattice data at finite values of
𝜇 are extrapolated from analytical calculations, i.e. a Taylor expansion in powers of 𝜇/𝑇 is
performed, where the coefficients in [81] are calculated at 𝜇 = 0 up to sixth order. The holo-
graphic result describes well the pattern of isentropes at small 𝜇 but seems to deviate for larger
values of 𝜇. We however remark that the calculations performed in [81] involve some bound-

22We point out that the available lattice data in [79] are not identical to the most recent data in [11, 12]. The
latter however do not include similar curves for fixed finite values 𝜇. We thus use the data from [79] for a
comparison in Fig. 4.7.
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Figure 4.7: Equation of state of the updated holographic EMd model as functions of 𝑇 for
𝜇 = 0 and 𝜇 > 0: scaled pressure (top left), scaled trace anomaly (top right), speed of sound
squared (bottom left) and scaled entropy density (bottom right). Lattice results from [11]
for 𝜇 = 0 are displayed as black symbols with error bars and lattice data from [79] for finite
values of 𝜇 are shown as red symbols with error bars.

ary conditions w.r.t. charge densities that we do not take into account in the EMd model.
A direct comparison of lattice and holographic results might thus not be fully appropriate
in this context. In addition, we stress that lattice data are only available for temperatures
above 130 MeV. Hence, a comparison of the isentrope pattern at low temperatures and in
the eventual CEP region is not possible. Results of a hadron resonance gas model in [81] do
not seem to support the “outgoing” isentrope behavior at lower 𝑇 as discussed above. We
however emphasize that these findings are not (yet) supported by reliable lattice calculations
and therefore only represent model calculations and/or extrapolations.

To summarize the above results, we explored the QCD phase diagram within a holographic
EMd model, which is based on an adjustment to recent lattice QCD data at 𝜇 = 0 and then
transports the information to finite values of 𝜇. As just stated, there are no lattice data
available in the low-temperature regime 𝑇 . 100 MeV and the CEP (4.48) is located in a
temperature range near, but outside the range of lattice data for the EoS and susceptibilities.



4.3 Holographic QCD phase diagrams 39

0 100 200 300 400
µ [MeV ]

50

100

150

200

250

300
T

[M
eV

]

30
.0

51
.0

70
.0

94
.0144.0

420.0

s/n

40 60 80 100 120 140 160
T [MeV ]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

χ
2
(T
,µ

=
0)
/
T

2

type 1
type 2
type 3
WuBp lattice
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asymptotics for the susceptibility 𝜒2/𝑇

2 that are used to estimate the CEP accuracy.

For this reason, it is an important task to analyze the accuracy of the CEP position, i.e. the
uncertainties in the 𝑇𝐶𝐸𝑃 and 𝜇𝐶𝐸𝑃 coordinates that are consistent with lattice uncertainties.
We proceed twofold. First, we estimated that parameter variations in the order of 0.8 % for
the dilaton potential (4.39) and 3 % of the coupling function parameters (4.45) still provide a
good description of the EoS and 𝜒2,4 within the error band of the lattice results. 23 Second,
we assumed different generic low-temperature asymptotics for the quark number susceptibility
as shown in Fig. 4.8 (right panel). “type 1” corresponds to the best fit discussed above and
exhibits a nearly constant behavior for 𝜒2/𝑇

2 at low 𝑇 . For the “type 2”, 𝜒2/𝑇
2 is continued

to zero nearly linear, which is achieved by a modified parametrization of the coupling function
(4.44) at large 𝜑. For “type 3”, we additionally perform a Taylor expansion of the dilaton
potential (4.38) up to second order around 𝜑 ≈ 3.13 and use this series expansion for large
values of 𝜑, i.e. low temperatures 𝑇 . Taking different permutations of parameter variations
and low-temperature asymptotics into account, we find that 𝑇𝐶𝐸𝑃 is maximally varied in the
order of 5MeV and 𝜇𝐶𝐸𝑃 in the order of 50MeV. This corresponds to moderate changes of
approximately 5 % and 8 % respectively. Our final prediction for the CEP in the holographic
QCD phase diagram hence is

𝑇𝐶𝐸𝑃 = (112 ± 5) MeV and 𝜇𝐶𝐸𝑃 = (612 ± 50) MeV. (4.52)

We remark that types 2 and 3 of the additional asymptotics are accompanied with numerical
instabilities at large 𝜇. It is therefore not possible to study the effect of these asymptotics on
the structure of the phase diagram.

23Since there are multiple parameters, we do not consider individual parameter changes. Instead, we estimate
the maximal deviation by collectively decreasing or increasing the coefficients by the listed amount.





5 Entanglement Entropy

This chapter is devoted to the study of entanglement entropy in our holographic EMd model.
The main aim is to analyze the capability of entanglement entropy to characterize the different
structures in the QCD phase diagram. An introduction into the concept of entanglement
entropy as a widely used concept in quantum mechanics and QFT is given in section 5.1.
This discussion follows the reviews [82, 83] and [43, 84]. Here, we calculate the entanglement
entropy holographically, i.e. based on the gauge/gravity duality as outlined in section 5.2.
The resulting phase diagram is discussed in section 5.3 and compared to its thermodynamic
counterpart. Some aspects that quantify the critical behavior near the CEP are analyzed in
section 5.4. The discussion in these latter sections is based on [2].

5.1 General aspects of entanglement entropy

Entanglement is an unique property of quantum mechanical systems compared to classical
systems. In general, a quantum mechanical state is called entangled if it is inseparable. To
elaborate this definition in more detail, we first consider pure states. Assuming two systems
𝒜 and ℬ with Hilbert spaces ℋ𝒜 and ℋℬ, the total Hilbert space is the tensor product ℋ =

ℋ𝒜 ⊗ ℋℬ. States in ℋ𝒜 can be represented as |𝜓⟩𝒜 =
∑︀

𝑖 𝑐
𝒜
𝑖 |𝑖⟩𝒜, where {|𝑖⟩𝒜} is a basis in

ℋ𝒜 and similarly |𝜓⟩ℬ =
∑︀

𝑗 𝑐
ℬ
𝑗 |𝑗⟩ℬ for states in ℋℬ. A state |𝜓⟩𝒜ℬ =

∑︀
𝑖,𝑗 𝑐𝑖𝑗 |𝑖⟩𝒜 ⊗ |𝑗⟩ℬ in

ℋ is separable if the coefficients satisfy 𝑐𝑖𝑗 = 𝑐𝒜𝑖 𝑐
ℬ
𝑗 , otherwise the state would be inseparable

and thus entangled. An equivalent definition holds for mixed states (ensembles) w.r.t. the
separability of the density matrices of the subsystems.
The simplest example for an entangled pure state can be constructed from a two-qubit system
with Hilbert space ℋ = ℋ𝑞𝑢𝑏𝑖𝑡 ⊗ℋ𝑞𝑢𝑏𝑖𝑡 = lin{|00⟩ , |01⟩ , |10⟩ , |11⟩}. 24 Then, the superposition
1√
2
(|01⟩ − |10⟩) is a correlated state that cannot be separated into single qubit components

and hence the state is entangled.
An important non-local observable for the quantification of entanglement in pure states is
the entanglement entropy. Entanglement entropy can be used for several purposes, e.g. to
characterize phases, as an order parameter for phase transitions and as a measure of degrees
of freedom or quantum information in diverse physical systems. Some of these properties and
applications are discussed e.g. in [85–91]. For the definition of entanglement entropy we assume

24We use the common notation |𝑖⟩𝒜 ⊗ |𝑗⟩ℬ ≡ |𝑖𝑗⟩ here.
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Figure 5.1: Separation of a quantum mechanical system into a subsystem 𝒜 and its com-
plement ℬ for the definition of entanglement entropy. Typical examples include a spin chain
(left panel) and a spatial bipartitioning of a QFT at a constant time slice (right panel).
Figures adapted from [82] and [84].

a quantum mechanical system which is described by the density operator 𝜌𝑡𝑜𝑡 = |Ψ⟩ ⟨Ψ|, where
|Ψ⟩ is a pure state. The system is divided into a subsystem 𝒜 and its complement ℬ. An
illustration of this process for two examples is shown in Fig. 5.1. The entanglement entropy of
𝒜 is now defined as the von Neumann entropy

𝑆𝒜 := −Tr𝒜 𝜌𝒜 ln 𝜌𝒜 (5.1)

for the reduced density matrix 𝜌𝒜 = Trℬ 𝜌𝑡𝑜𝑡. While the von Neumann entropy for 𝜌𝑡𝑜𝑡 vanishes,
𝑆𝒜 can be nonzero and quantifies the entanglement or “quantumness” of the state.

In the aforementioned example of the two-qubit system, one can easily show that the separable
product state |Ψ⟩ = 1

2
(|1⟩𝒜 + |0⟩𝒜)⊗ (|1⟩ℬ + |0⟩ℬ) has vanishing entanglement entropy, 𝑆𝒜 = 0,

while the entangled state |Ψ⟩ = 1√
2
(|01⟩ − |10⟩) gives 𝑆𝒜 = ln 2.

Entanglement entropy obeys some important relations and properties that we want to discuss
in the following (without derivations). To begin with, entanglement entropy is not an extensive
quantity. This is implied by the relation

𝑆𝒜 = 𝑆ℬ, (5.2)

which is valid for the conditions mentioned above (e.g. for a ground state at zero tempera-
ture). For three non-interacting subsystems 𝒜, ℬ and 𝒞, the following strong subadditivity
inequalities are valid:

𝑆𝒜+ℬ+𝒞 + 𝑆ℬ ≤ 𝑆𝒜+ℬ + 𝑆ℬ+𝒞, (5.3)

𝑆𝒜 + 𝑆𝒞 ≤ 𝑆𝒜+ℬ + 𝑆ℬ+𝒞. (5.4)

Choosing the empty set for ℬ in (5.3) (and renaming 𝒞 → ℬ) yields the subadditivity relation

𝑆𝒜+ℬ ≤ 𝑆𝒜 + 𝑆ℬ, (5.5)
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which motivates the definition of the mutual information 𝐼(𝒜,ℬ) as 25

𝐼(𝒜,ℬ) := 𝑆𝒜 + 𝑆ℬ − 𝑆𝒜+ℬ ≥ 0. (5.6)

Entanglement entropy in 𝑑-dimensional QFTs is defined as in (5.1) on a (𝑑 − 1)-dimensional
spatial manifold at constant time with a submanifold 𝒜 and its complement ℬ. The result is
divergent and takes the general form

𝑆𝒜 = 𝑐0
Area(𝜕𝒜)

𝜖𝑑−2
+ subleading terms, (5.7)

where 𝜖 is a cutoff such that 𝜖 → 0 corresponds to the UV limit, 𝜕𝒜 is the boundary of the
submanifold 𝒜 and the coefficient 𝑐0 depends on the specific QFT. This equation looks similar
to the Bekenstein entropy and is the reason why entanglement entropy was historically also
considered in the context of BH entropy. In this context, it was found that entanglement
entropy can be interpreted as the contribution stemming from quantum corrections to the BH
entropy in the presence of matter fields (see [82] and references therein for details). The area
law (5.7), however, is not true in general. For even 𝑑, there are additional logarithmic terms
of the form

𝑆𝒜 = · · · + 𝑐𝑑 ln

(︂
𝐿

𝜖

)︂
+ · · · , (5.8)

where 𝐿 is the characteristic length scale of 𝜕𝒜. In particular for a two-dimensional CFT with
central charge 𝑐, the leading divergence in (5.7), which is proportional to (𝐿/𝜖)𝑑−2, vanishes
and one can derive the analytical result

𝑆𝒜 =
𝑐

3
ln
𝑙

𝜖
(5.9)

for the subsystem 𝒜 with length 𝑙.
An explicit calculation of entanglement entropy in a QFT can be performed with the so-called
replica-trick. It allows to rewrite the definition of the entanglement entropy as

𝑆𝒜 = − 𝜕

𝜕𝑛
ln Tr𝒜 𝜌

𝑛
𝒜

⃒⃒⃒
𝑛=1

= − 𝜕

𝜕𝑛
Tr𝒜 𝜌

𝑛
𝒜

⃒⃒⃒
𝑛=1

. (5.10)

The validity of this relation can easily be seen by rewriting ln Tr𝒜 𝜌
𝑛
𝒜 = ln (

∑︀
𝑖 𝜆

𝑛
𝑖 ) with the

eigenvalues 𝜆𝑖 of 𝜌𝒜. Differentiating w.r.t. 𝑛 then gives − 𝜕
𝜕𝑛

ln Tr𝒜 𝜌
𝑛
𝒜
⃒⃒
𝑛=1

= −
∑︀

𝑖 𝜆
𝑛
𝑖 ln𝜆𝑖∑︀
𝑖 𝜆

𝑛
𝑖

⃒⃒
𝑛=1

=

−
∑︀

𝑖 𝜆𝑖 ln𝜆𝑖∑︀
𝑖 𝜆𝑖

= −
∑︀

𝑖 𝜆𝑖 ln𝜆𝑖 = − 𝜕
𝜕𝑛

Tr𝒜 𝜌
𝑛
𝒜
⃒⃒
𝑛=1

= −Tr𝒜 𝜌𝒜 ln 𝜌𝒜, where we used the normaliza-
tion Tr𝒜 𝜌𝒜 =

∑︀
𝑖 𝜆𝑖 = 1 of the density matrix. Therefore, the quantity that needs to be

evaluated for a given QFT is Tr𝒜 𝜌
𝑛
𝒜, which can be done in the path integral formalism as

an integral on a Riemann surface with 𝑛 sheets. For an arbitrary interacting QFT, this task
is notoriously difficult or even impossible and only a few analytical results are known. For
25The symbols 𝐼 and 𝐿 appearing in this chapter must not be mixed with the notation in chapter 4.
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example, in a two-dimensional CFT, the general result is given in (5.9). On the other side,
the holographic method to calculate entanglement entropy, as explained in the next section,
allows computations even for strongly coupled QFTs and thus provides a promising approach
to explore properties of entanglement entropy in higher dimensions.

5.2 Holographic entanglement entropy in the EMd model

The dual holographic description of entanglement entropy (HEE) was proposed by Ryu and
Takayanagi [54, 55] in the context of the AdS/CFT correspondence. It relates the entanglement
entropy of a CFT with a given entangling area to the associated minimal surface in the bulk
of AdS spacetime. (See the left panel in Fig. 5.2 for a pictorial representation.) This concept
inspired numerous investigations in several fields. For example, HEE was calculated to study
the Van der Waals-like phase transition in charged Reissner-Nordström-AdS black holes [92–
94] and massive [95] or Weyl [96] gravity. Other studies showed that HEE can also be used to
characterize thermalization processes [97, 98]. In the context of the gravity/condensed matter
correspondence [99], HEE was analyzed in studies of holographic superconductors [100–105]
and metal-insulator transitions [106–108]. A recent proposal [109] argues that HEE can even
be measured in an analog system on a quantum simulator in the context of tensor networks.
The holographic interpretation of entanglement entropy thus allows interesting investigations
in physical systems, where the field theoretical calculation is not applicable and hence can be
used to study strongly coupled systems or quantum gravitational effects.
Most importantly, HEE was also used as a probe of confinement in large-𝑁𝑐 gauge theory
duals: The authors of [110] calculated the minimal surface in dependence of the width of
the entangling region and observed the change from a connected to a disconnected surface,
which they interpreted as the confinement-deconfinement transition. Further studies showed a
similar behavior for several background geometries [111–115], and lattice calculations for non-
Abelian gauge theories could also confirm this property [116–118]. The following analysis is
inspired by the work of Zhang [119], in which the author used HEE to characterize the different
phases in a holographic bottom-up model [76, 120] that mimics the QCD EoS at vanishing
chemical potential. In contrast to the previously mentioned references, the calculation therein
is performed for a fixed boundary area but in dependence on the temperature. Here, we
extend these calculations for our holographic EMd model to explore the capability of HEE to
characterize the different phases in the 𝑇−𝜇 plane, in particular the existence of the CEP in
the QCD phase diagram.
The precise statement of the Ryu–Takayanagi prescription [54, 55] is that the holographic dual
for the entanglement entropy (5.1) in a CFT𝑑 on IR1,𝑑−1 is given by

𝑆HEE =
Area(𝛾𝒜)

4𝐺
(𝑑+1)
𝑁

. (5.11)
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Figure 5.2: Left panel: Illustration of the definition of holographic entanglement entropy
(HEE) as a minimal surface in the bulk of AdS spacetime. Right panel: Geometrical setup of
the minimal surface for a rectangular strip on the boundary as the entangling area. Figures
adapted from [84].

Here, 𝛾𝒜 represents the static minimal surface in AdS𝑑+1 whose boundary satisfies 𝜕𝛾𝒜 = 𝜕𝒜
and 𝐺(𝑑+1)

𝑁 is the 𝑑+ 1 dimensional Newton constant (cf. left panel in Fig. 5.2 for this setup).
Due to the hyperbolic properties of the AdS spacetime, the HEE is infinite and the leading
divergence satisfies the same area law (5.7) as in the CFT case. In the original proposal, this
quantity was calculated for AdS3 spacetime and it was shown that the result indeed agrees
with the known formula (5.9) for the identification 𝑐 = 3/(2𝐺

(3)
𝑁 ) (at unity curvature radius).

Similarly, one can also show that HEE satisfies the (strong) subadditivity relations (5.3)-(5.5).
We refer to [82, 83] for heuristic arguments regarding the derivation of the holographic formula,
which, however, are not relevant for the following discussions.

For the present analysis, we assume a fixed rectangular strip shape on the boundary at 𝑟 = ∞
as the entangling area

𝒜 : 𝑥1 ∈ [−𝑙/2, 𝑙/2], 𝑥2, 𝑥3 ∈ [−𝐿/2, 𝐿/2]. (5.12)

Requiring translation invariance with 𝐿≫ 𝑙, the minimal surface can be parameterized by the
single function 𝑟 = 𝑟(𝑥1). (See the right panel in Fig. 5.2 for this configuration.) To calculate
the minimal surface area, the induced metric on the static minimal surface is needed, which
is given by

d𝑠2𝛾𝒜 =

(︂
e2𝐴 +

𝑟′2

ℎ

)︂
d𝑥21 + e2𝐴

(︀
d𝑥22 + d𝑥23

)︀
, (5.13)

where a prime denotes a derivative w.r.t. 𝑥1. The formula (5.11) for the HEE then yields

𝑆HEE =
1

4

∫︁
d𝑥1d𝑥2d𝑥3

√
𝛾 =

𝑉2
2

∫︁ 𝑙/2

0

d𝑥1e
2𝐴(𝑟)

√︃
e2𝐴(𝑟) +

𝑟′2

ℎ(𝑟)
. (5.14)
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Here, we set the Newton constant to unity, 𝑉2 is defined as 𝑉2 ≡
∫︀
𝑑𝑥2𝑑𝑥3, and 𝛾 is the deter-

minant of the induced metric on 𝛾𝒜. The area (5.14) can formally be extremized by evaluating
the Euler-Lagrange equations. This can be simplified by observing that the integrand ℒ in
(5.14) does not explicitly depend on 𝑥1, which gives the following integration constant

const = 𝑟′
𝜕ℒ
𝜕𝑟′

− ℒ =
e2𝐴(𝑟)𝑟′2

ℎ(𝑟)
√︁

e2𝐴(𝑟) + 𝑟′2

ℎ(𝑟)

− e2𝐴(𝑟)

√︃
e2𝐴(𝑟) +

𝑟′2

ℎ(𝑟)
= −e3𝐴(𝑟*), (5.15)

where we determined the integration constant at the point 𝑟*, which is the closest position of
the minimal surface to the horizon, such that

𝑟(0) ≡ 𝑟*, 𝑟′(0) = 0, 𝑟

(︂
± 𝑙

2

)︂
= ∞. (5.16)

(In the right panel of Fig. 5.2, this would correspond to the turning point of the half cylinder.)
Equation (5.15) can be simplified to√︃

e2𝐴(𝑟) +
𝑟′2

ℎ(𝑟)
=

e4𝐴(𝑟)

e3𝐴(𝑟*)
(5.17)

⇐⇒ 𝑟′ =
√︁
ℎ(𝑟) (e8𝐴(𝑟)−6𝐴(𝑟*) − e2𝐴(𝑟)). (5.18)

With (5.18), the last boundary condition in Eq. (5.16) can now be reexpressed as

𝑙

2
=

∫︁ 𝑙/2

0

d𝑥1 =

∫︁ ∞

𝑟*

d𝑟
[︀
ℎ(𝑟)

(︀
e8𝐴(𝑟)−6𝐴(𝑟*) − e2𝐴(𝑟)

)︀]︀−1/2
. (5.19)

Using Eq. (5.17) and (5.18), 𝑆HEE follows from Eq. (5.14) as

𝑆HEE =
𝑉2
2

∫︁ 𝑙/2

0

d𝑥1
e6𝐴(𝑟)

e3𝐴(𝑟*)
=
𝑉2
2

∫︁ ∞

𝑟*

d𝑟
e6𝐴(𝑟)−3𝐴(𝑟*)

e𝐴(𝑟)
√︀
ℎ(𝑟) (e6𝐴(𝑟)−6𝐴(𝑟*) − 1)

. (5.20)

As already mentioned above, this quantity is divergent in AdS space. One can also observe
that the integrand in Eq. (5.20) contains only metric functions and therefore HEE indeed rep-
resents a non-local geometric quantity. In our computational setup, we only have numerical
solutions of the metric functions from slightly outside the horizon to some finite value of the
holographic coordinate 𝑟. We thus cannot perform a systematic regularization and renormal-
ization procedure as e.g. in [121, 122] with an analytical expansion and suitable counterterms.
As a first step, we therefore explore an ad-hoc regularized HEE density, which is defined as

𝑆𝑟𝑒𝑔
HEE :=

1

2

∫︁ 𝑟𝑚

𝑟*

d𝑟
e6𝐴(𝑟)−3𝐴(𝑟*)

e𝐴(𝑟)
√︀
ℎ(𝑟) (e6𝐴(𝑟)−6𝐴(𝑟*) − 1)

, (5.21)
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where 𝑟𝑚 is a sufficiently large cutoff, similarly employed in the boundary condition (5.19). 26

Second, we perform a more rigorous renormalization procedure as follows: Let the integrand
in Eq. (5.20) be denoted as 𝐻(𝑟) and define �̃�(𝑟) by setting 𝐴(𝑟*) ≡ 0 in 𝐻(𝑟). Equations
(4.15) and (4.16) show that ℎ(𝑟) is constant for 𝑟 → ∞ at the boundary, while 𝐴(𝑟) is linear.
The entanglement integrand 𝐻(𝑟) therefore goes asymptotically like exp

{︀
2𝑟/
√︀
ℎ∞0
}︀
for large

values of 𝑟. Although these series expansions are valid in the limit 𝑟 → ∞, the metric functions
converge rapidly to the near-boundary behavior and thus 𝐻(𝑟) diverges generically as 1/

√
𝑟 for

small values of 𝑟 near the horizon. The newly defined function �̃�(𝑟) obeys the same boundary
asymptotics but is shifted such that is deviates near 𝑟* compared to 𝐻(𝑟). It therefore picks
up the same divergence at the cutoff 𝑟𝑚 in the UV limit 𝑟𝑚 → ∞ and we consider the finite
renormalized integrand 𝐻(𝑟) − �̃�(𝑟). Since the numerical values become very large and the
difference is numerically demanding, we employ the logarithm and rewrite the integrand as
ln𝐻(𝑟) − ln �̃�(𝑟) = ln[𝐻(𝑟)/�̃�(𝑟)]. The renormalized HEE is now defined as

𝑆𝑟𝑒𝑛
HEE :=

1

2

∫︁ 𝑟𝑚

𝑟*

d𝑟 ln
𝐻(𝑟)

�̃�(𝑟)
. (5.22)

We remark that we introduced this renormalization scheme to avoid negative values of the
HEE that appear for example in a renormalization procedure w.r.t. some reference point as
in [119]. Since negative values for an entanglement entropy (as a von Neumann entropy for a
subsystem) are not possible in the definition (5.1), we do not interpret these as physical.

Our final comment in this section is devoted to disconnected surfaces. In general, there could
be also the possibility of a disconnected minimal entangling surface reaching from the boundary
at 𝑟 = ∞ up to the horizon at 𝑟* = 𝑟𝐻 = 0. However, as discussed in [123], extremal surfaces
in static spacetimes cannot penetrate the event horizon of a BH. We therefore do not consider
such a surface class in our analysis.

5.3 Phase diagram of holographic entanglement entropy

In this section we describe the numerical results of the HEE calculation in our holographic
QCD phase diagram with the same initial conditions as in section 4.3. For each BH solution we
solved the boundary condition (5.19) numerically for a fixed value 𝑙 = 0.04 of the strip width
and obtained the corresponding value of 𝑟*. The regularized and renormalized HEE integrals
(5.21) and (5.22) are then calculated with 𝑟𝑚 = 2.0 as the UV regulator. We explicitly checked
that the qualitative behavior is similar also for larger cutoff values.

In Fig. 5.3, 𝑆𝑟𝑒𝑔
HEE and 𝑆𝑟𝑒𝑛

HEE are shown in dependence on the temperature for different values
of the chemical potential. At vanishing chemical potential, the regularized HEE (left panel)

26The notion density refers to the fact that we divided by the infinite volume 𝑉2. This emulates the effect of
an IR regulator.
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Figure 5.3: Regularized HEE density ln𝑆𝑟𝑒𝑔
HEE (left panel, figure source [2]) and renormalized

HEE density 𝑆𝑟𝑒𝑛
HEE (right panel) as a function of the temperature 𝑇 for different values of

the chemical potential 𝜇.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
µ/µCEP

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
/T

C
E
P

14
.0

15
.0

16.0

17.0

18.020.0
22.0

26.0
28.0

38.0

36.0

34.0
32.0 30.0

28.0

26
.0

lnS regHEE

12

16

20

24

28

32

36

40

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
µ/µCEP

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
/T

C
E
P

22
.0

18
.0

16
.0

14.0

12.0

10.08.0
6.0

4.0
3.5

1.5

1.7

2.0
2.5

4.0

3.0

3.5

s/T 3

4

8

12

16

20

24

28

32

Figure 5.4: Contour plots of the regularized holographic entanglement entropy density
ln𝑆𝑟𝑒𝑔

HEE (left) and scaled entropy density 𝑠/𝑇 3 (right) over the scaled 𝑇 −𝜇 plane. The
position of the CEPs is marked by a white dot and the FOPT curves are displayed as grey
lines. Figure from [2].

is monotonically decreasing in the characteristic crossover region 𝑇 = 𝒪(150 MeV). With
increasing chemical potential, the HEE is pushed towards smaller values and a FOPT at
large values of 𝜇 is signaled by the appearance of a multivalued branch. At the critical value
𝜇 ≡ 𝜇𝐶𝐸𝑃 , the entanglement entropy curve (red line in Fig. 5.3) has an infinite slope at
𝑇 ≡ 𝑇𝐶𝐸𝑃 , signalling the divergence at the CEP. The renormalized HEE (right panel) exhibits
the opposite qualitative behavior, i.e. the values are monotonically increasing. A multivalued
branch is analogously appearing for large 𝜇 ≥ 𝜇𝐶𝐸𝑃 . Interestingly, the renormalized HEE
resembles qualitatively well the shape of 𝑠/𝑇 3, c.f. Fig. 4.7. In [119], this was already observed
for 𝜇 = 0 in a different renormalization scheme. The calculations here show, that this is still
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Figure 5.5: Left panel: Pseudo-pressure 𝑝HEE in dependence on the temperature. The
values follow from the regularized HEE definition by integrating d𝑝HEE = ln(𝑆𝑟𝑒𝑔

HEE)d𝑇 for
different values 𝜇 ≡ const. Right panel: Comparison of FOPT curves over the scaled 𝑇−𝜇
plane based on the left panel of Fig. 4.5 (grey curve) and the result exhibited in the right
panel of Fig. 4.5 (blue dashed curve). The position of the CEP is marked by a red dot.
Figure from [2].

true at finite 𝜇. If one considers the dependence of the HEE on the width 𝑙, this agreement with
the thermodynamic entropy would not be surprising for large 𝑙, since in that case the minimal
surface is close to the BH horizon and the minimal area therefore is proportional to the area
of the event horizon, i.e. the entropy according to the Bekenstein formula. However, in our
case for fixed 𝑙 but varying 𝑇 , this agreement is a priori not obvious and nontrivial. In both
definitions, the entanglement entropy at large temperatures 𝑇 is nearly independent of 𝜇 and
asymptotically constant. Remembering the fact that entanglement entropy characterizes the
quantumness of a physical system, this shows that these holographically computed quantities
can separate the quantum region of the holographic QCD phase diagram at low temperatures 𝑇
from the thermodynamic region at large 𝑇 and/or 𝜇. From Fig. 5.3, it becomes obvious that the
renormalized definition (5.22) is numerically more unstable compared to (5.21). We therefore
continue to study the regularized HEE (5.21). We are confident that these results are robust
since both definitions, although being rather ad-hoc, are clearly able to distinguish the phase
structure and show the same features as outlined in the previous discussions.
To determine the phase structure in more detail, in particular the precise FOPT curve, we
need to calculate the pressure as a thermodynamic potential. Regarding entanglement entropy,
however, there is no first law of thermodynamics in general systems. Only for very special
cases, an equivalent thermodynamic relation is known for excited sates [124]. We therefore
define a pseudo-pressure 𝑝HEE through the integration

d𝑝HEE = ln(𝑆𝑟𝑒𝑔
HEE)d𝑇 for 𝜇 ≡ const, (5.23)

which is inspired by the first law of thermodynamics. The resulting dependence on the temper-
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ature is shown in Fig. 5.5 (left panel). Note that a possible integration constant in this integral
is irrelevant for the transition temperature. For 𝜇 < 𝜇𝐶𝐸𝑃 , 𝑝HEE is monotonically increasing
and starts to develop a kink at 𝜇 = 𝜇𝐶𝐸𝑃 , indicating the FOPT towards larger values of 𝜇. In
case of a FOPT at 𝜇 > 𝜇𝐶𝐸𝑃 , the pressure exhibits a typical loop, resulting from the multi-
valued branch, and the temperature 𝑇𝑐(𝜇𝑐) of the FOPT is given by the intersection point of
the low-temperature and high-temperature branches. We identify the stable phases as those
with lowest pressure. This is contrary to standard thermodynamics, where stable phases have
highest pressure, but represents an artefact of the regularized definition in which 𝑆𝑟𝑒𝑔

HEE(𝑇 ) is
decreasing (see left panel in Fig. 5.3). Since 𝑆𝑟𝑒𝑛

HEE(𝑇 ) resembles the thermodynamic entropy
and is increasing (see right panel in Fig. 5.3), this behavior would be opposite and similar to
the thermodynamic interpretation in this case.

The resulting phase diagram of the regularized HEE density over the 𝑇−𝜇 plane is shown in
Fig. 5.4 (left panel) and compared to its counterpart, the standard thermodynamic-statistical
entropy density 𝑠/𝑇 3 (right panel). The CEP position 𝑇𝐶𝐸𝑃 = (111.5 ± 0.5) MeV and
𝜇𝐶𝐸𝑃 = (611.5 ± 0.5) MeV of the HEE phase diagram is in agreement with the thermody-
namic result (4.48). Only the stable phases are shown. Across the FOPT curve, the HEE
is discontinuous and jumps towards smaller values with increasing temperature or chemical
potential. As already stressed above, this qualitative behavior of the regularized HEE den-
sity is opposite to the thermodynamic entropy. However, it is visible that the contour lines,
i.e. “scaled isentropes”, show a remarkable similarity in both phase diagrams. This illustrates
that HEE is indeed a quantity that is capable to characterize the different structures in the
holographic QCD phase diagram.

Based on the HEE pseudo-pressure definition and the true thermodynamic stability criterion,
we explicitly compare the location of the FOPT curves over the 𝑇−𝜇 plane in Fig. 5.5 (right
panel). In the vicinity of the critical point up to 𝜇𝑐/𝜇𝐶𝐸𝑃 ≈ 1.2, the two curves agree very
well but deviate from each other approximately 5 % for 𝜇𝑐/𝜇𝐶𝐸𝑃 ≈ 1.6. We remark that the
definition of 𝑝HEE in (5.23) with the logarithmic values ln𝑆𝑟𝑒𝑔

HEE is ad-hoc. This is justified
by the fact that no exact first law for HEE exist. Furthermore, one can observe that this
definition yields a better agreement of the resulting FOPT curve with the thermodynamic one
than with the values 𝑆𝑟𝑒𝑔

HEE itself.

5.4 Critical behavior

An important concept, which allows to describe the universal behavior of physical quantities
near the critical point, are critical exponents. In general, they quantify the divergence of
derivatives of the free energy as power laws. Here, we would like to use only the information
from the HEE and thus consider the power law dependence of the specific heat at constant
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ln|ŝ− ŝCEP|

8

6

4

2

ln
|T
−
T
C
E
P
|

HEE
T<TCEP

T>TCEP

12.0 12.5 13.0 13.5 14.0 14.5
ln|s− sCEP|

8

6

4

2

ln
|T
−
T
C
E
P
|

Thermo

Figure 5.6: The logarithmic difference ln |𝑇 −𝑇𝐶𝐸𝑃 | in dependence on ln |𝑠−𝑠𝐶𝐸𝑃 | for the
regularized HEE density 𝑠 ≡ ln𝑆𝑟𝑒𝑔

HEE (left panel) and standard thermodynamic quantities
(right panel). Blue dots are approaching the CEP along the 𝜇 ≡ 𝜇𝐶𝐸𝑃 curve for 𝑇 <
𝑇𝐶𝐸𝑃 and red dots for 𝑇 > 𝑇𝐶𝐸𝑃 . The straight lines represent the corresponding linear fit
functions.

chemical potential:

𝐶𝜇 ≡ 𝑇
𝜕𝑠

𝜕𝑇

⃒⃒⃒
𝜇

= −𝑇 𝜕
2𝑓

𝜕𝑇 2

⃒⃒⃒
𝜇
∼ |𝑇 − 𝑇𝐶𝐸𝑃 |−𝛼. (5.24)

In this definition, the CEP is approached along 𝜇 = 𝜇𝐶𝐸𝑃 and 𝑇 < 𝑇𝐶𝐸𝑃 . The exponent 𝛼′ is
defined similarly for 𝑇 > 𝑇𝐶𝐸𝑃 . 27

The calculation is performed as follows: We consider the proportionality |𝑇 − 𝑇𝐶𝐸𝑃 | ∼
|𝑠 − 𝑠𝐶𝐸𝑃 |𝛽 and calculate the exponent 𝛽 through the linear fit function ln |𝑇 − 𝑇𝐶𝐸𝑃 | =

𝛽 ln |𝑠 − 𝑠𝐶𝐸𝑃 |+ const as shown in Fig. 5.6. From the definition (5.24), 𝐶𝜇 is proportional to
𝑇/|𝑇 − 𝑇𝐶𝐸𝑃 |1/𝛽−1 and the critical exponent is then given by 𝛼 = 1 − 1/𝛽.

We start with the thermodynamic entropy 𝑠 ≡ 𝑠 and find the following results for the BH
solutions closest to the CEP (cf. right panel in Fig. 5.6):

ln |𝑇 − 𝑇𝐶𝐸𝑃 | = 2.9767 ln |𝑠− 𝑠𝐶𝐸𝑃 | − 43.9173 for 𝑇 < 𝑇𝐶𝐸𝑃 , (5.25)

ln |𝑇 − 𝑇𝐶𝐸𝑃 | = 2.7568 ln |𝑠− 𝑠𝐶𝐸𝑃 | − 41.0910 for 𝑇 > 𝑇𝐶𝐸𝑃 . (5.26)

The critical exponents then follow as

𝛼 ≈ 0.66, 𝛼′ ≈ 0.64. (5.27)

Regarding the HEE, we employ the logarithmic values 𝑠 ≡ ln𝑆𝑟𝑒𝑔
HEE and find (cf. left panel in

27In common notation, 𝛼 is also used in the literature as the critical exponent for 𝐶𝑛, i.e. the heat capacity at
constant baryon density along the FOPT curve. The latter has the mean field result 𝛼 = 𝛼′ = 0 and does
not coincide with our definition here.
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Fig. 5.6):

ln |𝑇 − 𝑇𝐶𝐸𝑃 | = 2.8309 ln |𝑠− 𝑠𝐶𝐸𝑃 | − 2.8901 for 𝑇 < 𝑇𝐶𝐸𝑃 , (5.28)

ln |𝑇 − 𝑇𝐶𝐸𝑃 | = 2.9024 ln |𝑠− 𝑠𝐶𝐸𝑃 | − 2.5998 for 𝑇 > 𝑇𝐶𝐸𝑃 . (5.29)

This procedure yields the following critical exponents:

𝛼HEE ≈ 0.65, 𝛼′
HEE ≈ 0.66. (5.30)

These values characterize the second-order phase transition at the CEP in the holographic
QCD phase diagram. One can observe that in both cases, the results nearly give the same
value 𝛼 = 𝛼′ = 2/3, which is the value for the van der Waals criticality in AdS black holes [125].



6 Summary and Outlook

In this thesis we have studied the QCD phase diagram within the framework of a holographic
Einstein-Maxwell-dilaton (EMd) model. The model, originally proposed in [21], rests on a
5-dimensional classical gravitational theory in an anti-de Sitter (AdS) space coupled to a real
dilaton scalar field with self-interaction (described by a nontrivial potential) and an Abelian
gauge field (coupled to the dilaton with a dynamical strength function). The gravitational the-
ory admits black hole solutions and, based on AdS/CFT interpretations, the associated ther-
modynamic quantities are related to a quantum field theory (QFT) at the four-dimensional
boundary of the AdS space. The dilaton potential breaks conformal invariance and is re-
sponsible for mimicking the running coupling constant in QCD, while the Abelian gauge field
introduces a chemical potential in the dual QFT.

We found multi-parameter ansätze for the dilaton potential and dynamical strength function
that allow a very precise description of the most recent 2 + 1 flavor lattice QCD data with
physical quark masses at baryo-chemical potential 𝜇 = 0 [11, 12, 70] (cf. section 4.2). In
particular, we found appropriate dilaton potential parameters by a fit to the QCD equation
of state (EoS) (cf. Fig. 4.1) and the parameters for the dynamical strength function were
determined by a fit to the second-order quark number susceptibility (cf. Fig. 4.3). Based on
this adjustment, we extrapolate the information of the holographic EMd model to finite density
and chemical potential by suitably chosen initial conditions.

At this point, we should also emphasize the limitations of this bottom-up approach as an effec-
tive model to mimic selected QCD properties. Foremost, the model accounts only implicitly
for fundamental aspects of QCD such as confinement and chiral symmetry by adjustment to
lattice QCD results. Explicit considerations on chiral symmetry breaking and its restoration
at finite temperature and density can only be done by taking flavored branes in the bulk
into account, as in [126] (see [127–132] for further developments). The underlying setup here
represent the simplest effective model with a minimal number of degrees of freedom (i.e. a
single-dilaton potential). As discussed in [59], this kind of EMd model also does not take into
account quantum string corrections or the strongly coupled UV fixed point in the classical
gravitational theory. The setup is therefore limited to an intermediate temperature range
above the quantum phase transition. However, since we are able to describe the second-order
(which is input) and also fourth-order (which follows as a result) baryon susceptibilities at
𝜇 = 0 of the lattice data, we are confident to make robust predictions for the QCD phase
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diagram at finite values of 𝜇.

Our realization of this EMd model (see section 4.3) results in a critical end point (CEP) at a
temperature 𝑇𝐶𝐸𝑃 = (112 ± 5) MeV and a baryo-chemical potential 𝜇𝐶𝐸𝑃 = (612 ± 50) MeV

as the starting point of a first-order phase transition (FOPT) curve towards larger chemical
potential (cf. Fig. 4.5). The uncertainties of the CEP position follow from parameter variations
and different low-temperature asymptotics for the second-order quark number susceptibility
and EoS that take lattice uncertainties into account. This prediction is consistent with recent
lattice estimates in [133] and the covered range of the phase diagram in [81]. The holographic
QCD phase diagram in the 𝑇−𝜇 plane is similar to a gas-liquid phase transition. This can
be seen from the fact that the critical pressure as a function of the temperature is increas-
ing (cf. Fig. 4.6) and the discontinuous jump of isentropes towards smaller values across the
FOPT curve with increasing temperature and chemical potential (cf. Fig. 4.5). In particular,
isentropes enter the coexistence region from the deconfined/dense side, run through and leave
the FOPT curve on the confined/dilute side at lower temperature.

Recently, the authors of [134] calculated higher-order susceptibilities within the framework
of this holographic EMd model to probe properties of the quark-gluon plasma (QGP) at
finite density. Their adjustment to lattice QCD data is based on other parametrizations of
the dilaton potential and dynamical strength function as well and results in a CEP with
coordinates 𝑇𝐶𝐸𝑃 = (89 ± 11) MeV and 𝜇𝐶𝐸𝑃 = (723 ± 36) MeV, only marginally consistent
with our result. In both works, the available lattice data (i.e. the EoS and susceptibilities) can
be described equally good. We therefore conclude that the holographic EMd model is sensitive
to the input data and internal parametrization, which, however, affect the CEP position and
phase structure. In future studies, it would be promising to draw more profound conclusions
and to find reasons for this behavior. For that purpose and an unique determination of CEP
coordinates, precision lattice data in the range 𝑇 . 100 MeV would be very helpful, since
both setups seem to differ in this low-temperature region, where currently no lattice data are
available.

In the second part of the thesis, we studied the entanglement entropy in our holographic QCD
phase diagram (cf. chapter 5). Entanglement entropy is an important non-local quantity that
allows to characterize phases in physical systems or can be used as an order parameter for phase
transitions. Here, we calculate this quantity holographically (HEE) based on the proposal
[54, 55] as a minimal surface in the bulk in the context of the AdS/CFT correspondence.

We assume a fixed strip shape as the entangling surface on the boundary and introduce a cutoff
to regularize the divergent entropy integral to explore the phase structure in the temperature-
chemical potential plane. In agreement with the thermodynamic result, a FOPT curve is
setting in at the same CEP towards larger chemical potential (cf. section 5.2). We determine
the FOPT curve in the entanglement setup by defining a pseudo-pressure as an integral over
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the HEE density. In case of a FOPT, the HEE exhibits a multivalued branch and thus the
pseudo-pressure allows to calculate the transition temperature. The resulting FOPT curves
based on the HEE and from the thermodynamic calculation agree well in the vicinity of the
CEP (cf. Fig. 5.5). We find that the HEE is capable to characterize the different structures in
the QCD phase diagram (cf. Fig. 5.4): The regularized HEE density is decreasing rapidly in
the crossover region of the phase diagram and jumps towards smaller values across the FOPT
curve. This behavior is opposite to the thermodynamic entropy. Another ad-hoc definition of a
renormalized HEE density, however, shows a similar behavior as the thermodynamic-statistical
entropy density (cf. Fig. 5.3) and supports these general findings.
A detailed analysis of the criticality near the CEP shows that the logarithmic values of the
regularized HEE density show a similar scaling behavior as the thermodynamic entropy density.
In particular, we calculated the critical exponent of the heat capacity at constant chemical
potential. The resulting values agree well with the van der Waals criticality in AdS black holes.
Our results show that entanglement entropy qualifies to probe the hadronic phase and the QGP
in our holographic EMd model. The confinement/deconfinement transition can be described
(only) in the vicinity of the CEP of the QCD phase diagram and the qualitative behavior
of HEE in the temperature-chemical potential plane is dependent on the regularization or
renormalization scheme.

The significance of this thesis lies in a reliable discussion of expected structures in the QCD
phase diagram within a holographic approach, which is based on a quantitative adjustment
to the most recent lattice QCD results. Our prediction for the CEP is relevant for heavy-
ion collision experiments in future facilities and our predictions for the phase structure at
finite density and chemical potential could in principle be checked by advanced lattice QCD
techniques that circumvent or solve the sign problem, which hampers up to now a direct
lattice evaluation of thermodynamic quantities at non-zero chemical potential. Furthermore,
we consider here for the first time the qualitative behavior of HEE in a holographic QCD phase
diagram.
In future studies, it would be promising to adjust the model also at low temperatures to lattice
QCD data, in particular in view of the aforementioned paper [134]. Furthermore, it might be
interesting to incorporate effects like confinement and chirality explicitly in the holographic
approach. Such effects, however, require a comprehensive extension of the current setup of the
gravitational model and are not easy to implement. Regarding the HEE studies, improvements
and more detailed studies for the renormalization procedure were desirable. In our current
studies, these issues are limited by the numerical implementation. An extension of the present
apparatus would allow to study the HEE in a self-consistent way.





A Details of the dilaton potential

In this appendix, we describe some details to motivate the explicit form

𝐿2𝑉 (𝜑) =

⎧⎨⎩−12 exp
{︀

𝑎1
2
𝜑2 + 𝑎2

4
𝜑4
}︀

: 𝜑 < 𝜑𝑚

𝑎10 cosh [𝑎4(𝜑− 𝑎5)]
𝑎3/𝑎4 exp

{︁
𝑎6𝜑+ 𝑎7

𝑎8
tanh [𝑎8(𝜑− 𝑎9)]

}︁
: 𝜑 ≥ 𝜑𝑚

(A.1)

of the dilaton potential in our holographic model. These arguments are based on the results
and discussions in [3].
The dilaton potential 𝑉 (𝜑) is restricted by two conditions: The near-boundary expansion at
𝜑→ 0 is fixed by requiring an asymptotic AdS space as

lim
𝜑→0

𝑉 (𝜑) = −12

𝐿2
+

1

2
𝑚2𝜑2 + · · · , (A.2)

where the dilaton mass 𝑚 is related to the scaling dimension ∆ via 𝑚2𝐿2 = ∆(∆ − 4). For
the expansion of (A.1), this implies ∆ = 2(1 +

√
1 − 3𝑎1). 28 On the other side, near the black

brane horizon at 𝜑→ ∞, the potential must obey the Chamblin-Reall behavior [135]

lim
𝜑→∞

𝑉 (𝜑) = 𝑉0 e𝛾𝜑 (A.3)

with 𝑉0 < 0 and 𝛾 = const. The form (A.1) was chosen to interpolate between these two
behaviors (cf. blue curve in the left panel of Fig.A.1). However, these two conditions are not
enough. A relevant quantity is also the ratio 𝑉 ′/𝑉 . (A prime denotes a derivative w.r.t. 𝜑.)
This is evident by considering 𝑣2𝑠 , the speed of sound squared, as a quantity, which is sensitive
to the phase transition type (cf. also [80]). Namely, in an adiabatic approximation, one has [76]

𝑣2𝑠 ≈ 1

3
− 1

2

(︂
𝑉 ′

𝑉

)︂2

. (A.4)

A local minimum of 𝑣2𝑠 as a characteristic feature of a crossover deconfinement phase transition
(cf. Fig. 4.1) therefore corresponds to a local maximum of 𝑉 ′/𝑉 and vice versa. In addition,
one can infer from Eq. (A.2) that 𝑉 ′/𝑉 must exhibit a polynomial behavior in the UV limit.
(A possible divergent term in the series expansion around 𝜑 = 0 is neglected since we always

28This gives Δ ≈ 2.7692 or 𝑚2𝐿2 ≈ −3.4085 ≥ −4 for the fit parameters (4.39), satisfying the Breitenlohner-
Freedman bound (3.28).
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Figure A.1: Left panel: Dilaton potential 𝐿2𝑉 (A.1) (blue curve) and its derivative 𝐿2𝑉 ′

(orange curve) with coefficients (4.39) as a function of the initial conditions 𝜑0. The asymp-
totic Chamblin-Reall potential is shown as black dash-dotted curve. Right panel: The ratio
𝑉 ′/𝑉 (blue curve) and speed of sound 𝑣2𝑠 (orange curve) in dependence of 𝜑0. The or-
ange dash-dotted curve represents 𝑣2𝑠 in the adiabatic approximation. Vertical dotted lines
bracket the range of the lattice QCD data.

consider 𝜑 > 0.) In the IR limit, Eq. (A.3) implies 𝑉 ′/𝑉 = const. Having these desired
properties in mind, we make the following simple ansatz

𝜐(𝜑) :=
𝑉 ′(𝜑)

𝑉 (𝜑)
=

⎧⎨⎩𝑎1𝜑+ 𝑎2𝜑
3 : 𝜑 < 𝜑𝑚

𝑎3 tanh [𝑎4(𝜑− 𝑎5)] + 𝑎6 + 𝑎7 sech2[𝑎8(𝜑− 𝑎9)] : 𝜑 ≥ 𝜑𝑚

(A.5)

which smoothly interpolates between the different regimes. The tanh term in (A.5) generates
the asymptotic constant behavior, while the sech term generates a local maximum. Requiring
regularity of 𝜐 and 𝜐′ at 𝜑𝑚, one can solve for 𝑎1 and 𝑎2 (analytically). Upon integration,
the dilaton potential (A.1) is derived, in which the integration constant 𝑎10 is determined by
demanding regularity of 𝑉 at 𝜑𝑚. The right panel in Fig.A.1 shows 𝜐 (blue curve) with best
fit parameters (4.39) and 𝑣2𝑠 (orange curve) in a large range of initial conditions 𝜑0. The local
maximum of 𝜐 at 𝜑0 ≈ 3.2 corresponds to the local minimum of 𝑣2𝑠 in the deconfinement
crossover region. The adiabatic approximation (A.4) (orange dash-dotted curve) agrees quite
accurately with the full result. The orange curve in the left panel of Fig.A.1 shows also 𝑉 ′

separately. Allowing for a normalization, scaling and shift parameter for the tanh and sech term
and an overall constant in (A.5), one has at least seven independent parameters to define 𝜐(𝜑)

in the different regimes. 29 Together with 𝜑𝑚, we allowed for eight free fit parameters. These
parameters are adjusted in the range of available lattice data, which is enclosed by the vertical
dotted lines in Fig.A.1. If the additional local minimum of 𝜐 at 𝜑0 ≈ 4.3 is “justified” cannot

29In more detail, 𝑎3 and 𝑎6 cause a vertical shift of 𝜐(𝜑), 𝑎4 affects the height of the local maximum, 𝑎5
determines the slope at 𝜑 & 𝜑𝑚, 𝑎7 governs the depth of the “throat” at the local minimum, whose position
is shifted by 𝑎9, and 𝑎8 regulates its width.
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be assessed, since it is beyond the fit range. From Eq.A.5, we deduce 𝛾 ≡ lim𝜑→∞ 𝜐(𝜑) = 𝑎3 +

𝑎6 ≈ 0.6952, demonstrating that 𝑉 (𝜑) indeed obeys the Chamblin-Reall behavior (A.3) with
𝑉0 ≈ −2.6405 (cf. black dash-dotted curve in the left panel of Fig.A.1). As elaborated in [3]
and [69], the thermodynamic requirement 𝑝(𝜑 = ∞) = 0 is satisfied for 𝛾 < 2

√︀
2/3 ≈ 1.6330,

corresponding to a “good” singularity at 𝜑 → ∞. Considering 𝑣𝑠 by taking the square root
of Eq.A.4, one can deduce the more stringent condition 𝛾 <

√︀
2/3 ≈ 0.8165 by demanding

thermodynamic stability (see also [76]). Both conditions are satisfied for the ansatz (A.5) with
parameters (4.39) (cf. right panel in Fig.A.1). This exemplifies that the holographic model
has no explicit confinement and fermionic degrees of freedom [69].
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